Centaur Verification Approach

Jared Davis, Warren Hunt, Jr., Anna Slobodova, Sol Swords
Bob Boyer, Gary Byers, Matt Kaufmann

May, 2010

Computer Sciences Department
University of Texas
1 University Way, M/S C0500
Austin, TX 78712-0233

hunt@cs.utexas.edu
TEL: +1 512 471 9748
FAX: +1 512 471 8885

Page 1 (Centaur Technology, UT Austin)

Centaur Verification Approach

Centaur Technology, Inc.
7600-C N. Capital of Texas Hwy
Suite 300
Austin, Texas 78731

hunt@centtech.com
TEL: +1 512 418 5797
FAX: 41 512 794 07

enjaur

May, 2010 1/28

Introduction

We have verified add, sub, multiply, divide (microcode), compare, convert,
logical, shuffle, blend, insert, extract, min-max instructions from Centaur's
64-bit, X86-compatible, Nano™ microprocessor.

» Media unit can add/subtract four pairs of floating-point numbers
every clock cycle with a two-cycle latency.

m Multiplier implements scaler & packed X86, X87, and FMA.
For our verifications, we use a combination of AlG- and BDD-based
symbolic simulation, case splitting, and theorem proving.

m We create a theorem for each instruction to be verified.

m We use ACL2 to mechanically verify each proposed theorem.
We discuss our verification approach for formally verifying execution-unit

instructions for the Centaur Nano™ — the Nano™ is used by Dell, HP,
Lenovo, OLPC, and Samsung. E"E,,Eﬂ

Page 2 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 2 /28

Centaur Nano™ X86-64 Microprocessor

Contemporary Example

m Full X86-64 design
including VMX

m 40-nanometer design
of 97.5M transistors

m AES, DES, SHA, and
random-number
generator hardware

m Built-in security
processor

m Runs 40 operating
systems and four VMs

lerifzu

Page 3 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 3/28

Page 4 (Centaur Technology, UT Austin)

The Centaur Verification Tool Relationships

Nano "Golden"
Model

Simulation

ACL2
Symbolic
Simulation

ACL2 Verilog
() Translator

Equality
ACL2 Transistor Analyzer

Cadence
Database

7’) \ S~
7 Available >~
, 7 Translators? ~o
/

(Nano GDS2 }=>

Nano Masks

>

S

Nano OPC GDS2 <>

Centaur Verification Approach

May, 2010

Toolflow

We begin, by translating Nano's Verilog specification into our
formally-defined, E-language HDL.
m Verilog is simplified into single-assignment form.
m Create environment suitable for media unit verification.
m We extract its equation by symbolic simulation.
m We specialize this equation to the instruction of interest.

m We then, as appropriate, convert this equation into BDDs.
The specification is written in ACL2.

m Integer operations are used to specify media-unit instructions.
m Such operations are symbolically simulated and specialized.

m These specification are proven to implement floating-point operations.

Finally, the results of both paths are compared.

Page 5 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 5/28

The Verilog-to-E Translator

Logic

bv

ge 6 (Centaur Technology, UT Aust

Library Files (.v)|

—>

Processor Files (.v)

ROM Images

Simulation

Regression Suite

“Pass/Fail

Together?"

top.v
makeTop ¢——> ~550,000 lines
Script Everything but some libraries

VL
ACL2 Program

Parse Tree

ACL2 Object
— | (notondisk)

Cut Down Maduies (Optinal

Make Reasonabl Conservatively
A

proximates’

Resolve Constant Expressions
Standardize Ranges and Selects
Rewrite Operators

Fix Integer Size to 32 Bits \
ContextDetermine Sizes |
Split Expressions |
Replicate Instance Arr

Tuncote Expressions or Lvalues /
Optimize

Assignments to Occurrences (Occform)
Eliminate Always Blocks (In progress)

V[Parse Tree
ACL2 Object ~
(not on disk) _’

Transformations

f

E Modules

(defm ..)

(defm ..)
(defm |*fadd*| ..)

Differ By Parens

Xformed Verilog

Use of the E Language

We have developed a formalized HDL in support of industrial design.

m Deeply embedded E language in ACL2 logic.

m Language descriptions are represented as Lisp constants.

m ACL2 theorem-proving system used to verify E descriptions.
The E langauge is formal.

m Syntax of E language is recognized by ACL2 predicate.

m Semantics given by interpreter.

m Multiple evaluators defined: BDD, four-valued BDD, AIG, four-valued
AIG, dependency, and delay.
m Symoblic simulation for all modes (except delay).

