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Emergence of Human Deception in very young children
(Evans & Lee, 2013)

* 65 children 2-3 years old
* Recorded, and asked whether they peeked
» Confessor: If they peeked and admitted peeking
‘ * Lie teller: If they peeked but denied peeking
h * 80% peeked (52/65)
i — » Of 52 peekers, 40% lied about having peeked
» Executive function skills play an important role in lie
telling: Kids with higher cognitive capacity lie more
» Follow up studies show that older children lie more

than younger children (younger children may lack
the executive functioning skills to lie).

Deception is a principle of war

Sun Tzu, (Giles, 2005): All warfare is based on deception.
able to attack =» appear unable
when active =» appear inactive
when near =» make enemy believe we are far

Decoy equipment
(inflatable tank) used in
WW I

National Archives and Records Administration, (2015)
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Deception in the cyber world:

The act of intentionally misleading
through the strategic use of information
(by inducing and suppressing signals)
to cause behavioral changes on an
agent that benefit the deceiver.

Deception in the cyber world
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» If we are so good at deception why are we so trusting in cyber world? And
why we cannot successfully deceive the attacker?
 Identities, actions, and intentions are easier to conceal in the cyberworld.
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Deception-Based attack strategies

1. Strategic manipulation of information.
a) Attention-catching strategies: high value targets; positive and negative
values
b) Use nudges: emergency, urgency, opportunity
e.g., draws the phishing victim’s attention away from the identity of the
sender.
2. Influence of trust, familiarity, similarity
a) We tend to trust things/people that are more familiar or similar to
ourselves, share our own opinions.
e.g. Spear phishing: impersonating someone familiar to us and we trust.
3. Human cognitive experiential biases and context.
a) Framing effects (e.g., negative frames incite risk taking)
b) Confirmation bias, gamblers’ fallacy, misperception of randomness
e.g., Search information that confirm our expectations.

Deception-Based cyber defense strategies

» Deception-based mechanism are also common for cyber defense (e.g.,
honeypots).

» Honeypots are used for detection to catch illicit interactions; in prevention, to
assist in slowing attackers down; and many other defense possibilities.

» However, the effectiveness of honeypot techniques is questionable, as they
often rely on static allocations that can often be easily discovered by
attackers.

» Most of our cyber defenses remain static today. Attackers know it.

— They can afford the time to engineer reliable exploits and plan their
attacks because the targets do not change.

— They can persist after a success inside a compromised network because
the network does not change!

9/19/2019



Goal: design dynamic and personalized effective defense
strategies

By enhancing:

Game-theoretic approaches (Stackelberg Security Games) and
algorithms for the optimization of limited resources of defense

With:
Behavioral laboratory experiments that elicit human attack and

defend decisions and cognitive models that represent human
behavior computationally.

Stackelberg Security Games (SSGs)

by allocating K < n resources over them.

A pure defense strategy is an allocation of the resources, with a mixed strategy
being a randomization over these pure strategies. A mixed strategy represented
as coverage probabilities over the targets, z = {Z;}

The attacker is aware of z (but not the pure strategy) and chooses a target t to
attack accordingly.

If the defender is protecting t, the attacker incurs a penalty and the defender is
rewarded; If t is unprotected, the attacker gets a reward and the defender gets a
penalty
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Successful applications of the Strong Stackelberg Equilibrim (SSE):
Optimize allocation of limited defense resources (Tambe’s group)

SSE with Persuasion (peSSE): (Xu et al., 2015)

Around of the two-stage SSG plays out as follows:

1. The defender allocates her resources, covering a
random subset of the targets based on her mixed
strategy z. i

2. Aware of the defender's mixed strategy, the attacker Covered Signal
chooses a target, t, to attack accordingly.

3. The defender sends a (possibly deceptive) signal to the
attacker regarding the current protection status of t.
Signaling scheme consists of probabilities (p & q) given I?
coverage or not. 1-z
4, Based on the information given in the signal, the Uncovered & | No Signal
attacker chooses to either (1) continue attacking or (2)
withdraw the attack yielding payoffs of zero for both
players.

