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Defining the Problem

/* Calculate a checksum. I don’t know the name

of the one we’re using but this seems to work. */

uint16_t crc16(const uint8_t* buffer, size_t size) {

uint16_t tmp, crc = 0xffff;

for (size_t i=0; i < size; i++) {

tmp = (crc >> 8) ^ buffer[i];

crc = (crc << 8) ^ crc_table[tmp];

}

return crc;

}

Have you ever needed to understand someone else’s code?
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Defining the Problem

00000000 <proc_800213c>:

0:   e52db004        push    {fp}            ; (str fp, [sp, #-4]!)

4:   e28db000        add     fp, sp, #0

8:   e24dd01c        sub     sp, sp, #28

c:   e50b0018        str     r0, [fp, #-24]  ; 0xffffffe8

10:   e50b101c        str     r1, [fp, #-28]  ; 0xffffffe4

14:   e3e03000        mvn     r3, #0

18:   e14b30b6        strh    r3, [fp, #-6]

1c:   e3a03000        mov     r3, #0

20:   e50b300c        str     r3, [fp, #-12]

24:   ea00001d        b       a0 <proc_800213c+0xa0>

28:   e15b30b6        ldrh    r3, [fp, #-6]

2c:   e1a03423        lsr     r3, r3, #8

30:   e1a03803        lsl     r3, r3, #16

34:   e1a02823        lsr     r2, r3, #16

38:   e51b300c        ldr     r3, [fp, #-12]

3c:   e51b1018        ldr     r1, [fp, #-24]  ; 0xffffffe8

40:   e0813003        add     r3, r1, r3

44:   e5d33000        ldrb    r3, [r3]

48:   e1a03803        lsl     r3, r3, #16

4c:   e1a03823        lsr     r3, r3, #16

50:   e0233002        eor     r3, r3, r2

54:   e14b30be        strh    r3, [fp, #-14]

58:   e15b30b6        ldrh    r3, [fp, #-6]

5c:   e1a03403        lsl     r3, r3, #8

60:   e1a03803        lsl     r3, r3, #16

64:   e1a02843        asr     r2, r3, #16

68:   e15b30be        ldrh    r3, [fp, #-14]

6c:   e59f1050        ldr     r1, [pc, #80]   ; c4 <proc_800213c+0xc4>

70:   e1a03083        lsl     r3, r3, #1

74:   e0813003        add     r3, r1, r3

78:   e1d330b0        ldrh    r3, [r3]

7c:   e1a03803        lsl     r3, r3, #16

80:   e1a03843        asr     r3, r3, #16

84:   e0233002        eor     r3, r3, r2

88:   e1a03803        lsl     r3, r3, #16

8c:   e1a03843        asr     r3, r3, #16

90:   e14b30b6        strh    r3, [fp, #-6]

94:   e51b300c        ldr     r3, [fp, #-12]

98:   e2833001        add     r3, r3, #1

9c:   e50b300c        str     r3, [fp, #-12]

a0:   e51b200c        ldr     r2, [fp, #-12]

a4:   e51b301c        ldr     r3, [fp, #-28]  ; 0xffffffe4

a8:   e1520003        cmp     r2, r3

ac:   baffffdd        blt     28 <proc_800213c+0x28>

b0:   e15b30b6        ldrh    r3, [fp, #-6]

b4:   e1a00003        mov     r0, r3

b8:   e28bd000        add     sp, fp, #0

bc:   e49db004        pop     {fp}            ; (ldr fp, [sp], #4)

c0:   e12fff1e        bx      lr

What if you didn’t even have source code?



4 Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)4

Defining the Problem

ushort proc_800213c(int param_1,int param_2)

{

int local_10;

ushort local_a;

local_a = 0xffff;

for (local_10 = 0; local_10 < param_2; local_10 = 
local_10 + 1) {

local_a = *(ushort *)

(&table +

(uint)(ushort)((ushort)*(byte 
*)(param_1 + local_10) ^ local_a >> 8) * 2) ^

(ushort)(((uint)local_a << 0x18) >> 
0x10);

}

return local_a;

}

Maybe a decompiler will help? Maybe not a lot…
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Towards a Solution…

What if you had a tool that helped you 
understand what code does?
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Capabilities Labeling

▪ Static analysis technique

▪ For binaries – no source code needed

▪ Works for “bare” binaries – no symbols

▪ Helps understand the purpose of code:
– What code is part of the embedded web server?

