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Introduction



Introduction

Software (Security) Testing



Should we Care about Software Testing?

• Proving correctness seems to be not quite enough
• Testing is required: both on the sides of verification and validation!

• “The process of analyzing a software system to detect the differences
between existing and expected conditions (that is, bugs)” [IEEE]
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Should we Really Care for Software Testing?

Can we devise testing methods that show the presence of all flaws?

(assuming certain conditions are met)
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Why Software Security Testing?

The Heartbleed Bug (2014)

• Allowed anyone on the Internet to read the memory of the systems
protected by OpenSSL software (e.g. e-banking applications)

• "Catastrophic" is the right word. On the scale of 1 to 10, this is an 11
(Schneier, 2014)

How to search for a yet unknown vulnerability - that can be exploited?
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Motivation for Combinatorial Methods

Key Observations

• Great need to ensure an attack-free environment for implementations
of software systems

• Software testing may consume up to half of the overall software
development cost

• Combinatorial explosion: Exhaustive search of input space
• Added level of complexity for security testing (modelling vulnerabilities)

• How can we estimate the residual risk that remains after testing and
guarantee aspects of test quality (e.g. test coverage, locating faults)?

In this Talk
Formulate problems of software security testing as combinatorial
problems and then use efficient algorithms/solvers/tools to tackle them
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Introduction

Combinatorial Methods



A Large Example for Testing

• Suppose we have a system with on-off switches
• 34 switches = 234 = 1.7× 1010 possible settings

• How do we test this system?
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Example of a Covering Array for Software Testing

System Under Test (SUT) with 3 Boolean Input Parameters a, b, c

• Could be function, application, configuration file, etc.

• Exhaustive test set: 23 = 8 tests

• 2-way covering array (test set): 4 tests

a b c (a, b) (b, c) (a, c)

0 0 0 (0, 0) (0, 0) (0, 0)
0 1 1 (0, 1) (1, 1) (0, 1)
1 0 1 (1, 0) (0, 1) (1, 1)
1 1 0 (1, 1) (1, 0) (1, 0)

Table 1: 2-way test set (left) covering all pairs of parameters (right)

Covering Arrays CA(N; t , k , v ) of Strength t

• Cover all t-way combinations of k input parameters at least once

• Input parameters have v total values each

• Such a mathematical object has N total rows (tests)
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How is this Knowledge Useful?

• Recall the system with on-off switches
• 34 switches = 234 = 1.7× 1010 possible settings
• Assumption: What if we knew no failure involves more than 3

switch settings interacting?
• If only 3-way combinations, need a CA with only 33 tests
• If only 4-way combinations, need a CA with only 85 tests
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Empirical Evidence: Fault Coverage vs. Interactions

• The maximum degree of interaction observed so far in actual real-world
faults is relatively small (six)

• 2-way interaction: age > 100 and zip-code = 5001, DB push fails

• Most failures are induced by single factor faults or by the joint
combinatorial effect (interaction) of two factors, with progressively fewer
failures induced by interactions between three or more factors 9



Combinatorial Testing (CT)

What is Combinatorial Testing?
Combinatorial Strategy for Higher Interaction Testing (t ≥ 2)

Where it can be Applied?
To system configurations, input data or both

Key Facts:

• CT utilizes 100% coverage of t-way combinations of k input data or
system configuration parameters

• Coverage is provided by mathematical objects (covering arrays),
that are later transformed to software artifacts

• t-way tests that cover all such few parameter (factor) interactions can
be very effective and provide strong assurance

10



Research Challenges for Combinatorial Testing

Simplified testing process (CT-dependent parts in red) for given SUT

1. Modelling of the test space (configuration space and/or input space)
including specification of test factors & settings and constraints

2. Efficient generation of t-way test suites, including constraints

3. Determination of the expected behavior of the SUT for each test and
checking whether the actual behavior agrees with the expected one

4. Identification of the failure-inducing test value combinations from
pass/fail results of CT

11



Research Challenges for Security Testing

Traditional Software Testing
Generate possible inputs, check if SUT fails

Security Testing: Scope
Generate malicious inputs, check if SUT deviated from security
regulations (e.g. a payload is executed)

Security Testing: Research Challenges
Security testing always faces the challenge of finding an interaction with
the system not previously tested that reveals a new vulnerability

