
Capabilities Labeling
HCSS 2023 – May 10, 2023
Greg Nelson (gnelson@grammatech.com)
Coauthor Denis Gopan (gopan@grammatech.com)

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the authors
and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

mailto:gnelson@grammatech.com
mailto:gopan@grammatech.com

2 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)2

Defining the Problem

/* Calculate a checksum. I don’t know the name

of the one we’re using but this seems to work. */

uint16_t crc16(const uint8_t* buffer, size_t size) {

uint16_t tmp, crc = 0xffff;

for (size_t i=0; i < size; i++) {

tmp = (crc >> 8) ^ buffer[i];

crc = (crc << 8) ^ crc_table[tmp];

}

return crc;

}

Have you ever needed to understand someone else’s code?

3 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)3

Defining the Problem

00000000 <proc_800213c>:

0: e52db004 push {fp} ; (str fp, [sp, #-4]!)

4: e28db000 add fp, sp, #0

8: e24dd01c sub sp, sp, #28

c: e50b0018 str r0, [fp, #-24] ; 0xffffffe8

10: e50b101c str r1, [fp, #-28] ; 0xffffffe4

14: e3e03000 mvn r3, #0

18: e14b30b6 strh r3, [fp, #-6]

1c: e3a03000 mov r3, #0

20: e50b300c str r3, [fp, #-12]

24: ea00001d b a0 <proc_800213c+0xa0>

28: e15b30b6 ldrh r3, [fp, #-6]

2c: e1a03423 lsr r3, r3, #8

30: e1a03803 lsl r3, r3, #16

34: e1a02823 lsr r2, r3, #16

38: e51b300c ldr r3, [fp, #-12]

3c: e51b1018 ldr r1, [fp, #-24] ; 0xffffffe8

40: e0813003 add r3, r1, r3

44: e5d33000 ldrb r3, [r3]

48: e1a03803 lsl r3, r3, #16

4c: e1a03823 lsr r3, r3, #16

50: e0233002 eor r3, r3, r2

54: e14b30be strh r3, [fp, #-14]

58: e15b30b6 ldrh r3, [fp, #-6]

5c: e1a03403 lsl r3, r3, #8

60: e1a03803 lsl r3, r3, #16

64: e1a02843 asr r2, r3, #16

68: e15b30be ldrh r3, [fp, #-14]

6c: e59f1050 ldr r1, [pc, #80] ; c4 <proc_800213c+0xc4>

70: e1a03083 lsl r3, r3, #1

74: e0813003 add r3, r1, r3

78: e1d330b0 ldrh r3, [r3]

7c: e1a03803 lsl r3, r3, #16

80: e1a03843 asr r3, r3, #16

84: e0233002 eor r3, r3, r2

88: e1a03803 lsl r3, r3, #16

8c: e1a03843 asr r3, r3, #16

90: e14b30b6 strh r3, [fp, #-6]

94: e51b300c ldr r3, [fp, #-12]

98: e2833001 add r3, r3, #1

9c: e50b300c str r3, [fp, #-12]

a0: e51b200c ldr r2, [fp, #-12]

a4: e51b301c ldr r3, [fp, #-28] ; 0xffffffe4

a8: e1520003 cmp r2, r3

ac: baffffdd blt 28 <proc_800213c+0x28>

b0: e15b30b6 ldrh r3, [fp, #-6]

b4: e1a00003 mov r0, r3

b8: e28bd000 add sp, fp, #0

bc: e49db004 pop {fp} ; (ldr fp, [sp], #4)

c0: e12fff1e bx lr

What if you didn’t even have source code?

4 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)4

Defining the Problem

ushort proc_800213c(int param_1,int param_2)

{

int local_10;

ushort local_a;

local_a = 0xffff;

for (local_10 = 0; local_10 < param_2; local_10 =
local_10 + 1) {

local_a = *(ushort *)

(&table +

(uint)(ushort)((ushort)*(byte
*)(param_1 + local_10) ^ local_a >> 8) * 2) ^

(ushort)(((uint)local_a << 0x18) >>
0x10);

}

return local_a;

}

Maybe a decompiler will help? Maybe not a lot…

5 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)5

Towards a Solution…

What if you had a tool that helped you
understand what code does?

