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Cyber-Physical Systems (CPS): 
Orchestrating networked computational  

resources with physical systems 

Courtesy of Doug Schmidt 

Power 

generation and 

distribution 

Courtesy of  

General Electric 

Military systems: 

E-Corner, Siemens 

Transportation 

(Air traffic 

control at 

SFO) 
Avionics 

Telecommunications 

Factory automation 

Instrumentation 

(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 
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Claim 

For CPS, programs do not adequately specify behavior. 

 

 

Corollary: Certifying software for CPS makes no sense. 
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A Story 

The Boeing 777 was Boeing’s first fly-by-wire aircraft, 

controlled by software. It is deployed, appears to be 

reliable, and is succeeding in the marketplace. Therefore, 

it must be a success. However… 

Boeing was forced to purchase and store an advance 

supply of the microprocessors that will run the software, 

sufficient to last for the estimated 50 year production run 

of the aircraft and another many years of maintenance. 

Why? 
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Lesson from this example: 

Apparently, the software does not specify the behavior 

that has been validated and certified! 

 

Unfortunately, this problem is very common, even with 

less safety-critical, certification-intensive applications. 

Validation is done on complete system implementations, 

not on software. 
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Guidance for Certification: 

The Koptez Principle 
 

Many properties that we assert about systems 

(determinism, timeliness, reliability) are in fact 

not properties of an implemented system, but 

rather properties of a model of the system. 

 

We can make definitive statements about 

models, from which we can infer properties of 

system realizations. The validity of these 

properties depends on model fidelity, which is 

always approximate. 

 

(paraphrased) 

Prof. Dr. Hermann Kopetz 
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Corollary 

 

Certifying models requires clear understanding of model 

semantics. 

 

You have to know what a model means to assert that it 

holds certain properties. 
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Software as-a Model 

C program 

specifying timed 

behavior. 
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Software as-a Model 

C program 

specifying timed 

behavior. 

 

Within the 

semantics of C, 

ISR() is never 

called in main(). 
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Software as-a Model 

C program 

specifying timed 

behavior. 

 

Within the 

semantics of C, 

ISR() is never 

called in main(). 

 

Within the 

semantics of C, 

how long will this 

code run? 
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Timing is not Part of Software Semantics 

Correct execution of a program in C, C#, Java, Haskell, 

OCaml, etc. has nothing to do with how long it takes to do 

anything. All our computation and networking abstractions 

are built on this premise. 

 

  

Programmers have to step outside the 

programming abstractions to specify 

timing behavior. 
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Execution-time analysis, by itself, 

does not solve the problem! 

Analyzing software for timing behavior requires: 

 

• Paths through the program (undecidable) 

• Detailed model of microarchitecture 

• Detailed model of the memory system 

• Complete knowledge of execution context 

• Many constraints on preemption/concurrency 

• Lots of time and effort 

 

And the result is valid only for that exact 

hardware and software! 

 

Fundamentally, the programming language and 

the ISA of the processor have failed to provide 

adequate abstractions. 

Wilhelm, et al. (2008). "The worst-case 
execution-time problem - overview of 
methods and survey of tools." ACM TECS 
7(3): p1-53. 
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In contrast, some definitive statements about 

software are possible 

We can safely 

assert that line 8 

does not execute  

 

 

 

 
(In C, we need to 

separately ensure that 

no other thread or ISR 

can overwrite the stack, 

but in more modern 

languages, such 

assurance is provided 

by construction.)  

We can develop absolute confidence 

in the software, in that only a 

hardware failure is an excuse. 
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How about an RTOS? 

“Real-time” operating systems (RTOS’s), allow us to 

specify scheduling priorities, but ultimately rely on 

execution time analysis and overprovisioning to 

provide assurance (and then, only on a particular 

hardware platform in a particular execution context). 

 

The software, as a model, is not adequate for certification! 