The optimal (“perfectly rational”) act for the attacker is to always withdraw
given a signal
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e Our premise:

— These technical solutions may be more effective if they take
advantage of the attacker’s cognitive weaknesses (e.g., attacker’s
cognitive biases)

— The “right balance” of deceptive and truthful signals depends
directly on the human attacker’s beliefs

— To adjust the signal dynamically, we need a computational
representation of the evolution of human beliefs.

« Our research program aims at advancing our understanding of how
deceptive signals can be designed and presented to attackers in
order to maximize their effectiveness, and how to develop
computational models that predict human beliefs rather than relying
on the assumption of perfect rationality.

A Research Framework for the Design of Adaptive
and Personalized Deception

Attacker Experimental Games Defender

|
o M- 8

- Human pairticipant in
- Stackelberg Security Games (SSGs):

learning (multiple rounds)
experiments Making “attack” Optimal Defender Resource Allocation
Strategy

decisions t
- Signaling Theory (PeSSE): Generating
B Deceptive Signals
Recognion " cand 1

e T -

- Instance-Based Learning - Attacker’s belief state

Theory (IBLT): Build IBL > predictions (e.g., Confirmation
models of human Biases)

experiential choice 14
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Experimental Games and Human Experiments

» To apply the game-theoretical solutions, we need to
choose the right abstractions that isolate exactly the
strategic issues of interest in cyber security.

* Insights on human behavior by studying “would-be”
attackers in laboratory experiments.

Advantages and disadvantages

« Simplicity in modeling facilitates reasoning and allows a
model to cover a broad class of relevant scenarios.

» But stylized models may be too generic and difficult to
apply to particular solutions in cybersecurity.

Increasing complexity and realism of experimental games

The Box Game Insider Attack Game HackIT Simulation ExploitIT in CyberVAN

Complexity and Realism (increasing semantics)




e The dynamics of human choice
are captured by Instance-Based
Learning Theory (IBLT):
cognitive processes of
Recognition, Judgment, Choice,
and Feedback.

e IBLT relies on ACT-R’s
mathematical formulations of
human memory processing.
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Cognitive models of human dynamic decision making
(Gonzalez, Lerch, & Lebiere, 2003)

(Anderson & Lebiers, 1992

ACT-R: a production system

The 2x2 levels of ACT-R
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Examplel — The Box Game
Work in progress

Questions:

1) What effect has the frequency of signals on attack decisions?
2) What is the effect of the type of signal used (e.g., framing of the signal)?

19

The box game experiment

Player’s Goal: Find a “treasure” hidden in 2 identical boxes during each of
50 rounds.

The Defender (algorithm) aims at protecting the boxes and prevent you
from finding the treasure. But the Defender can only protect one of the
two boxes at a time.

The Defender sends signals stating whether the box is protected or not.
Sometimes may say that the box is protected when it is not; sometimes it
may say that the box is not protected when in fact it is; and sometimes it
may say nothing.

When you select a box you may receive a signal. Then, you can choose

whether or not you want to actually select the box. If you choose:
— A box that is NOT protected, you found the treasure! (win: 100 points);
— A box that IS protected, you got caught (lose: -50 points);
— Not to attack the box (0 points).

9/19/2019
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Experimental Methods

PeSSE - 1-way PeSSE - 2-way- 0.75

PeSSE - 2-way- 0.5

Signal Covered Signal Covered

5

Uncovered 1-7q

1-zq

Uncovered

No Signal No Signal

(Signal) Signal 1: This server may
be protected by the Defender.
If you proceed, you may lose 50 points.

Signal 2: This server may NOT be
protected by the Defender.
If you proceed, you may win 100 points.