6 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)6

Capabilities Labeling

▪ Static analysis technique

▪ For binaries – no source code needed

▪ Works for “bare” binaries – no symbols

▪ Helps understand the purpose of code:
– What code is part of the embedded web server?

– Which functions access the encryption hardware?

– Where can I inject simulated serial-port data?

7 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)7

What are Capability Labels?

▪ Annotations that describe “purpose” of functions

▪ Pre-defined collection of human-readable labels

▪ Hierarchically organized (specific types within categories)

▪ May be combined with binary component analysis (e.g., compilation units)

▪ Labels can then be aggregated over collections of related functions (not shown below)

hashing/
crypto/

sha1

network/
protocol/

jsonrpc
data_format/

json

task/
thread

8 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)8

REAFFIRM Intro

▪ REAFFIRM: Reverse Engineer, Analyze, and Fuzz FIRMware

– Unpacks wide variety of firmware formats

– Extracts, rehosts, and harnesses firmware functionality

– Supports testing / fuzzing of firmware on commodity hardware

– Also works on “easier” desktop/server binaries

▪ REAFFIRM is a toolbox

▪ Capabilities Labeling is one recently-added tool

9 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)9

REAFFIRM Toolchain Overview

REAFFIRM

Firmware
Image

Binary
Modules

of Interest

ddisasm/GTIRB

Ghidra

CSurf/SWYX

Input Facts Souffle RE Data ComponentsComponent
Identification

Capability
Labels

Capability
Inference

CWE ReportsFact CheckerREFacts

REAFFIRM Static Binary Analysis

10 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)10

Capabilities Hierarchy

▪ Represented as forest; most specific at the leaves

▪ Currently 187 types in 37 categories

▪ Examples:
audio/format: Encodes or decodes audio formats
authentication/credentials: Manages credentials for authentication
buffer/copy: Copies data between buffers/arrays
buffer/transform/base64: Encodes/decodes data as base64
bus/serial: Generic serial data interface, e.g. UART
data_format/json: Parses or emits data in JSON format
data_structure/ring_buffer: Uses a ring buffer (circular queue)
encryption/aes: Encrypts or decrypts data via the AES cipher
file/system/directory: Accesses directories on the filesystem
hashing/checksum/adler32: Computes Adler32 checksums
image/png: Encodes or decodes PNG images
network/protocol/http: Communicates over HTTP
task/process/create: Creates processes

11 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)11

Capability Labeling on ArduCopter

▪ For our examples, we are using “ArduCopter”

▪ Drone autopilot, open-source, C and C++

▪ Monolithic, typical of baremetal or real-time OS firmware

▪ Binary size: 3.6MB, 10760 functions

▪ 36 capability types in 16 categories identified in 14.8m
– Static analysis: 9.0m (serves all later analyses)

– Capabilities: 0.5m

– Other analyses ~5.3m

12 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)12

Applications for Capabilities

▪ Helps focus analysis effort where it counts

– Manual analysis:

▪ Highlight most relevant code

– Automated analysis

▪ Detect some weaknesses automatically

▪ Improve scalability

13 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)13

Capabilities Focus in Manual Analysis

▪ Expected functionality helps find targets for deeper dive

– Locate buffer overrun risks

▪ CWE-120 “buffer copy without checking size of input” (buffer/copy)

▪ CWE-242 “inherently dangerous function” (bad_func)

– Analyze code in a downed UAV
▪ Check for GPS time spoofing weaknesses (time/lowlevel)

▪ Unexpected functionality may also warrant investigation

– Understand why there is undocumented GPIO access (bus/gpio)
inside the SD-Card driver code

14 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)14

Capabilities Focus in Automated Analysis

▪ Automatically identify weaknesses
– E.g., CWE-327 “broken or risky cryptographic algorithm”

▪ Direct analysis to key security-related areas

– Identify the (215) functions that relate to Arducopter’s “lua”
parser

– Fuzz to see if parsing failures can crash SW/device

▪ Level of effort can be scaled relative to importance

– Allocate fuzzing resources (# of cores, # of days)

– Safety critical systems ≫ user features

– Exposed interfaces ≫ protected interfaces

15 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)15

Capabilities Heuristics

▪ How do we find capabilities?