 

We can fix this problem! 
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First Part of Our Solution: PRET Machines 

 PREcision-Timed processors = PRET 

 Predictable, REpeatable Timing = PRET 

 Performance with REpeatable Timing = PRET 

= PRET + 

Computing With time 

// Perform the convolution. 

for (int i=0; i<10; i++) { 

  x[i] = a[i]*b[j-i]; 

  // Notify listeners. 

  notify(x[i]); 

} 
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Dual Approach 

 Rethink the ISA 

 Timing has to be a correctness property not a 

performance property. 

 

 Implementation has to allow for multiple realizations 

and efficient realizations of the ISA 

 Repeatable execution times 

 Repeatable memory access times 
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Example of one sort of mechanism we would like: 

tryin (500ms) { 

   // Code block 

} catch { 

    panic(); 

} 

jmp_buf  buf; 

 

if ( !setjmp(buf) ){ 

  set_time r1, 500ms 

  exception_on_expire r1, 0  

  // Code block 

  deactivate_exception 0     

} else { 

    panic(); 

} 

 

exception_handler_0 () { 

     longjmp(buf) 

} 

If the code block takes longer than 
500ms to run, then the panic() 
procedure will be invoked. 
 
But then we would like to verify 
that panic() is never invoked! Pseudocode showing how this might 

be implemented today. The result is 
very platform dependent. 
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Extending an ISA with  

Timing Semantics 

[V1] Best effort:  

 set_time r1, 1s 

// Code block 

delay_until r1 

[V2] Late miss detection   

set_time r1, 1s 

// Code block 

branch_expired r1, <target> 

delay_until r1 

 

set_time r1, 1s 

exception_on_expire r1, 1 

// Code block 

deactivate_exception 1 

delay_until r1 

 

[V3] Immediate miss detection   

[V4] Exact execution:  

set_time r1, 1s 

// Code block 

MTFD r1 
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To deliver repeatable timing, we have to 

rethink the microarchitecture 

Challenges: 

 

 Pipelining 

 Memory hierarchy 

 I/O (DMA, interrupts) 

 Power management (clock and voltage scaling) 

 On-chip communication 

 Resource sharing (e.g. in multicore) 
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Hardware 

thread Hardware 

thread Hardware 

thread 

Our Current PRET Architecture 
PTArm, a soft core on a 

Xilinx Virtex 5 and 6 FPGA 

Hardware 

thread 

registers 

scratc

h 

pad 

memory 

I/O devices 

Interleaved 

pipeline with one 

set of registers 

per thread 

SRAM 

scratchpad 

shared among 

threads 

DRAM main 

memory, 

separate banks 

per thread 

memory 
memory 

memory 
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Performance Cost? 

 

Comparing PTARM against 

SimIT-ARM simulator 

(StrongARM 1100)  

[Qin & Malik] over 

Malardalen WCET 

benchmarks [Gustafsson…]. 
 

Given enough concurrency, 

the PTARM beats the 

StrongARM on every 

benchmark! 
 

Moreover, our simpler 

pipeline can probably be 

clocked faster. 

 

[Isaac Liu, PhD Thesis, May, 2012] 

No! 
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A Key Next Step: 

Parametric PRET Architectures 

ISA that admits a variety of implementations: 

 Variable clock rates and energy profiles 

 Variable number of cycles per instruction 

 Latency of memory access varying by address 

 Varying sizes of memory regions 

 … 

 

A given program may meet deadlines on only some 

realizations of the same parametric PRET ISA. 

set_time r1, 1s 

// Code block 

MTFD r1 
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Realizing the MTFD instruction on a  

parametric PRET machine 

The goal is to make software that will run correctly on a variety of 

implementations of the ISA, and that correctness can be checked for each 

implementation. 

set_time r1, 1s 

// Code block 

MTFD r1 
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Conclusions 

Today, timing behavior is a property only of realizations of 

software systems. 

Tomorrow, timing behavior will be a semantic property of  

programs and models. 

Raffaello Sanzio da Urbino – The Athens School 


