
Certifying Real-Time Software

is Not Reasonable (Today)

Edward A. Lee
Robert S. Pepper Distinguished Professor

UC Berkeley

Invited Plenary Talk

Software Certification Consortium (SCC)

Workshop at the High Confidence Software and

Systems (HCSS) Conference

Annapolis, MD

May 6 and 7, 2012.

Key Collaborators on

work shown here:

• David Broman

• Steven Edwards

• Sungjun Kim

• Isaac Liu

• Hiren Patel

• Jan Reinke

• Mike Zimmer

Lee, Berkeley 2 Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Courtesy of Doug Schmidt

Power

generation and

distribution

Courtesy of

General Electric

Military systems:

E-Corner, Siemens

Transportation

(Air traffic

control at

SFO)
Avionics

Telecommunications

Factory automation

Instrumentation

(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Lee, Berkeley 3

Claim

For CPS, programs do not adequately specify behavior.

Corollary: Certifying software for CPS makes no sense.

Lee, Berkeley 4

A Story

The Boeing 777 was Boeing’s first fly-by-wire aircraft,

controlled by software. It is deployed, appears to be

reliable, and is succeeding in the marketplace. Therefore,

it must be a success. However…

Boeing was forced to purchase and store an advance

supply of the microprocessors that will run the software,

sufficient to last for the estimated 50 year production run

of the aircraft and another many years of maintenance.

Why?

Lee, Berkeley 5

Lesson from this example:

Apparently, the software does not specify the behavior

that has been validated and certified!

Unfortunately, this problem is very common, even with

less safety-critical, certification-intensive applications.

Validation is done on complete system implementations,

not on software.

Lee, Berkeley 6

Guidance for Certification:

The Koptez Principle

Many properties that we assert about systems

(determinism, timeliness, reliability) are in fact

not properties of an implemented system, but

rather properties of a model of the system.

We can make definitive statements about

models, from which we can infer properties of

system realizations. The validity of these

properties depends on model fidelity, which is

always approximate.

(paraphrased)

Prof. Dr. Hermann Kopetz

Lee, Berkeley 7

Corollary

Certifying models requires clear understanding of model

semantics.

You have to know what a model means to assert that it

holds certain properties.

Lee, Berkeley 8

Software as-a Model

C program

specifying timed

behavior.

Lee, Berkeley 9

Software as-a Model

C program

specifying timed

behavior.

Within the

semantics of C,

ISR() is never

called in main().

Lee, Berkeley 10

Software as-a Model

C program

specifying timed

behavior.

Within the

semantics of C,

ISR() is never

called in main().

Within the

semantics of C,

how long will this

code run?

Lee, Berkeley 11

Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,

OCaml, etc. has nothing to do with how long it takes to do

anything. All our computation and networking abstractions

are built on this premise.

Programmers have to step outside the

programming abstractions to specify

timing behavior.

Lee, Berkeley 12

Execution-time analysis, by itself,

does not solve the problem!

Analyzing software for timing behavior requires:

• Paths through the program (undecidable)

• Detailed model of microarchitecture

• Detailed model of the memory system

• Complete knowledge of execution context

• Many constraints on preemption/concurrency

• Lots of time and effort

And the result is valid only for that exact

hardware and software!

Fundamentally, the programming language and

the ISA of the processor have failed to provide

adequate abstractions.

Wilhelm, et al. (2008). "The worst-case
execution-time problem - overview of
methods and survey of tools." ACM TECS
7(3): p1-53.

Lee, Berkeley 13

In contrast, some definitive statements about

software are possible

We can safely

assert that line 8

does not execute

(In C, we need to

separately ensure that

no other thread or ISR

can overwrite the stack,

but in more modern

languages, such

assurance is provided

by construction.)

We can develop absolute confidence

in the software, in that only a

hardware failure is an excuse.

Lee, Berkeley 14

How about an RTOS?

“Real-time” operating systems (RTOS’s), allow us to

specify scheduling priorities, but ultimately rely on

execution time analysis and overprovisioning to

provide assurance (and then, only on a particular

hardware platform in a particular execution context).

The software, as a model, is not adequate for certification!

We can fix this problem!

Lee, Berkeley 17

First Part of Our Solution: PRET Machines

 PREcision-Timed processors = PRET

 Predictable, REpeatable Timing = PRET

 Performance with REpeatable Timing = PRET

= PRET +

Computing With time

// Perform the convolution.

for (int i=0; i<10; i++) {

 x[i] = a[i]*b[j-i];

 // Notify listeners.

 notify(x[i]);

}

Lee, Berkeley 18

Dual Approach

 Rethink the ISA

 Timing has to be a correctness property not a

performance property.

