Certifying Real-Time Software
IS Not Reasonable (Today)

Edward A. Lee Key Collaborators on
Robert S. Pepper Distinguished Professor work shown here:
UC Berkeley

 David Broman
e Steven Edwards

Invited Plenary Talk + Sungjun Kim

Soft Certification C tium (SCC) Isaac Liu

oftware Certification Consortium T

Workshop at the High Confidence Software and Hiren P_atel
« Jan Reinke

Systems (HCSS) Conference
Annapolis, MD
May 6 and 7, 2012.

Mike Zimmer

B Transportation
(Air traffic

K control at
SFO)

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Building Systems N
e Telecommunications

Avionics

Automotive

\ooo

Fre and socurity
monitoring
—t

{ Power
4 generation and
' distribution

- e £\
’ A ‘:"/2\. SIS S Vg
PRl A7 ’

W ==YV, A
R I -’._":,__-I-'-;k: :
% 2 & A\ -

L

o €\ TG e
by 4L R Courtesy of ,
s Corp. Lee, Berkeley 2

NALFOREA GERTTRY 1 General Electric Courtesy of Kuka Robotic

Claim

For CPS, programs do not adequately specify behavior.

Corollary: Certifying software for CPS makes no sense.

Lee, Berkeley 3

A StO ry % f

]

The Boeing 777 was Boeing’ s first fly-by-wire aircratft,
controlled by software. It is deployed, appears to be
reliable, and is succeeding in the marketplace. Therefore,
It must be a success. However...

Boeing was forced to purchase and store an advance
supply of the microprocessors that will run the software,
sufficient to last for the estimated 50 year production run
of the aircraft and another many years of maintenance.

Why?

Lee, Berkeley 4

g

Lesson from this example: f\’:
| Fdge™

Apparently, the software does not specify the behavior
that has been validated and certified!

Unfortunately, this problem is very common, even with
less safety-critical, certification-intensive applications.
Validation is done on complete system implementations,
not on software.

Lee, Berkeley 5

Guidance for Certification:
The Koptez Principle

Many properties that we assert about systems
(determinism, timeliness, reliability) are in fact
not properties of an implemented system, but
rather properties of a model of the system.

We can make definitive statements about
models, from which we can infer properties of
system realizations. The validity of these
properties depends on model fidelity, which is
Prof. Dr. Hermann Kopetz always approximate.

(paraphrased)

Lee, Berkeley 6

Corollary

Certifying models requires clear understanding of model
semantics.

You have to know what a model means to assert that it
holds certain properties.

Lee, Berkeley 7

Software as-a Model

C program
p - . 1 void initTimer (void) {
specifying timed SysTickPeriodSet (SysCtlClockGet () / 1000);
I 3 SysTickEnable ();
behavior. s SysTickIntEnable ();
5}
6 volatile uint timer_count = 0;
7 void ISR (void) {
8 if(timer _count != 0) A
9 timer_count --;
10 +
11 }
12 int main(void) {
13 SysTickIntRegister (&ISR);
14 // other init
15 timer_count = 2000;
16 initTimer () ;
17 while(timer_count !'= 0) {
18 code to run for 2 seconds
19 +
20 // other code
21}

Lee, Berkeley 8

Software as-a Model

C program
specifying timed
behavior.

1
2
3
4
5
6

Within the
semantics of C, 0
ISR() Is never °

called in main(). :>

14
15
16
17
158
19
20

21

void initTimer (void) {
SysTickPeriodSet (SysCtlClockGet () / 1000);
SysTickEnable ();
SysTickIntEnable () ;

}
volatile uint timer_count = 0;
void ISR (void) A

if(timer _count != 0) A
timer_count —--;

}

int main(void) <
SysTickIntRegister (&ISR);
// other init

timer_count = 2000;
initTimer () ;
while(timer _count != 0) A{

code to run for 2 seconds

+
// other code

Lee, Berkeley 9

Software as-a Model

C program
o - : 1 void initTimer(void) {
specifying timed SysTickPeriodSet (SysCtlClockGet () / 1000);
i 3 SysTickEnable () ;

behavior. " SysTickIntEnable ();

5 F

6 volatile uint timer_count = 0;
Within the |:>void ISR (void) {

_ g if (timer_count != 0) A

semantics of C, 0 timer_count --;

10 }

ISR() IS never)

called in main().—=) int main(void) {
() 13 SysTickIntRegister (&ISR);

14 .. // other intt
o 15 timer_count = 2000;
Within the 16 initTimer () ;
. 17 while(timer_count != 0) {
semantics of C; ‘ ... code to run for 2 seconds
I I 19 }
how long will this ° L wiher code
code run? !

