
CRAM: C++ to Rust Assisted Migration

High-Confidence Software and Systems

Nathaniel Berch, Paul Rodriguez, Thomas Wahl May 9, 2023

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001123C0079. The views, opinions, and/or

findings expressed in this document are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S.

Government.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

2

The Story

C++: perhaps the language for efficient systems programming

▪ Inherits (from C) low-level memory manipulation capabilities

▪ Can cause memory-related crashes and vulnerabilities

Safer efficient languages do exist today: Rust!

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

3

Intermezzo: Rust as the Language of Choice?

▪ memory safety: access via strict interface: ownership

▪ efficiency: no need for garbage collection (cmp. C#, Go, Java)

▪ coolness factor: modern language, supportive build system, active

community

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

4

The Story (continued)

C++: perhaps the language for systems programming.

▪ inherits (from C) low-level memory manipulation capabilities

▪ can cause memory-related crashes and vulnerabilities

Safer efficient languages do exist today: Rust!

But what about legacy code??

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

5

Lifting Legacy Code to Safer Languages (LiLaC-SL)

Goal: semi-automatic migration of legacy C/C++ code

Target: (your favorite) safe programming language

May: assume well-designed C/C++ code

Must: take advantage of target’s idiomatic features

Must: deliver assurance of correctness and safety

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

6

The Story (continued)

C++: perhaps the language for systems programming.

▪ inherits (from C) low-level memory manipulation capabilities

▪ can cause memory-related crashes and vulnerabilities

Safer efficient languages do exist today: Rust!

But what about legacy code??

CRAM: semi-automated migration from C++ to Rust

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

7

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

Overview of CRAM

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

8

Vision: From C++ to Rust

“Rust is like C++, except the [language semantics] forces
programmers to do what they should be doing anyway.”

-- Peter Aldous, GT

Implementing this vision:

Stage 1: Refactor the C++ program, to make it “Rust compliant”:

▪ enforce ownership rules

▪ reduce mutability

Stage 2: Migrate the “safer” C++ to Rust, by lifting language idioms

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

9

Technical Approach

Generated Rust

efficient
potentially unsafe
(crashes, exploits)

efficient
safer, hardened
still unsafe for future
development

efficient
provably safe
idiomatic, human-
maintainable
“modern”

Migration

Refactored C++

Legacy C++

“Migrating C++ to Rust
from the inside out:”

Refactoring

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

10

Does the 2-Stage approach work wonders?

Nah, cross-language migration is hard even for “similar” languages.

→ assume source is well-designed:

→ afford partial user assistance

▪ pointer-implemented data structures (use STL)

▪ low-level pointer manipulation, p-arithmetic

▪ abuse of overloading, obscure code (e.g., operator=)

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

11

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

CRAM-Style Refactoring and Migration

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

12

Stage-1 Example: Const Hardening

C++: variables are by default mutable (assignable).

Rust: let mut d: f64 = 0.0

In C++, declare vars as const whenever possible:

✓ prevents some programming errors

✓ facilitates aliasing
Refactoring

const double segdist = p1->Distance(*p2);

double segdist = p1->Distance(*p2);

↓

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

13

Stage-1 Example: Breaking Up Alias Nests

Refactoring multiple non-const references to same memory cell:

General principle: “safer in C++, required in Rust.”

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

14

Stage 2: Rust Code Generation

Vision: after refactoring, migration mostly involves porting

idiomatic language constructs:

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

15

Stage-2 Example: Container Traversal

for (std::vector<Point>::iterator

p1 = pts.begin(), p2 = std::next(pts.begin());

p2 != pts.end(); ++p1, ++p2) { ... }

What defines a container traversal idiom?

1. direction: left-to-right vs. right-to-left traversal

2. mutation: destructive or non-destructive

3. indexing: 1, 2, 3 iterators

CRAM: 1. abstract traversal to idiom level, using static analysis + user

2. retarget to idiomatic Rust (using Rust idiom library)

3. complete construct by recursively calling CRAM on loop body

finite abstract
“idiom space”

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

16

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

Current Results

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

17

Overview

Project duration so far: ≈ 12 months

Experimental use case: Valhalla routing library1

1. Valhalla coverage: ≈33% (growing)

2. Degree of automation: high

→ user assistance for disambiguation (multiple-choice)

3. Performance: (see next)

4. Code usability: very readable and idiomatic Rust (see next)

→ thanks to idiom library

𝑥1https://github.com/valhalla/valhalla

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

18

Performance

(ms)

C++

Rust

Example: runtime comparisons for a
traversal of a (large) list<Point>:

• original

• after hardening refactorings

• after translation to Rust by an expert

• after translation to Rust using CRAM
(resulting in rather different code)

Disclaimer: Evidence anecdotal at this time!

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

19

Code Usability

C++

Rust

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

20

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

Outlook & Wrapping Up

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

21

Outlook

Future will bring deep-dives into advanced C++ idioms:

➢ C preprocessor: #includes, cond’l compilation

➢ OOP: inheritance, exception handling

➢ Concurrency: portable threads (std::thread, not pthread)

➢ C++11 and beyond: smart pointers, concepts and modules

➢ General: Advanced Assurance Techniques

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

22

CRAM: Capabilities & Benefits

Capabilities:

▪ ingest well-designed C++

▪ eliminate hazardous coding patterns in C++

▪ generate idiomatic, efficient (so far), and human-maintainable Rust code

Benefits:

▪ remove crashes and vulnerabilities due to common memory access errors

▪ improve development experience (via the Rust build system)

▪ modernize your code

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

23

How to Obtain & Usage

Distribution:

▪ website with demo video: https://cpp-rust-assisted-migration.gitlab.io

▪ fully open-source: https://gitlab.com/cpp-rust-assisted-migration/code

▪ easiest to obtain via docker image

▪ dependencies: VS Code, Mnemosyne (both freely available)

Sponsorship:

▪ DARPA program: LiLaC-SL (Lifting Legacy Code to Safer Languages)

▪ Program Manager: Dr. Sergey Bratus, SETA: Jorge Buenfil (I2O)

https://cpp-rust-assisted-migration.gitlab.io/
https://gitlab.com/cpp-rust-assisted-migration/code

	Default Section
	Slide 1
	Slide 2: The Story
	Slide 3: Intermezzo: Rust as the Language of Choice?
	Slide 4: The Story (continued)
	Slide 5: Lifting Legacy Code to Safer Languages (LiLaC-SL)
	Slide 6: The Story (continued)
	Slide 7
	Slide 8: Vision: From C++ to Rust
	Slide 9: Technical Approach
	Slide 10: Does the 2-Stage approach work wonders?
	Slide 11
	Slide 12: Stage-1 Example: Const Hardening
	Slide 13: Stage-1 Example: Breaking Up Alias Nests
	Slide 14: Stage 2: Rust Code Generation
	Slide 15: Stage-2 Example: Container Traversal
	Slide 16
	Slide 17: Overview
	Slide 18: Performance
	Slide 19: Code Usability
	Slide 20
	Slide 21: Outlook
	Slide 22: CRAM: Capabilities & Benefits
	Slide 23: How to Obtain & Usage