The E Language is in everyday industrial use at Centaur.

Page 7 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 7 /28

E-Language Features

The E language is deeply embedded in ACL2, and it is:
m hierarchical, and
m occurrence-oriented.

We use the E language much like a database; it includes:

HDL descriptions

Hierarchical state representation

Signal sense and direction

Clock discipline

Properties
Annotations

E-language has multiple symbolic simulators
m BDD and AIG (both two- and four-valued) simulators
m Symbolic information-flow simulator
m Delay estimator

Page 8 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010

Symbolic Simulation in ACL2

We have created developed a verified framework for ACL2 that provides a
means for symbolic simulation.
m Defined functions can be mechanically generalized.
m Each mechanically defined generalized function is automatically
verified.
m Such generalized functions, given finite sets, can be symbolically
executed.

m Our framework allows the results of symbolic simulation of ACL2
functions to be used as a part of a proof.

Our work provides a symbolic-simulation capability for the entire ACL2
logic.

Page 9 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 9 /28

Core Technology: ACL2

Our work is based on the ACL2 logic and its mechanical theorem prover.

m First-order predicate calculus with recursion and equality.

m Atomic data objects
m Complex rationals: 5, =12, 3/4, \#C(3 4)
m Characters: #\a, #\8, #\Tab
m Strings: "abc", "aBc", "ABC"
m Symbols: X, DEF, |abc|, |54-fifty4|
m Data constructor
= Pairs: (CONS 7 "ghi"), >(7 . "ghi")
m Sophisticated quotation and abbreviation mechanisms
m Functions — subset of Common Lisp
m 31 primitive functions
m 200+ defined functions
m Guards defined for all functions

Page 10 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 10 / 28

Core Technology: ACL2
Fibonacci Function Example

(defun fib (x)
(declare (xargs :guard (natp x)))

(mbe :logic
(if (zp x)
0
(if (= x 1)
1
(+ (fib (- x 2)) (fib (- x 1)))))
zexec
(if (< x 2)
X

(+ (fib (- x 2)) (fib (- x 1))))))
Any such function can be memoized.

(memoize ’fib :condition ’(< 40 x))

Page 11 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 11 /28

Core Technology: ACL2
Equivalent Function Proof Statement

(defun f1 (fx-1 fx n-more)
(declare (xargs :guard (and (natp fx-1)
(natp fx)
(natp n-more))))
(if (zp n-more)
fx
(f1 fx (+ fx-1 fx) (1- n-more))))

(defun fib2 (x)
(declare (xargs :guard (matp x)))
(if (zp x)
X
(1 0 1 (1- 2))))

(defthm fib2-is-fib
(implies (natp x)
(equal (£ib2 x)
(fib x))))

Page 12 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010

Symbolic Simulation Proof Examples
Symbolic Simulation Proof Examples

A simple arithmetic fact.

(def-gl-thm 4-5-6-is-less-than-7-8-9
:hyp (and (natp x) (natp y)
k=4x) =71y
(k=x6) K=y 9)
:concl (< x y)
:g-bindings ‘((x ,(g-number (list (1list O
(y ,(g-number (list (list 5
:rule-classes nil)

123 4))))
678 9))))

An obvious observation about the factorial function.

(def-gl-thm fib-in-range
thyp (and (natp x)
(<= 4 x) (<= x 6))
:concl (or (equal (fib x) 3)
(equal (fib x) 5)
(equal (fib x) 8))
:g-bindings ‘((x ,(g-number (1list (list 0 1 2 3)))))
:rule-classes nil)

Page 13 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 13 /28

A Simple Embedded Language
A Simple Embedded Language

To illustrate embedding a HDL within ACL2, we define the semantics of a
Boolean logic based on IF trees.

(defun if-termp (term) (defun if-evl (term alist)
(declare (xargs :guard t)) (declare
(if (atom term) (xargs :guard
(eqlablep term) (and (if-termp term)
(let ((fn (car term)) (eqlable-alistp alist))))
(args (cdr term))) (if (atom term)
(and (consp args) (cdr (assoc term alist))
(consp (cdr args)) (if (if-evl (cadr term) alist)
(consp (cddr args)) (if-evl (caddr term) alist)
(null (cdddr args)) (if-evl (cadddr term) alist))))

(eql fn ’if)

(if-termp (car args))
(if-termp (cadr args))
(if-termp (caddr args))))))

Page 14 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 14 / 28

A Simple Embedded Language

Example IF Tree and Verification by Symbolic Execution

(to-if ’(implies (and x y) (or x y)))
==>
P(IF (IF X Y NIL) (IFXTY) T)

Our language of IF trees only contains one logical connective.