3 experimental conditions of manipulation of the probability of sending a truthful signal when protected:
1-way, 2-way(0.75), and 2-way(0.50) (100 participants in each condition). All conditions use optimal
allocation of defense resources (50% protection probability), both nodes are of same value (+100/-50).
EV(Signal)=0

No Signal

21

Mean

Signaling Works and Frequency of Signaling Matters

5 M Protected
Munprotected
ENot-attack

1. The proportion of attacks was
reduced (from 0.5) in all
conditions through signaling.

2. The signaling frequency has a
significant effect on attacks to
protected nodes: reducing the
frequency of signal increases
attacks to protected nodes

2-Sided0.75

1-SidedOptimal

2-Sided0 5

Condition

. And it decreases no-attacks

decisions

9/19/2019
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Type of signal matters

M pProtected
Munprotected
ENot-attack

Truthful

. In general, a deceptive

signal generates less
attacks than a truthful
one.

s, . But Signal 2 (i.e.,
g Truthul “hopeful” signal)
* Deceptive produces largely more
5 attacks when truthful than
deceptive compared to
Signal 1 (i.e., “suspicious”
; signal).
Signal 1 Signal 2
Signal 1: This server may be Signal 2: This server may NOT :
protected by the Defender. be protected by the Defender. ’ Slgnal 1 causes
If you proceed, you may lose 50 ! you proceed, you may win 100 significantly more
points. points. deterrence than Signal 2.
Example2 — Insider Attack Game
Questions:

1) How do humans react to deceptive signals?
2) What is the right “balance” of signal frequency?

3) Can we use cognitive models of human behavior to develop more effective signaling schemes?

Cooney, S., Wang, K. Bondi, E., Nguyen, T., Vayanos, P., Winetrobe, H., Cranford, E. A., Gonzalez, C., Lebiere, C., Tambe, M. (2019). Learning to Signal in the
Goldilocks Zone: Improving Adversary Compliance in Security Games. The European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD 2019). September 16-20, 2019, Wirzburg, Germany.

Cranford, E. A., Gonzalez, C., Aggarwal, P., Cooney, S., Tambe, M., Lebiere, C. (2019). Towards personalized deceptive signaling for cyber defense using cognitive
models. In Proceedings of the 17th Annual Meeting of the International Conference on Cognitive Modelling. Montreal, CA.

Cranford, E A., Lebiere, C., Gonzalez, C., Cooney, S., Vayanos, P., & Tambe, M. (2018). Learning about Cyber Deception through Simulations: Predictions of Human
Decision Making with Deceptive Signals in Stackelberg Security Games. 40th Annual Meeting of the Cognitive Science Society (CogSci 2018). July 25-28, 2018, 24
Madison, WI.

9/19/2019

12



Insider Attack Game — PeSSE 1-way deception
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PeSSE 2-way deception
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Signaling Works and Frequency of Signaling Matters

There is a significant benefit to the defender
Round 1 Round 2 Round 3 Round 4 when using signaling against boundedly

-10 . rational attackers compared to using no
T o . )
.11 signaling, or when using the peSSE algorithm.
> l
w12 : All three 2-way signaling schemes
2_13 outperformed the peSSE algorithm: reducing
the frequency of signaling improves

-g -14 i{‘ performance against boundedly rational
9 attackers.
"g -15

-16 A Goldilocks Zone: lowering the signaling

17 frequency can increase compliance with

regard to signals, but must be carefully
balanced so that instances in which no signal
is shown do not offset the gain to the

.18 W@ NoWarning B peSSE [ Baseline [ DT CJNN

defender.
Cooney, S., Wang, K. Bondi, E., Nguyen, T., Vayanos, P., Winetrobe, H., Cranford, E. A., Gonzalez, C., Lebiere, C., Tambe, M. (2019). Learning to Signal in the Goldilocks Zone: Improving
Adversary Compliance in Security Games. The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2019). 27

September 16-20, 2019, Wiirzburg, Germany.

Using the cognitive model to inform the
signal rate for a particular individual

The “right balance” of deceptive and truthful signals
depends directly on the human attacker’s beliefs

28

9/19/2019

14



IBL Model Procedure

1) Target Selection

Reward
Penalty
M-prob  Attack

l l

‘Context I Decision | Outcome l

Blended
Value

Target with
highest projected

(:' outcome selected

o

Signal (present or absent)

2) Attack Decision

Present/
Absent  Attack

e ;

Signal_l Decision |Outcome | r‘* gaveto

"” 777777777777777777777777777 i’ 777777777 ‘ memory
) Blended
I Value
o

if <= 0, withdraw
else, attack
Feedback

Save to memory
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Confirmation Bias/Hot-Stove effect

* Human tendency to seek evidence that confirms one’s beliefs

— People do not test their beliefs about the world by trying to
disconfirm them, but rather, by trying to confirm them

« Hot-Stove effect produces a “win-stay”/’lose-shift” behavior.