 Implementation has to allow for multiple realizations

and efficient realizations of the ISA

 Repeatable execution times

 Repeatable memory access times

Lee, Berkeley 19

Example of one sort of mechanism we would like:

tryin (500ms) {

 // Code block

} catch {

 panic();

}

jmp_buf buf;

if (!setjmp(buf)){

 set_time r1, 500ms

 exception_on_expire r1, 0

 // Code block

 deactivate_exception 0

} else {

 panic();

}

exception_handler_0 () {

 longjmp(buf)

}

If the code block takes longer than
500ms to run, then the panic()
procedure will be invoked.

But then we would like to verify
that panic() is never invoked! Pseudocode showing how this might

be implemented today. The result is
very platform dependent.

Lee, Berkeley 20

Extending an ISA with

Timing Semantics

[V1] Best effort:

 set_time r1, 1s

// Code block

delay_until r1

[V2] Late miss detection

set_time r1, 1s

// Code block

branch_expired r1, <target>

delay_until r1

set_time r1, 1s

exception_on_expire r1, 1

// Code block

deactivate_exception 1

delay_until r1

[V3] Immediate miss detection

[V4] Exact execution:

set_time r1, 1s

// Code block

MTFD r1

Lee, Berkeley 22

To deliver repeatable timing, we have to

rethink the microarchitecture

Challenges:

 Pipelining

 Memory hierarchy

 I/O (DMA, interrupts)

 Power management (clock and voltage scaling)

 On-chip communication

 Resource sharing (e.g. in multicore)

Lee, Berkeley 23

Hardware

thread Hardware

thread Hardware

thread

Our Current PRET Architecture
PTArm, a soft core on a

Xilinx Virtex 5 and 6 FPGA

Hardware

thread

registers

scratc

h

pad

memory

I/O devices

Interleaved

pipeline with one

set of registers

per thread

SRAM

scratchpad

shared among

threads

DRAM main

memory,

separate banks

per thread

memory
memory

memory

Lee, Berkeley 25

Performance Cost?

Comparing PTARM against

SimIT-ARM simulator

(StrongARM 1100)

[Qin & Malik] over

Malardalen WCET

benchmarks [Gustafsson…].

Given enough concurrency,

the PTARM beats the

StrongARM on every

benchmark!

Moreover, our simpler

pipeline can probably be

clocked faster.

[Isaac Liu, PhD Thesis, May, 2012]

No!

Lee, Berkeley 26

A Key Next Step:

Parametric PRET Architectures

ISA that admits a variety of implementations:

 Variable clock rates and energy profiles

 Variable number of cycles per instruction

 Latency of memory access varying by address

 Varying sizes of memory regions

 …

A given program may meet deadlines on only some

realizations of the same parametric PRET ISA.

set_time r1, 1s

// Code block

MTFD r1

Lee, Berkeley 27

Realizing the MTFD instruction on a

parametric PRET machine

The goal is to make software that will run correctly on a variety of

implementations of the ISA, and that correctness can be checked for each

implementation.

set_time r1, 1s

// Code block

MTFD r1

Lee, Berkeley 28

PRET Publications

 S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)

Machine," in the Wild and Crazy Ideas Track of DAC, June 2007.

 B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards and E. A. Lee, “Predictable

programming on a precision timed architecture,” CASES 2008.

 S. Edwards, S. Kim, E. A. Lee, I. Liu, H. Patel and M. Schoeberl, “A Disruptive

Computer Design Idea: Architectures with Repeatable Timing,” ICCD 2009.

 D. Bui, H. Patel, and E. Lee, “Deploying hard real-time control software on

chip-multiprocessors,” RTCSA 2010.

 Bui, E. A. Lee, I. Liu, H. D. Patel and J. Reineke, “Temporal Isolation on

Multiprocessing Architectures,” DAC 2011.

 J. Reineke, I. Liu, H. D. Patel, S. Kim, E. A. Lee, PRET DRAM Controller: Bank

Privatization for Predictability and Temporal Isolation, CODES+ISSS,

Taiwan, October, 2011.

 S. Bensalem, K. Goossens, C. M. Kirsch, R. Obermaisser, E. A. Lee, J. Sifakis,

Time-Predictable and Composable Architectures for Dependable

Embedded Systems, Tutorial Abstract, EMSOFT, Taiwan, October, 2011

http://chess.eecs.berkeley.edu/pret/

Lee, Berkeley 29

Conclusions

Today, timing behavior is a property only of realizations of

software systems.

Tomorrow, timing behavior will be a semantic property of

programs and models.

Raffaello Sanzio da Urbino – The Athens School