(def-gl-thm if-evl-example
:hyp (and (booleanp a) (booleanp b))

:concl (if-evl ’(IF (IF X Y NIL) (IF X T Y) T)

“((NIL . nil)
(T . t)
X . ,a)
X . ,p)))

:g-bindings ‘((a , (g-boolean 0))
(b ,(g-boolean 1))))

Page 15 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010

ECC Example

ECC Example

data_err
"Memory")
corrected_output_bits
)D* = >Dﬁ/~
64 synl syn2
3 _.>D(\ correctable_error
8 8 f
72 /}/ *>D* ecc_decode -
emors __—— | syn_err —
Error Injection uncorrectable_error

Model to analyze the ECC circuitry.
m Syndrome unit produces error-correcting code

m ECC unit decodes syndrome to produce 1-hot, correction position

Page 16 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 16 / 28

Verilog for ECC Model

Verilog for ECC Model

module ecc_model (data, // Input Data

errors, // Error Injection
corrected_output_bits, // Output Data
correctable_error, // Corrected?
uncorrectable_error) ; // Can’t be corrected

ecc_gen genl (synl, data); // Generate syndrome bits for "memory"

assign data_err = data " errors[63:0]; // Fault injection

assign syn_err = synl ~ errors[71:64]; // Fault injection

ecc_gen gen2 (syn2, data_err); // Syndrome bits for "memory" output

assign syn_backwards_xor = syn_err " syn2; // Compute syndrome
ecc_decode make_outs (bit_to_correct, // One-Hot output correction
correctable_error, // Correctable error?

uncorrectable_error, // UnCorrectable error?
syn_backwards_xor); // Syndrome input

assign corrected_output_bits = bit_to_correct ~ data_err;
endmodule

Page 17 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 17 / 28

E-Language for ECC Model

E-Language for ECC Model

(:n |*ecc_modelx|

:i (ldatal0]| |data[1]| |datal[2]| |datal[3]| |datal[4]]|
|data[5]| l|datal6]| |datal7]| |datal[8]| |data[9]] ...)

:0 (lcorrected_output_bits[0]| |corrected_output_bits[1]]|
| corrected_output_bits[2]| |corrected_output_bits[3]]
| corrected_output_bits[4]| |corrected_output_bits[5]]|
| corrected_output_bits[6]| |corrected_output_bits[7]|
| corrected_output_bits[8]| |corrected_output_bits[9]] ...)

rocc ((:full-i #@53# :full-o #@54# :u |_gen_3|

top #.*%v1_64_bit_buf* :o #@55# . #056#)
(:full-i #@57# :full-o #@58# :u |_gen_4|

top #.*%v1_8_bit_buf* :o #Q@59# . #Q60#)
(:full-i #@61# :full-o #@62# :u |_gen_5]|

:op #.%v1_64_bit_pointwise_xor*

1o #Q63# . #Q64#)
(:full-i #Q@19# :full-o #Q20#

:u |geni|

top #.|*ecc_genx|

10 #O21#

11 o#@22#) ...))

Page 18 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 18 / 28

ACL2 Specification for ECC Model

ACL2 Specification for ECC Model

(defn our-one-bit-error-predicate (bad-bit)
;5 Check output correctness if one error injected.
(declare (xargs :guard (natp bad-bit)))
(letx ((data (qv-list O 1 64))
(errors (q-not-nth bad-bit
(make-list 72 :initial-element nil)))
(inputs (ap data errors)))
(equal (mv-let (s o)
(emod ’two |*ecc_model*| inputs nil)
(declare (ignore s))
(list :corrected-bits
(take 64 o)
:correctable_error
(nth 64 o)
:uncorrectable_error
(nth 65 0)))
(list :corrected-bits
data
:correctable_error
(< bad-bit 64)
:uncorrectable_error

NIL))))

Page 19 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 19 / 28

ACL2 Specification for ECC Model

The Centaur Multiplier Units

Many multiplier configurations

lA_mmr lB_vem m signed and unsigned 8x8,
16x16, 32x32, 64x64

= packed-integer multiply
[Booth] [Bmh] m packed-integer

Prepare, Special Cases, Multiple Rounds

Encoding Encoding mu|tip|y—and—add

32x32 32x32 m floating-point: X87 and VX
CSA CSA . .