» Experiences of rewards when a signal is present increases the
probability of attacking in the future, while experiences of penalties
given a (deceptive) signal reduces the probability of attacking in the
future.

» Eliminating deceptive signals restores belief in the signal.

« The goal for the cognitive signaling scheme is to induce, and
preserve, the belief that attacking given a signal will result in a loss.

New Cognitive Signaling Scheme

* Relying on individualized memory instances estimate the
expected utility (through Blending) of attacking given a
signal E(A|S) and not, E(A|S).

If selected target is covered: If selected target is not covered:
If E(A|S) > E(A|S) - Signal If E(A|S) > E(A|S)-> No Signal
Else = No Signal Else = Signal

9/19/2019
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the model is highly accurate at predicting
performance of the approximately 56% of
participants that attack at a rate less than

Round 1 ‘ ‘ Round 2 Round 3 Round 4 95%.
1.0 Ay ~v y y % AL
WA [ Player

e
o
=

Human >95%
|
1l =— Human <95%

Model

Probability of Attack
_,_L__"‘:__‘
==
e
= )
——
S~
L
=
—
—
T,

- _lgnore
Model - Signal

,,,,,,,,,,,,,,,,,

Trial

post-experiment survey: a majority of
participants that attacked more than 95%
responded that they ignored the signal.

we created a version of the cognitive
model that does not consider the signal
when generating an expected outcome of
attacking the selected target.

Blending of instances IGNORES
the signal.

The model attacks on 96.0% of trials (SD =
15.1%), matching well to the distribution.

34
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Example 3 — Hacklt

Questions:
1) What is the effect of honeypot allocation/distribution on the attacker’s
performance?

2) What reconnaissance strategies do attacker’s follow?

Aggarwal, P., Gautam, A., Agarwal, V., Gonzalez, C., & Dutt, V. (2019). HackIT: A Human-in-the-loop Simulation Tool for Realistic Cyber Deception
Experiments. 10h International Conference on Applied Human Factors and Ergonomics, Orlando, Florida, USA

35
Defender Attacker

Configuration Phase
* Network size
« Topology Probe Phase
* Configuration of systems * Network Scanning
* Number of honeypots  Finding Vulnerabilities

Deception Phase Attack Phase

o Definition of honeypot « Exploiting systems

:Ez:iiegr:ration * Gaining Access
« Timing of deception . Steallng.lnformatlon
« Amount of deception ° !Destroylng
infrastructure
36
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5800/ccp
110/tcp
53/tcp
21/tcp

information

Running: OpenBSD
05 details: Openssn

t informat.

You played as a hacker !
Device type: gemeral purpoae
runsing: sclaris Your Scor
Winner of Game : Anal

Enter Trial No. 2

Step 2: Scanning the webserver 1 using nmap command

Device tipe: general purpose

STATE

open wmce heep remote auch
opan popd popd_version

open
open

Step 5: File transfer

SERVICE Vulnerabilities

domain

Experimental Conditions

Reconnaissance Deceptive Server (RDS) non-RDS

Honeypot

[;| Real Host

Honeypot

[;l Real Host

;Intemet 4

e
- (e
= [/ I¢ 3y
// \ )? ’\’ k i;] _/ N

mixed configuration

Honeypot

l; Real Host
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Reconnaissance Strategies

» Achleitner et al. (2016) simulated following reconnaissance strategies in
deceptive and non-deceptive networks:

— Uniform Scanning

— Local Preference Scanning

— Preference Sequential Scanning

— Non-Preference Sequential Scanning
— Preference Parallel Scanning

Achleitner, S., La Porta, T., McDaniel, P., Sugrim, S., Krishnamurthy, S. V., & Chadha, R. (2016, October). Cyber deception: Virtual networks to defend
insider reconnaissance. In Proceedings of the 8th ACM CCS international workshop on managing insider security threats (pp. 57-68). ACM. 39

Results: RDS has lower detection rate — but no difference in
reconnaissance strategies