12



Combinatorial Security Testing (CST)1

• Large-scale software testing for security
• Complex web applications
• Linux kernels
• Protocol testing & crypto alg. validation
• Hardware Trojan horse detection

• Automated testing frameworks / Joint Programme with US NIST

Combinatorial methods can make software security testing
much more efficient and effective than conventional approaches

1Simos et al., Combinatorial Methods in Security Testing, IEEE Computer, 2016
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Web Security Interaction Testing

Attack Models for Web Applications



Web Security: Input Models for Vulnerabilities

Cross-Site-Scripting (XSS): Top 3 Web Application Security Risk

• Inject client-side script(s) into web-pages viewed by other users

• Malicious (JavaScript) code gets executed in the victim’s browser

Difference from Classical CT: Modelling Attack Vectors

• Attacker injects client-side script in parameter msg:
http://www.foo.com/error.php?msg=<script>alert(1)</script>

• Input parameter modelling for XSS attack vectors:
AV :=

(
parameter1, parameter2, . . . , parameterk

)
14

http://www.foo.com/error.php?msg=


Combinatorial Design of XSS Attack Vectors2

Design of an Input Model for XSS

• Input parameters in the model⇒ parts of the URL

• Parameter value selection: Equivalence and category partitioning

• Constraints derived from expert knowledge (e.g. JSO(1) => JSE(1))

JSO(15)::= <script> | <img | ...
WS1(3)::= tab | space | ...
INT(14)::= "’; | ">> | ...
WS2(3)::= tab | space | ...
EVH(3)::= onLoad( | onError( | ...
WS3(3)::= tab | space | ...
PAY(23)::= alert(’XSS’) | ONLOAD=alert(’XSS’) | ...
WS4(3)::= tab | space | ...
PAS(11)::= ’) | ’> | ...
WS5(3)::= tab | space | ...
JSE(9)::= </script> | > | ...
2Garn, Kapsalis, Simos and Winkler, JAMAICA/ISSTA 2014
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Attack Model for XSS with Constraints3

Constraints for XSS Input Model

• Enforce combinations that are likely to evade filters

• Exclude combinations that result in inexecutable code

• Added Value: Higher quality test sets; further reduction of input
space

(JSO =1) => (JSE =1)
(JSO =4) => (JSE =2 || JSE =4)
(JSO =5) => (JSE =5 || JSE =6 || JSE =7 || JSE =8)
(EVH =3) => (PAY =12 || PAY =13 || PAY =17)
(INT =2) => (PAS =10 || PAS =11)
(WS1=WS2 && WS2=WS3 && WS3=WS4 && WS4=WS5)

Example constraints for the parameters of the XSS attack model

3Bozic, Garn, Simos and Wotawa (QRS 2015, IWCT 2015)
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A Sample of XSS Attack Vectors

Figure 1: XSS vectors in ACTS combinatorial test generation tool (Courtesy of
US NIST and Univ. of Texas at Arlington)
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How to Design a Security Testing Framework for XSS

Modelling Phase

• Discretize the input space // Designer, tester

• Devise attack model(s) // black-box testing

Test Generation Phase

• Generate CAs from a CT generation tool // automated

• Translate abstract tests to XSS attack vectors // parsers

Test Execution Phase

Extraction urls:=CRAWLER(webpage) // parameters to exploit

Injection XSSINJECTOR(urls, attack vectors) // execution tool

Oracle Check whether an attack vector is executed on webpage

18



Case Studies and Experimental Evaluation

Case Studies

• OWASP Broken Web Application Project (training applications)

• SUTs: Mutillidae, DVWA, WebGoat, BodgeIt, Gruyere, Bitweaver
• Features: Multiple input fields; several difficulty levels

• Compare CT generated vectors with fuzzers (e.g. OWASP XSS Filter
Evasion Cheat Sheet, HTML5 Security Cheat Sheet)

• Compare attack models and test generation algorithms

• Compare penetration testing tools (e.g. BURP Suite, OWASP
Xenotix XSS Exploit Framework)

Experimental Results from using CT in Web Security Testing

• Filters can be evaded with low t-way interaction

• Largest repository of XSS attack vectors (ahead of commercial and
open-source related tools)
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Multiple XSS Vulnerabilities in Koha Library

Security Tests for Koha Library

• SUT: open source Integrated Library System (used by Museum of
Natural History in Vienna, UNESCO, Spanish Ministry of Culture)

