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The Story

C++: perhaps the language for efficient systems programming

▪ Inherits (from C) low-level memory manipulation capabilities

▪ Can cause memory-related crashes and vulnerabilities

Safer efficient languages do exist today: Rust!
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Intermezzo: Rust as the Language of Choice?

▪ memory safety: access via strict interface: ownership

▪ efficiency: no need for garbage collection (cmp. C#, Go, Java)

▪ coolness factor: modern language, supportive build system, active 

community
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The Story (continued)

C++: perhaps the language for systems programming.

▪ inherits (from C) low-level memory manipulation capabilities

▪ can cause memory-related crashes and vulnerabilities

Safer efficient languages do exist today: Rust!

But what about legacy code??
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Lifting Legacy Code to Safer Languages (LiLaC-SL)

Goal: semi-automatic migration of legacy C/C++ code

Target: (your favorite) safe programming language

May: assume well-designed C/C++ code

Must: take advantage of target’s idiomatic features

Must: deliver assurance of correctness and safety
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The Story (continued)

C++: perhaps the language for systems programming.

▪ inherits (from C) low-level memory manipulation capabilities

▪ can cause memory-related crashes and vulnerabilities

Safer efficient languages do exist today: Rust!

But what about legacy code??

CRAM: semi-automated migration from C++ to Rust
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Overview of CRAM
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Vision: From C++ to Rust

“Rust is like C++, except the [language semantics] forces 
programmers to do what they should be doing anyway.”

-- Peter Aldous, GT

Implementing this vision:

Stage 1: Refactor the C++ program, to make it “Rust compliant”:

▪ enforce ownership rules

▪ reduce mutability

Stage 2: Migrate the “safer” C++ to Rust, by lifting language idioms
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Technical Approach

Generated Rust

efficient
potentially unsafe 
(crashes, exploits)

efficient
safer, hardened
still unsafe for future 
development

efficient
provably safe
idiomatic, human-
maintainable
“modern”

Migration

Refactored C++

Legacy C++

“Migrating C++ to Rust
from the inside out:”

Refactoring
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Does the 2-Stage approach work wonders?

Nah, cross-language migration is hard even for “similar” languages.

→ assume source is well-designed:

→ afford partial user assistance

▪ pointer-implemented data structures (use STL)

▪ low-level pointer manipulation, p-arithmetic

▪ abuse of overloading, obscure code (e.g., operator=)
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Stage-1 Example: Const Hardening

C++: variables are by default mutable (assignable).

Rust: let mut d: f64 = 0.0

In C++, declare vars as const whenever possible:

✓ prevents some programming errors

✓ facilitates aliasing
Refactoring

const double segdist = p1->Distance(*p2);

double segdist = p1->Distance(*p2);

↓
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Stage-1 Example: Breaking Up Alias Nests

Refactoring multiple non-const references to same memory cell:

General principle: “safer in C++, required in Rust.”
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Stage 2: Rust Code Generation

Vision: after refactoring, migration mostly involves porting 

idiomatic language constructs:
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Stage-2 Example: Container Traversal

for (std::vector<Point>::iterator

p1 = pts.begin(), p2 = std::next(pts.begin());

p2 != pts.end(); ++p1, ++p2)      { ... }

What defines a container traversal idiom?

1. direction: left-to-right vs. right-to-left traversal

2. mutation: destructive or non-destructive

3. indexing: 1, 2, 3 iterators

CRAM: 1. abstract traversal to idiom level, using static analysis + user

2. retarget to idiomatic Rust (using Rust idiom library)

3. complete construct by recursively calling CRAM on loop body

finite abstract 
“idiom space”
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Overview

Project duration so far: ≈ 12 months

Experimental use case: Valhalla routing library1

1. Valhalla coverage: ≈33% (growing)

2. Degree of automation: high

→ user assistance for disambiguation (multiple-choice)

3. Performance: (see next)

4. Code usability: very readable and idiomatic Rust (see next)

→ thanks to idiom library

𝑥1https://github.com/valhalla/valhalla
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Performance

(ms)

C++

Rust

Example: runtime comparisons for a
traversal of a (large) list<Point>:

• original

• after hardening refactorings

• after translation to Rust by an expert

• after translation to Rust using CRAM 
(resulting in rather different code)

Disclaimer: Evidence anecdotal at this time!
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Code Usability

C++

Rust
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Outlook

Future will bring deep-dives into advanced C++ idioms:

➢ C preprocessor: #includes, cond’l compilation

➢ OOP: inheritance, exception handling

➢ Concurrency: portable threads (std::thread, not pthread)

➢ C++11 and beyond: smart pointers, concepts and modules

➢ General: Advanced Assurance Techniques
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CRAM: Capabilities & Benefits

Capabilities:

▪ ingest well-designed C++

▪ eliminate hazardous coding patterns in C++

▪ generate idiomatic, efficient (so far), and human-maintainable Rust code

Benefits:

▪ remove crashes and vulnerabilities due to common memory access errors

▪ improve development experience (via the Rust build system)

▪ modernize your code
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How to Obtain & Usage

Distribution:

▪ website with demo video: https://cpp-rust-assisted-migration.gitlab.io

▪ fully open-source: https://gitlab.com/cpp-rust-assisted-migration/code

▪ easiest to obtain via docker image

▪ dependencies: VS Code, Mnemosyne (both freely available)

Sponsorship:

▪ DARPA program: LiLaC-SL (Lifting Legacy Code to Safer Languages)

▪ Program Manager: Dr. Sergey Bratus, SETA: Jorge Buenfil (I2O)

https://cpp-rust-assisted-migration.gitlab.io/
https://gitlab.com/cpp-rust-assisted-migration/code
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