Uniform Scanning Local Preference Scanning Preference Sequential Non-preference Scanning

0.5 0.5 Scanning 0.5
‘:‘:-5 0.4 0.4 0.5 0.4
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kst /_ /- 0.3 02 /
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€01 [T o [T 02 77— o p [T
% .0 /-_/ 0 /-_/ 0 [/ 0 _/
* 1357 91113151719 1357 91113151719 1357 91113151719

1357 91113151719

Minutes

——Simulated RDS
——Simulated Non-RDS

Simulated Mixed

Minutes

——Simulated RDS
—Simulated Non-RDS
Simulated Mixed

Minutes

——Simulated RDS
——Simulated Non-RDS

Simulated Mixed

Minutes

——Simulated RDS
—Simulated Non-RDS
Simulated Mixed

Human Data

0.5
£o04
=03
§ 02 —
S 0.1 //—/_
5 0l P
:% 1234567 8 91011121314151617181920
| .
° Minutes

——User RDS  ===User Mixed User Non-RDS 40
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Example 4 — CyberVan
Work in Progress

Questions:
1) What is the effect of an optimal masking strategy?
2) What reconnaissance strategies do attacker’s follow?

41

Defender

to systems to gather

[Adversary sends probes}
information Attacker

Defender lies about
system information when

receiving probes

+ Sets a e Confiuation ura.tion (TC) * Views OC of systems with scanning;
» And Observable Configurations (OC) observes state of network
* Choose the OC for each TC, masking . Attacks systems according to OC

constraints and
Cost function for masking TC with an OC

9/19/2019
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oc
TC freeBSD Win2008 Openwrt Ubuntu8

avayagw 3 0 0 0
Ubuntu8 2 0 0 0
Win7pro 0 2 0 0
Win7ent 0 2 0 0
WinXP 0 2 0 0
Slackware 0 0 0 1

There are 4 Observable Configurations (OCs) and 6 True Configurations (TCs)
TCs are mapped to Ocs:

e 5 machines are shown as freebsd, out of which 3 are actually avayagw and 2 are
ubuntu8

e 6 machines are shown as win2008, out of which 2 are win7pro, 2 are win7ent, and 2 are
winxp

e 1 machine is shown as ubuntu8, which is actually slackware

Based on this information attacker may decide which machine to attack.

Task in CyberVAN —Perspecta Labs

Scan Tools Profile Help

Tiget: [192.168.0.100 ~ | Profile v | |scan

Command: [nmap -0 -v 192.168.0.100]

Hosts Services Nmap Output | Ports/ Hosts | Topology | Host Details | Scans

nmap -0 -v 192.168.0.100 < Details

00 total ports)

Mot s 999 closed
PORT  STATE SERVICE

95:
05:
o5:
05:)
o5
os:
[
05:
05::

Uptise guess: ©
rk Distan

Filter Hosts

9/19/2019
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Masking Strategy

Random Strategy Optimal Strategy

Exploration Phase Attack Phase

« sh Attack.sh
<ip_address> <exploit
_name>

« Example: sh Attack.sh

192.168.0.100 winxp

* nmap -O <IP address>
* Example: nmap -O
152.168.0.100

45

Conclusions

» Our research program contributes to SSGs research by providing:
— insights from human experiments regarding human trust to truthful or deceptive signals
— creating cognitive models that emulate attacker’s behavior

* These models help in the design of dynamic and personalized deception strategies

» Across levels of complexity in interactive security games and using the insights of cognitive
models of attacker behavior, we find that:

1. signaling algorithms optimized for perfectly rational attackers improve defense compared
to no signaling at all;

2. humans behave far differently than predicted under the assumption of perfect rationality

3. humans exhibit boundedly rational behaviors that result in cognitive biases (e.g.,
confirmation bias)

4. new adaptive and personalized theories that increase attacker’s compliance are possible
through cognitive modeling and human-in-the-loop experiments

5. Model fits average behavior and individual distribution of actions.

« Extending our cognitive models to accommodate greater complexity will enable the models to
capture the richness of realistic cyber-security situations.

9/19/2019

23



Thank you!

Questions?

47
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