– Which functions access the encryption hardware?

– Where can I inject simulated serial-port data?
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What are Capability Labels?

▪ Annotations that describe “purpose” of functions

▪ Pre-defined collection of human-readable labels

▪ Hierarchically organized (specific types within categories)

▪ May be combined with binary component analysis (e.g., compilation units)

▪ Labels can then be aggregated over collections of related functions (not shown below)

hashing/
crypto/

sha1

network/
protocol/

jsonrpc
data_format/

json

task/
thread
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REAFFIRM Intro

▪ REAFFIRM: Reverse Engineer, Analyze, and Fuzz FIRMware

– Unpacks wide variety of firmware formats

– Extracts, rehosts, and harnesses firmware functionality

– Supports testing / fuzzing of firmware on commodity hardware

– Also works on “easier” desktop/server binaries

▪ REAFFIRM is a toolbox

▪ Capabilities Labeling is one recently-added tool
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REAFFIRM Toolchain Overview

REAFFIRM

Firmware 
Image

Binary
Modules

of Interest

ddisasm/GTIRB

Ghidra

CSurf/SWYX

Input Facts Souffle RE Data ComponentsComponent
Identification

Capability 
Labels

Capability
Inference

CWE ReportsFact CheckerREFacts

REAFFIRM Static Binary Analysis
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Capabilities Hierarchy

▪ Represented as forest; most specific at the leaves

▪ Currently 187 types in 37 categories

▪ Examples:
audio/format: Encodes or decodes audio formats
authentication/credentials: Manages credentials for authentication
buffer/copy: Copies data between buffers/arrays
buffer/transform/base64: Encodes/decodes data as base64
bus/serial: Generic serial data interface, e.g. UART
data_format/json: Parses or emits data in JSON format
data_structure/ring_buffer: Uses a ring buffer (circular queue)
encryption/aes: Encrypts or decrypts data via the AES cipher
file/system/directory: Accesses directories on the filesystem
hashing/checksum/adler32: Computes Adler32 checksums
image/png: Encodes or decodes PNG images
network/protocol/http: Communicates over HTTP
task/process/create: Creates processes
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Capability Labeling on ArduCopter

▪ For our examples, we are using “ArduCopter”

▪ Drone autopilot, open-source, C and C++

▪ Monolithic, typical of baremetal or real-time OS firmware

▪ Binary size: 3.6MB, 10760 functions

▪ 36 capability types in 16 categories identified in 14.8m
– Static analysis: 9.0m (serves all later analyses)

– Capabilities: 0.5m

– Other analyses ~5.3m
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Applications for Capabilities

▪ Helps focus analysis effort where it counts

– Manual analysis:

▪ Highlight most relevant code

– Automated analysis

▪ Detect some weaknesses automatically

▪ Improve scalability
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Capabilities Focus in Manual Analysis

▪ Expected functionality helps find targets for deeper dive

– Locate buffer overrun risks

▪ CWE-120 “buffer copy without checking size of input” (buffer/copy)

▪ CWE-242 “inherently dangerous function” (bad_func)

– Analyze code in a downed UAV
▪ Check for GPS time spoofing weaknesses (time/lowlevel)

▪ Unexpected functionality may also warrant investigation

– Understand why there is undocumented GPIO access (bus/gpio) 
inside the SD-Card driver code
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Capabilities Focus in Automated Analysis

▪ Automatically identify weaknesses
– E.g., CWE-327 “broken or risky cryptographic algorithm”

▪ Direct analysis to key security-related areas

– Identify the (215) functions that relate to Arducopter’s “lua” 
parser

– Fuzz to see if parsing failures can crash SW/device

▪ Level of effort can be scaled relative to importance

– Allocate fuzzing resources (# of cores, # of days)

– Safety critical systems ≫ user features

– Exposed interfaces ≫ protected interfaces
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Capabilities Heuristics

▪ How do we find capabilities?

