CAS Static Analysis
Tool Study Overview

Center for Assured Software
National Security Agency
cas@nsa.gov

Agenda

» Study Purpose

 Test Cases
— Scope
— Statistics

* Analysis Metrics
« 2010 Study Conclusions
« 2011 Study Plans

» Study capabilities of commercial and open source
static analysis tools for C/C++ and Java
— ldentify areas in which individual tools are strong

— Determine how tools can be combined to use strong
tool(s) in each area

« Study does NOT:

— Attempt to choose a “best” tool

— Cover anything other than results
» Cost, performance, ease of use, customization, etc.

2010 Study — Tools

Tool License Model C/C++ Java
Tool 1 Commercial v v
Tool 2 Commercial v v
Tool 3 Commercial v v
Tool 4 Commercial v v
Tool 5 Commercial v v
Tool 6 Commercial v

Tool 7 Open Source v

Tool 8 Open Source v
Tool 9 Open Source v

Study Methodology
Overview

* Analyze test cases with a tool in default
configuration

 Convert the results into a CAS-defined, common
CSV format

e Score results

— Mark resu!t_s relevant to test case as True Positives or
False Positives

— Add False Negatives
* Group test cases into “weakness classes”
» Calculate statistics for each weakness class

Differences from
SATE/SAMATE

* We run each tool, not the tool vendor
* We use synthetic test cases instead of natural code

 We know where all the flawed and non-flawed
constructs are

* We know exactly what type of flaw and non-flaw
each construct represents

Test Cases

 Test cases are artificial pieces of code for testing
software analysis tools

 Each test case contains:
— One flawed construct — “bad”

— One or more non-flawed constructs that “fix” the flawed
construct — “good”

* As much as possible, performs the same function as the flawed
construct

 Test cases cover:

— C/C++
— Java

Cases

* Control over the breadth of flaws and non-flaws
covered

— Study full range of tools’ capabilities

» Control over where flaws and non-flaws occur
— Allows for automated scoring of results

* Control over data and control flows used
— Study depth of tools™ analysis

— Test cases for many flaw types cover
« Simplest form of flaw
18 different control flow patterns
« 22 different data flow patterns

Limitations of Test
Cases

» Simpler than natural code
— Tools may have “better” results on test cases than on
natural code
» All flaws represented equally
— Each flaw appears one time in test cases, regardless of
how common the flaw is in natural code

 Ratio of flaws and non-flaws likely much different
than in natural code

— 1 or 2 non-flaw(s) for each flaw in the test cases

— In natural code, non-flaws are likely much more
common than flaws

10

 Test cases are currently focused on:

— Functions available on the underlying platform
* Not the use of third-party libraries or frameworks

— Platform-neutral and Windows-specific functions
* No test cases specific to Linux, Mac OS, etc.

— C language vs. C++

« C++is only used for flaw types that require it (such as leaks of
memory allocated with “new”)

— Java applications and Servlets
* No Applets or Java Server Pages (JSPs)

11

2010 Test Case
Statistics

CWEs Flaw Test Lines of

Covered | Types | Cases Code
C/C++ 116 1,432 | 45,324 | 6,338,548
Java 106 527 | 13,801 | 3,238,667

All Test Cases 177 1,959 | 59,125 | 9,577,215

12

Weakness Classes

Weakness Class Example Weakness (CWE) C/C++Test | Java Test
Cases Cases
Authentication and Access Control CWE-620: Unverified Password 604 422
Change
Buffer Handling CWE-121: Stack-based Buffer 11,386)
Overflow
Code Quality CWE-561: Dead Code 440 410
Control Flow Management CWE-362: Race Condition 579 509
Encryption and Randomness CWE-328: Reversible One-Way Hash 298 950
Error Handling CWE-252: Unchecked Return Value 2,790 437
File Handling CWE-23: Relative Path Traversal 2,520 718
Information Leaks CWE-534: Informatlon Leak Through 083 468
Debug Log Files
Initialization and Shutdown CWE-415: Double Free 9,894 450
Injection CWE-89: SQL Injection 6,882 5,970
Miscellaneous CWE-480: Use of Incorrect Operator 2,304 222
Number Handling CWE-369: Divide by Zero 6,017 2,802
Pointer and Reference Handling CWE-476: Null Pointer Dereference 1,308 425

13

Analysis Metrics

14

Precision, Recall,
and F-Score

» CAS uses concepts from Information Retrieval in
examination of static analysis tool results

 Precision
— Fraction of flaw reports from tool that are actual flaws
— Same as “True Positive Rate”
— Complement of “False Positive Rate”

* Recall
— Fraction of flaws in code that are correctly reported
— Also known as “Sensitivity” or “Soundness”

 F-Score
— Harmonic mean of Precision and Recall

15

Problem

* Precision, Recall, and F-Score on test cases don’t
tell whole story

* An unsophisticated “grep-like” tool can get:

— Recall: 1
— Precision: 0.5
— F-Score: 0.67

— Doesn'’t accurately reflect that tool is noisy

* This is a limitation of test cases
— Only 1 or 2 non-flaws for each flaw

16

* A “Discrimination” is a test case where a tool:
— Correctly reported the flaw
— Did not incorrectly report any false positives