Lee, Berkeley 10

Timing Is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, etc. has nothing to do with how long it takes to do
anything. All our computation and networking abstractions
are built on this premise.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Lee, Berkeley 11

Execution-time analysis, by itself,
does not solve the problem!

set (a) / stop

Analyzing software for timing behavior requires: gl |

cancel i fetch (a),
 Paths through the program (undecidable) Iciwaj(a) — hold
 Detailed model of microarchitecture cancel Igg ; code (a)
 Detailed model of the memory system " (;) o
« Complete knowledge of execution context cancel _——
» Many constraints on preemption/concurrency : mst: it
« Lots of time and effort S -

nextr "sta.rt

And the result is valid only for that exact X dm):‘:;:’i
hardware and software! set (a) / stop

store walit

SST

Fundamentally, the programming language and yilnelm, et al. (2008). "The worst-case

i i execution-time problem - overview of
the ISA of the processor have failed to provide mothods and survey of tools * ACM TECS
adequate abstractions. 7(3): p1-53.

Lee, Berkeley 12

In contrast, some definitive statements about
software are possible

We can safely

' 1 void foo(int32_t x) {

assert that line 8 : it (x> 10005 4
does not execute x = 1000;

‘ }

5 if (x > 0) {

6 x = x + 1000;

; if (x < 0) {

) - panic ();

0 }

10 }

11 }
(In C, we need to
separately ensure that
no other thread or ISR We can develop absolute confidence
S OUEWIE (119 RIS in the software, in that only a
but in more modern _ _
languages, such hardware failure is an excuse.

assurance is provided

by construction.)
Lee, Berkeley 13

How about an RTOS?

“Real-time” operating systems (RTOS's), allow us to
specify scheduling priorities, but ultimately rely on
execution time analysis and overprovisioning to
provide assurance (and then, only on a particular
hardware platform in a particular execution context).

The software, as a model, is not adequate for certification!

We can fix this problem!

Lee, Berkeley 14

First Part of Our Solution: PRET Machines

o PREcision-Timed processors = PRET
o Predictable, REpeatable Timing = PRET

o Performance with REpeatable Timing = PRET

// Perform the convolution.

for (int 1=0; 1<10; 1i++) {
x[1] = ali]l*b[J-1]; +
// Notify listeners.
notify(x[i])

}

Computing With time

Lee, Berkeley 17

Dual Approach

o Rethink the ISA

Timing has to be a correctness property not a
performance property.

o Implementation has to allow for multiple realizations
and efficient realizations of the ISA

Repeatable execution times
Repeatable memory access times

Lee, Berkeley 18

Example of one sort of mechanism we would like:

jmp_buf buf;
tryin (500ms) { _ _
/I Code block it (!sejmp(buf) {
} catch { set time rl, 500ms
panic(); exception_on_expire rl, 0
J /I Code block

deactivate_exception 0

If the code block takes longer than }else{)
panic();

500ms to run, then the panic())
procedure will be invoked.

exception_handler 0 () {
longjmp(buf)

But then we would like to verify }
that paniC() iS never invoked! Pseudocode showing how this might

be implemented today. The result is
very platform dependent.