• Results: unauthenticated SQL Injection, Local File Inclusions, XSS

• References: CVE-2015-4633, CVE-2015-4632, CVE-2015-4631

Figure 2: One of the vulnerabilities found by XSSINJECTOR (Prototype tool for
automated mounting of XSS attacks) 20



W3C Vulnerability

Scan of the Whole W3C Website

• www: 122 URLs, Services: 1 URL, Validator: 56 URLs

• Acknowledgements: Ted Guild and Rigo Wenning (W3C Team)

Figure 3: Vulnerability found in tidy service using XSSINJECTOR (Prototype tool
for automated mounting of XSS attacks)
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Web Security Interaction Testing

Root Cause of Security Vulnerabilities



Analyzing XSS Vulnerabilities using Fault Localization

Goal

• Identify one or more combinations of input parameter values that
would definitely trigger an XSS vulnerability

• Different from traditional fault localization, which is aimed at
identifying the location of a fault in the source code

XSS Inducing Combinations
If an XSS vector contains an inducing combination, then the execution of
this test vector against the SUT will successfully exploit an XSS
vulnerability

Why this is Important for Web Security Testing?
Provides important information about why a filter fails to sanitize a
malicious vector

22



Methodology and Results4

Methodology

1. Executing XSS attack vectors against SUTs

2. Identifying one or more inducing combinations of input values that
can trigger a successful XSS exploit (example below)

JSO WS1 INT WS2 EVH WS3 PAY WS4 PAS WS5 JSE
"><script> ␣ ’; ␣ onError= ␣ alert(1) ␣ ’> ␣ \>
"><script> ␣ ’> ␣ onError= ␣ alert(1) ␣ ’> ␣ \>
"><script> ␣ ’; ␣ onError= ␣ src="invalid" ␣ ’> ␣ \>
"><script> ␣ ’> ␣ onError= ␣ src="invalid" ␣ ’> ␣ \>

Retrieving the Root Cause of Security Vulnerabilities

• Analysis revealed common structure for successful XSS Vectors

• E.g. all contain the following 2-tuple: ("><script>, onError=)

4Simos, Kleine, Ghandehari, Garn and Lei, ICTSS 2016
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Security Protocol Interaction Testing

Combinatorial Methods for X.509
Certificate Testing



Network Security: Complex Models for Certificates

The Problem of Certificate Testing

• Standards for public key infrastructure (PKI)

• Attack vectors have the purpose to forge certificates

• Impact: Faults in validation logic can result in impersonation
attacks

Figure 4: A sample X.509 certificate chain. 24



Approaches to Certificate Test Generation

Random Selection of Certificate Parts

• Frankencerts: Random exploration of input space (Brubaker et al.,
IEEE S&P 2014)

• Mucerts: Markov chain Monte Carlo sampling (Chen et al.,
ESEC/FSE 2015)

• Pros: Revealed a lot of faults

• Cons: No coverage guarantees of input space

Combinatorial Approach for Certificate Test Generation

• Coveringcerts: Model the structure (based on RFCs); generated
certificates (up to t = 7)5

• Use differential testing to check for discrepancies

• Compared validation results of OpenSSL, GnuTLS, wolfSSL, NSS,
OpenJDK, BouncyCastle, mbed

5Kleine and Simos, ICST 2017
25



Coveringcerts: Structure
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Sample 2-way Test Set for (simplified) Certificates

Mandatory Block Basic Constraint Extension Block
version hash key signature active critical is_authority pathlen

0 md5 dsa self true false false 1
0 sha1 rsa unrelated false dummy dummy dummy
0 sha256 dsa parent true true true 0
1 md5 rsa unrelated true true false 0
1 sha1 rsa parent true false true 1
1 sha256 dsa self false dummy dummy dummy
2 md5 rsa parent false dummy dummy dummy
2 sha1 dsa self true true true 0
2 sha256 rsa unrelated true false false 1
1 md5 dsa unrelated true false true 0
2 sha1 dsa parent true true false 1
0 sha256 rsa self false dummy dummy dummy
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Example: Test Translation

Version = 2
Validity_Time = valid
Issuer = Chain
Key_Type = RSA
Signature_Type = Chain
Signature_Algorithm = SHA1
Ext_BC_enabled = 1
Ext_BC_critical = 0
Ext_BC_CA = 1
Ext_BC_pathlen = 1
Ext_KU_enabled = 0
Ext_KU_critical = n/a
Ext_Extended_KU_enabled = 0
Ext_Extended_KU_critical = n/a
Ext_unknown_enabled = 0
Ext_unknown_critical = n/a