Tree Tree flavors with single, double,

and extended precisions

Add / Round / Normalize

m floating-point multiply-add

Combine, Calculate Flags, Special Cases

Divide (not shown) is 4-bits-per-
‘ Product-vector clock hardware with microcode

Page 20 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 20 / 28

ACL2 Specification for ECC Model
Centaur Nano™ Media Unit — FADD

Instruction
Clocks 0ol Flags Daa A p.ap

* * * * * * 1074 inputs
Adder Adder Adder
SP DP SP

* * 394 outputs

Completion Exceptions
Signals

Results

33,700 line Verilog description of 680 modules

Modules represent 432,322 transistors

Unit has 374 outputs and 1074 inputs (26 clocks)
Implements over 100 media instructions
Two-cycle-latency for floating-point additions/subtractions

Page 21 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 21 /28

ACL2 Specification for ECC Model

The Centaur Media-Unit, Verification Tool Flow

Veril fadd EMOD
S L of nod | symoc | »ff2SAC
module Simulator

— Per-instruction
Case-splitting, AlGs

Parametrization
AIG2BDD

Instruction Symbolic Spec Hardware
Spec Spec Output Output
BDDs BDDs

c=a+b

Page 22 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 22 /28

ACL2 Specification for ECC Model

Symbolic Simulation of the Media Unit

Using the E-language model, we perform a four-valued, AlG-based
symbolic simulation of entire design for eight half-cycles.

m AlGs specialized for the instruction under investigation
m AlGs are converted to BDDs

m For some instructions, a property may be too big to verify directly, so
case splitting employed

m For each case, BDD approximated until exact

m For each case, compared to symbolic simulation of specification

m Cases are shown to be exhaustive

Page 23 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 23 /28

ACL2 Specification for ECC Model

The Centaur Media-Unit, Case-Splitting Approach

For floating-point add/subtract,
problem is too big to verify all at
once.

Max

m Case split by exponent Outer Triangle
differences

m Separately, account for
special cases (e.g., NaNs,
Infinity)

m For each case, generate

symbolic inputs that cover
exactly the specified set of

Exponent 2

inputs
m BDDs are parametrized Outer Triangle
o Denorms, Zeros
[Approach used for all FP o Exponent 1 Max
sizes

Page 24 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 24 /28

ACL2 Specification for ECC Model

Centaur Media-Unit, Verification

We attempted to verify single, double, and extended precision
addition /subtraction operations.

m Single precision (32-bit) results and flags OK.
m Double precision (64-bit) results and flags OK.

m Extended precision (80-bit) results had an error.

m Exactly one pair of numbers returned an incorrect answer
m Sort of like a perfect storm; a 64-bit cancellation
= Answer returned was twice as big as it should have been.

A fix was developed, and this bug has been eliminated. We have checked

the correctness of the new design — it took less than an hour.

Robert Krug proved that our Boolean-based adder/subtracter specification
is correct.

Page 25 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 25 /28

ACL2 Specification for ECC Model

Transistor-level Analysis

PO B0~ COAR AV, .|

olch Tnst Names|

TAST CHANGED:
Jul 22 20:06:52 2009

Page 26 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010

ACL2 Specification for ECC Model

Latent Design Flaws:

Additional Translators Available?

Nano "Golden"
Model

Simulation

ACL2
Symbolic
Simulation

ACL2 Verilog
() Translator

Equality
ACL2 Transistor Analyzer

Cadence
Database

7’) \ S~
7 Available >~
, 7 Translators? ~o
/

(Nano GDS2 }=>

Nano Masks

>

S

Nano OPC GDS2 <>

Page 27 (Centaur Technology, UT Austin)

Centaur Verification Approach

ACL2 Specification for ECC Model
Conclusion

ACL2 is in everyday commercial use at Centaur Technology.

m Each night, entire design is translated

m 570,000 lines of Verilog translated to E
m Unable to translate some modules — working to finish translation

m New ACL2 containing all E-based modules is built each day.

m Entire translation and build time about 15 minutes
m Human verifiers get newest design version each morning

m Each night we recheck our proofs on the new model

Extending ACL2:
m by deeply embedding the E HDL, transistor-level HDL,
m with AIG and BDD algorithms, which we mechanically verified, and
m by providing generalized symbolic simulation of all ACL2 functions,

it is possible to use a theorem prover to support E
} i e a
an industrial hardware verification flow. enltmgg

Page 28 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 28 /28

	Core Technology: ACL2
	Symbolic Simulation Proof Examples
	A Simple Embedded Language
	ECC Example
	Verilog for ECC Model
	E-Language for ECC Model
	ACL2 Specification for ECC Model