▪ How much does this depend on symbols?

– A little bit, but not as much as you might think

▪ Does this work on any processor type?

– Very little that is ISA-dependent

– Multiple frontends (including Ghidra) for flexibility
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Multiple Sources of Signal for Labeling

▪ Library specifications (needs symbols)
– Use of a library implies capability

▪ e.g., libxml2 --> data_format/xml

– Use of an API implies capability
▪ e.g., execv() --> task/process/create

▪ Mathematical constants/tables (works on bare binaries)
– Many cryptographic and checksum algorithms
– Can usually distinguish between variants (encryption/des3 vs encryption/aes)

▪ Hardware accesses (bare OK)
– Map hardware addresses to capabilities
– E.g., 0x40013800 is STM32F family UART status register (bus/serial)
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Multiple Sources of Signal for Labeling

▪ Semantic patterns in instructions (bare OK)
– Heuristics based on semantics or control/data flow
– E.g., hashy functions have high percentage of XOR and shifts in loop(s)

▪ String literals/tokens (bare OK)
– Look for file format or protocol specific strings/terms
– Based on data mining from GitHub source code – machine learning

▪ Message matching (bare OK)
– User and log messages retained in binary and contain valuable information
– Based on human expertise – “expert system” like capability
– E.g., "cannot open file '%s' (%s)“ -> file/system, error/file
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Accuracy Assessment

▪ Validation by comparison to expert human analyst
– But: analyst worked from source code; tool worked from binary

– And: tool has improved since analyst did this work

▪ Human analyst reviewed 1046 functions:
▪ 649 functions for which (older) tool identified at least one capability

▪ 397 functions tool did not identify (random sample)

▪ Represents only ~10% of functions in binary

– Human review time: 985 min (pos), 865 min (neg) = 30.8h

▪ Automated analysis >1200x faster (on per-function basis)

▪ Analyst used more labels (76 vs 36), but less consistently
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Accuracy Assessment

Statistic Analyst Result REAFFIRM Result

Functions analyzed 1046 10760

Processing time (minutes) 1850 14.8

Speed (functions/minute) 0.57 728

Functions initially labelled 518 649 (initial), 906 (latest)

Functions analyst could not find 125 n/a

# Unique capabilities 78 36

Most common labels error, parsing, task, bus error, parsing, time, processor
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Accuracy Assessment

▪ Comparison of labels identified 67 human errors and 
omissions – cases where analyst initially failed

▪ Some source code compile-time generated

▪ Some functions too complex to readily understand

▪ Compile-time optimizations couldn’t be guessed

▪ Or, “mental fatigue”: analyst simply missed the obvious
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Accuracy Assessment

▪ After analyst corrections:
▪ Where both analyst and REAFFIRM applied a label,

71.6% category match

▪ Approaches typical human-to-human inter-rater reliability of 

75-80%

▪ Where REAFFIRM applied labels and analyst did not,

only 5 labels (<0.05%) marked “wrong” by analyst
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Concluding Thoughts on Accuracy

▪ Difficult to establish absolute “ground truth”

▪ Humans make mistakes and disagree on classifications

▪ Significant errors (false positives) from tool are rare and obscure

▪ For example, 32-bit value 2.0f == 0x40000000; this happens to 

correspond to a target processor MMIO address for a hardware 

counter/timer. 

▪ False negatives are more frequent, but less problematic

▪ They won’t lead you astray; they will just fail to offer guidance

▪ REAFFIRM is cautious, but FN rate (~22%) is being improved
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Future Directions

▪ Several new areas of ongoing research

– Structural information (wrappers, thunks)

– Different ways to aggregate information

above the function (“is-a” versus “has-a”)

– Bounded symbolic execution for identification
▪ Already demonstrated on math primitives: REMath

▪ Could identify core library functions, e.g., strcpy
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Questions