Listing 1: Abstract test case

Data :
Version : 3 ( 0x2 )
S e r i a l Number : 1 (0 x1 )

Signature Algor i thm : sha1WithRSAEncryption
Issuer : C=AU, ST=SBA, L=SBA, O=SBAR, OU=CST,

CN= roo t / emailAddress=root@example . org
V a l i d i t y

Not Before : Jan 1 22:51:58 2017 GMT
Not A f t e r : Jan 1 22:51:58 2019 GMT

Subject : C=AU, ST=SBA, L=SBA, O=SBAR, OU=CST,
CN= l e a f / emailAddress=foo@example . org

Subject Pub l i c Key I n f o :
Pub l i c Key Algor i thm : rsaEncryp t ion

Publ ic−Key : (1024 b i t )
Modulus :

00:b3 : d6 :02 :77 :2 b : d1 : a6 :
[ . . ]
c5 : be : 3 5 : e3 :74 :20 :4 a : e1 : f1

Exponent : 65537 (0 x10001 )
X509v3 extens ions :

X509v3 Basic Cons t ra in ts :
CA:TRUE, path len :1

Signature Algor i thm : sha1WithRSAEncryption
7a :78 :59 :74 :0 b :8 e :3 f : 5 6 : b4 :3 b :6 e :5 a :
[ . . ]
f8 : b8

Listing 2: Translated certificate
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Example: Test Translation - Validity Period

Version = 2
Validity_Time = valid
Issuer = Chain
Key_Type = RSA
Signature_Type = Chain
Signature_Algorithm = SHA1
Ext_BC_enabled = 1
Ext_BC_critical = 0
Ext_BC_CA = 1
Ext_BC_pathlen = 1
Ext_KU_enabled = 0
Ext_KU_critical = n/a
Ext_Extended_KU_enabled = 0
Ext_Extended_KU_critical = n/a
Ext_unknown_enabled = 0
Ext_unknown_critical = n/a

Listing 3: Abstract test case

Data :
Version : 3 (0 x2 )
S e r i a l Number : 1 (0 x1 )

Signature Algor i thm : sha1WithRSAEncryption
Issuer : C=AU, ST=SBA, L=SBA, O=SBAR, OU=CST,

CN= roo t / emailAddress=root@example . org
V a l i d i t y
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[ . . ]
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Listing 4: Translated certificate
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Errors Observed for Different TLS Implementations
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Error BouncyCastle wolfSSL GnuTLS NSS OpenJDK OpenSSL mbed

untrusted 3 3 3 3 3 3 3

expired or not yet valid 3 3 3 3 3 3 3

parse-error 3 3 3 3 3 7 3

crash 7 3 7 7 7 7 7

use of insecure algorithm 7 7 3 3 7 7 3

invalid signature 7 3 3 3 7 7 7

unknown critical extension 7 7 7 3 7 3 7

extension in non-v3 cert 7 7 7 7 3 7 7

use of weak key 7 7 7 7 7 7 3

name constraint violation 7 7 7 3 7 7 7

key usage not allowed 7 7 7 3 7 7 7

Table 2: A check mark (3) indicates the error was observed 30



Security Protocol Interaction Testing

Combinatorial Testing of the TLS
Security Protocol



Security Protocol Testing
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TLS Security Testing

• TLS Handshake Protocol:
One of the most complex and
vulnerable parts of TLS

• Consists of TLS events
(messages)

• Every one of these events
encompasses a specific set of
parameters and values

• Model the interaction and
execute it for testing purposes

32



Combinatorial Modelling of TLS

• Input Test Space for CT:
Employ Input Parameter
Modelling (IPM)

• TLS Specification: Select
parameters and possible values
for M1, M5 and M7

• Three different models are
constructed which give rise to
three distinctive test sets
according to standard

33



Input Models for TLS Messages6

6Simos, Bozic, Duan, Garn, Kleine, Lei and Wotawa, ICTSS 2017
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Test Execution Framework (TEF) & Oracle for TLS
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Case Study

Three Scenarios for TLS Testing

• Testing each message independently

• Question: How does the manipulation of one single TLS event affect
the entire handshake?