Lee, Berkeley 19

Extending an ISA with
Timing Semantics

[V1] Best effort: [V3] Immediate miss detection
set_time rl, 1s set_time rl, 1s
/| Code block exception_on_expirerl, 1
delay _until r1 /I Code block
deactivate _exception 1
delay until r1
[V2] Late miss detection [V4] Exact execution:
Set_time rl1, 1s Set_time rl’ 1s
Il Code block /I Code block
branch_e>.<p|red rl, <target> MTED 11
delay until r1

Lee, Berkeley 20

To deliver repeatable timing, we have to
rethink the microarchitecture

Challenges:

Pipelining

Memory hierarchy

/O (DMA, interrupts)

Power management (clock and voltage scaling)
On-chip communication

Resource sharing (e.g. in multicore)

Lee, Berkeley 22

Our Current PRET Architecture

PTArm, a soft core on a
Xilinx Virtex 5 and 6 FPGA

registers

Interleaved SRAM DRAM main
pipeline with one scratchpad memory,
set of registers shared among separate banks
per thread threads per thread

Lee, Berkeley 23

WCET Benchmarks Instruction Throughput (higher is better)

PTARM m—

Performance Cost? = SArdoba =

SA1100 allca:c:he —

o
™

o
o

Comparing PTARM against
SimIT-ARM simulator

o
»

(StrongARM 1100)

instruction throughput (instructions/cycle)

o
N

[Qin & Malik] over

Malardalen WCET
benchmarks [Gustafsson...].

o

WCET Benchmarks Latency (lower is better)

Given enough concurrency,
the PTARM beats the

SA1100 warm s

PTARM mmmm |
SA1100 allcache ——1 |

SA1100 cold m=m |

StrongARM on every
benchmark!

total cycles (logscale)

Moreover, our simpler
pipeline can probably be

clocked faster.

[Isaac Liu, PhD Thesis, May, 2012]

set timerl, 1s

A Key Next Step: /I Code block
Parametric PRET Architectures MTEb

ISA that admits a variety of implementations:

o Variable clock rates and energy profiles

o Variable number of cycles per instruction

o Latency of memory access varying by address
o Varying sizes of memory regions

o ...

A given program may meet deadlines on only some
realizations of the same parametric PRET ISA.

Lee, Berkeley 26

Realizing the MTFD Instruction on a

parametric

PRET

set timerl, 1s
/I Code block
MTFD rl

machine

architecture
parameters

source .
P—F compiler

T

includes
MTFD code
blocks

--f— certificate

checker
raﬂalyzer
includes predicate
MTFD to be
instructions satisfied

object code

link absolute
Inker p—p/ confidence

loader software

The goal is to make software that will run correctly on a variety of
Implementations of the ISA, and that correctness can be checked for each

Implementation.

Lee, Berkeley 27

P R ET P U bl icati ons http://chess.eecs.berkeley.edu/pret/

o S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)
Machine," in the Wild and Crazy Ideas Track of DAC, June 2007.

o B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards and E. A. Lee, “Predictable
programming on a precision timed architecture,” CASES 2008.

o S. Edwards, S. Kim, E. A. Lee, I. Liu, H. Patel and M. Schoeberl, “A Disruptive
Computer Design ldea: Architectures with Repeatable Timing,” ICCD 20009.

o D. Bui, H. Patel, and E. Lee, “Deploying hard real-time control software on
chip-multiprocessors,” RTCSA 2010.

o Bui, E. A. Lee, I. Liu, H. D. Patel and J. Reineke, “Temporal Isolation on
Multiprocessing Architectures,” DAC 2011.

o J. Reineke, I. Liu, H. D. Patel, S. Kim, E. A. Lee, PRET DRAM Controller: Bank
Privatization for Predictability and Temporal Isolation, CODES+ISSS,
Taiwan, October, 2011.

o S. Bensalem, K. Goossens, C. M. Kirsch, R. Obermaisser, E. A. Lee, J. Sifakis,
Time-Predictable and Composable Architectures for Dependable
Embedded Systems, Tutorial Abstract, EMSOFT, Taiwan, October, 2011

Lee, Berkeley 28

Conclusions

Today, timing behavior is a property only of realizations of
software systems.

Tomorrow, timing behavior will be a semantic property of
programs and models.

Raffaello Sanzio da Urbino — The Athens School
Vi ro /

~~~~~~~~
o — —