▪ How much does this depend on symbols?

– A little bit, but not as much as you might think

▪ Does this work on any processor type?

– Very little that is ISA-dependent

– Multiple frontends (including Ghidra) for flexibility

16 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)16

Multiple Sources of Signal for Labeling

▪ Library specifications (needs symbols)
– Use of a library implies capability

▪ e.g., libxml2 --> data_format/xml

– Use of an API implies capability
▪ e.g., execv() --> task/process/create

▪ Mathematical constants/tables (works on bare binaries)
– Many cryptographic and checksum algorithms
– Can usually distinguish between variants (encryption/des3 vs encryption/aes)

▪ Hardware accesses (bare OK)
– Map hardware addresses to capabilities
– E.g., 0x40013800 is STM32F family UART status register (bus/serial)

17 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)17

Multiple Sources of Signal for Labeling

▪ Semantic patterns in instructions (bare OK)
– Heuristics based on semantics or control/data flow
– E.g., hashy functions have high percentage of XOR and shifts in loop(s)

▪ String literals/tokens (bare OK)
– Look for file format or protocol specific strings/terms
– Based on data mining from GitHub source code – machine learning

▪ Message matching (bare OK)
– User and log messages retained in binary and contain valuable information
– Based on human expertise – “expert system” like capability
– E.g., "cannot open file '%s' (%s)“ -> file/system, error/file

18 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)18

Accuracy Assessment

▪ Validation by comparison to expert human analyst
– But: analyst worked from source code; tool worked from binary

– And: tool has improved since analyst did this work

▪ Human analyst reviewed 1046 functions:
▪ 649 functions for which (older) tool identified at least one capability

▪ 397 functions tool did not identify (random sample)

▪ Represents only ~10% of functions in binary

– Human review time: 985 min (pos), 865 min (neg) = 30.8h

▪ Automated analysis >1200x faster (on per-function basis)

▪ Analyst used more labels (76 vs 36), but less consistently

19 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)19

Accuracy Assessment

Statistic Analyst Result REAFFIRM Result

Functions analyzed 1046 10760

Processing time (minutes) 1850 14.8

Speed (functions/minute) 0.57 728

Functions initially labelled 518 649 (initial), 906 (latest)

Functions analyst could not find 125 n/a

Unique capabilities 78 36

Most common labels error, parsing, task, bus error, parsing, time, processor

20 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)20

Accuracy Assessment

▪ Comparison of labels identified 67 human errors and
omissions – cases where analyst initially failed

▪ Some source code compile-time generated

▪ Some functions too complex to readily understand

▪ Compile-time optimizations couldn’t be guessed

▪ Or, “mental fatigue”: analyst simply missed the obvious

21 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)21

Accuracy Assessment

▪ After analyst corrections:
▪ Where both analyst and REAFFIRM applied a label,

71.6% category match

▪ Approaches typical human-to-human inter-rater reliability of

75-80%

▪ Where REAFFIRM applied labels and analyst did not,

only 5 labels (<0.05%) marked “wrong” by analyst

22 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)22

Concluding Thoughts on Accuracy

▪ Difficult to establish absolute “ground truth”

▪ Humans make mistakes and disagree on classifications

▪ Significant errors (false positives) from tool are rare and obscure

▪ For example, 32-bit value 2.0f == 0x40000000; this happens to

correspond to a target processor MMIO address for a hardware

counter/timer.

▪ False negatives are more frequent, but less problematic

▪ They won’t lead you astray; they will just fail to offer guidance

▪ REAFFIRM is cautious, but FN rate (~22%) is being improved

23 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)23

Future Directions

▪ Several new areas of ongoing research

– Structural information (wrappers, thunks)

– Different ways to aggregate information

above the function (“is-a” versus “has-a”)

– Bounded symbolic execution for identification
▪ Already demonstrated on math primitives: REMath

▪ Could identify core library functions, e.g., strcpy

24 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)24

Questions