« Each tool gets 0 or 1 discrimination(s) for each test
case

17

 Discrimination Rate is the fraction of test cases
where a tool reported discriminations

Discriminations
Flaws

Discrimination Rate =

e Discrimination Rate < Recall

— Every Discrimination “counts” toward Discrimination
Rate and Recall

— Every True Positive “counts” toward Recall, but not
necessarily toward Discrimination Rate

18

2010 Study Conclusions

19

2010 Study
Conclusions

* Tools are not interchangeable
* Tools perform differently on different languages

« Complementary tools can be combined to achieve
better results

» Each tool failed to report a significant portion of the
flaws studied

— Average tool covered 8 of 13 Weakness Classes

— Average tool covered 22% of flaws in Weakness
Classes covered

20

Flaws Reported —
2010

C/C++ Test Cases (2010) Java Test Cases (2010)

Exactly
Four
Tools
8%

Exactly

Exactly
Four
Tools
3%

Exactly

Five Five
TOOIS Tools
3% 0%
Exactly Exactly
Six Tools Six Tools
0% 0%
Exactly Exactly
Seven Seven
Tools Tools

0% 0%

21

Flaws Reported —
C/C++ 2009 vs. 2010

C/C++ Test Cases (2009) C/C++ Test Cases (2010)

Exactly
Four
Tools
8%

Exactly
Five

Exactly

N Five
N Tools
> \‘... 7 %

Exactly
Six Tools
0%

Exactly
Seven
Tools

0%

« 207 Test Cases » 45,286 Test Cases
« 207 Flaw Types * 1,432 Flaw Types

 No data or control flows Various data and control flows %2

Flaws Reported —
Java 2009 vs. 2010

Java Test Cases (2009)

Exactly
Four

Exactly
Five
Tools
2%

Exactly
Six Tools
0%

* 174 Test Cases
* 174 Flaw Types
 No data or control flows

Java Test Cases (2010)

Exactly
Four
Tools
3%

Exactly
Five

Tools
0%

Exactly
0%

Exactly
Seven
Tools

0%

* 13,801 Test Cases
« 527 Flaw Types
* Various data and control flows

Six Tools

23

Flaws Discriminated —
2010

C/C++ Test Cases (2010) Java Test Cases (2010)

Exactly Exactly
Two Three
Tools Tools

3% 2%

Exactly Exactly
Three Four
Tools Tools
8% 4%

Exactly
Four

Exactly
Tools

Five N
Tools 0%
1%
Exactly
Exactly Five
Six Tools Tools
0% 0%
Exactly Exactly
Seven .
Tools Exactly Six Tools

Seven 0%
Tools

0%

0%

24

Flaws Reported and
Disc. — C/C++ — 2010

i Average Recall (Total) —

W Average Discrimination Rate |—

0.8 A

0.7 A

0.6 4

0.5 A

0.3 4

0.2 A

0.1 A

0
> . & o & < < Qo © &
R I I N O
¢ & ¢ g & & ¥ & & & F & &
5 g & Qb <0 5N N A
2 4 o @ 2 o N @ > S 2 &
& & O NS X & g & > Y N
R & > < 5 & & &
& QS A S @
o go\ o \\’\? o
X & ¢\Q) >
. (_’0 < 3 <
S N & &
& & é\(\
Q 25

Flaws Reported and
Disc. — Java — 2010

I Average Recall (Total) |

09 -+

B Average Discrimination Rate |—

0.8 A

0.7 -

0.4 -

0.3 -

0.2 -

0.1 +

o) X S) <O o &
O q}\’c\ & qu-: 6\\{\% b-\\o"o e,sl- & o0 3 N &\{\
o > & &S & TN SENS & @
& @ '2:5‘%% X DS \Q:?* & o N N Q)Q* NS
& & N @ &L Q ¢ {\b é\\'o o é\o
oY & o < 0 ° S &
o QS P N
(.:o 0& ¢\Q &L k’é\
& C N NS &
e < &

26

Open Source Vs.
Commercial Tools

* Open source C/C++ tool was limited overall

— Reported the flaws in a below-average fraction of the
test cases in every Weakness Class it covered

— Reported an above-average number of False Positives
on five of the seven Weakness Classes it covered

27

Open Source Vs.
Commercial Tools

* Two open source Java tools studied had mixed
results on the Weakness Classes they covered

— In three Weakness Classes, an open source tool was
the strongest of all tools (based on F-Score)
« Control Flow Management « Code Quality
 Error Handling

— In four Weakness Classes, at least one open source
tool was stronger than at least one commercial tool
 Information Leaks * Initialization and Shutdown

* Injection * Miscellaneous

— In two Weakness Classes, the open source tools were

the weakest tools
» Auth. and Access Control -« Pointer and Reference Handling
28

2011 Study Plans

29

» Update and expand Test Cases based on
community feedback

* Soliciting input from vendors on configuration
settings to use with their tools

» Considering additional tools
« Study scheduled to start in October 2011

30

Questions?

31

CAS Static Analysis
Tool Study Overview

Center for Assured Software
National Security Agency
cas@nsa.gov