36



Evaluation Results

Test Case Evaluation

• Compare the resulting execution traces to the submitted input and to
the results of other SUTs:

1. Completed handshake
2. Rejected by the server
3. Incomplete handshake

SUT
miTLS OpenSSL mbed TLS

comp reject incomp comp reject incomp comp reject incomp
M1 0 25 0 1 24 0 1 17 7

M5 0 30 0 0 0 30 0 0 30

M7 0 25 0 1 0 24 1 0 24

Conclusion

• The developed framework and oracle are strong enough to
distinguish different behavior among TLS implementations

• Further investigation is needed to track the cause of this behavior
and examine whether security leaks have occurred

37
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Combinatorial Methods for Kernel
Software

ERIS: Combinatorial Kernel Testing



Kernel Testing

• Motivation: Kernel is responsible for managing the hardware and
running user programs

• Challenges: The kernel of an operating system is the central
authority to enforce and control security

• Large user base (e.g. 1.5 million Android devices activated per day,
Google 2013); Critical bugs must be detected early enough!

• Manual testing approaches (TRINITY fuzzer, Linux test project by IBM,
Cisco, Fujitsu, OpenSuse, Red Hat) only

• Goal: Reliability and quality assurance of kernel software
• SUTs: System calls of every git-commit of any (variant of) Linux

38



Combinatorial Testing of the Linux System Call Interface7

• Abstract models for system calls were manually generated

• ERIS translates them into concrete input models
(e.g. ACTS configurations)

7Garn and Simos, IWCT 2014
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Combinatorial API Testing

Modelling APIs Function Calls

• Input testing via equivalence- and category partitioning

• Input testing via novel flattening methodology

Abstr. Parameter Parameter values

ARG_CPU 1, 2, 3, 4, ..., 8
ARG_MODE_T 1, 2, 3, 4, ..., 4095, 4096
ARG_PID -3, -1, $pid_cron, $pid_w3m, 999999999
ARG_ADDRESS null, $kernel_address, $page_zeros, $page_0xff, $page_allocs, ...
ARG_FD fd1, fd2, fd3, . . . , fd15

ARG_PATHNAME pathname1, pathname2, pathname3, . . . , pathname15

40



chmod System Call: API Modelling for Input Testing

struct syscall syscall_chmod = {
.name = "chmod",
.num_args = 2,
.arg1name = "filename",
.arg1type = ARG_PATHNAME,
.arg2name = "mode",
.arg2type = ARG_MODE_T,
.rettype = RET_ZERO_SUCCESS,

};
----------------------------------------------
[System]
Name: chmod

[Parameter]
pathname (enum): path1, path2, ... , path15
mode_t (int): 1, 2, ... , 4096
----------------------------------------------

• 2-way CA (full search space): 15× 4096 = 61440 tests
41



chmod System Call: Flattened API Model

------------------------------------------------
[System]
Name: chmod-flattened

[Parameter]
pathname (enum) : path1, path2, ... , path15
S_ISUID (boolean): false, true
S_ISGID (boolean): false, true
S_ISVTX (boolean): false, true
S_IRUSR (boolean): false, true
S_IWUSR (boolean): false, true
S_IXUSR (boolean): false, true
S_IRGRP (boolean): false, true
S_IWGRP (boolean): false, true
S_IXGRP (boolean): false, true
S_IROTH (boolean): false, true
S_IWOTH (boolean): false, true
S_IXOTH (boolean): false, true
------------------------------------------------

• 2-way CA (test set): 30 tests

42



Automated Test Execution Framework

Some Features

• Ease of use: Only high-level parameters needed, everything else
handled by the system

• Test generation: Your favorite CT generation tool

• Test-runs: Each invocation runs in a dedicated virtual machine

• Logging: Extensive information is captured

• Database: Allows sophisticated post-processing queries

43



ERIS: Combinatorial Kernel Testing

Algorithm 1 Architectural Design of the Core ERIS Framework
1: function ERISCORE(version, syscall , t)

Require: version, syscall . SUT: Kernel version and system call
Require: t . Interaction strength of CA - test set
2: Mount copy of guest image
3: Copy latest version of ERIS into guest image
4: Generate CA of strength t for syscall . The CA is translated to a test set
5: if precompiled kernel available then
6: Use precompiled kernel
7: else
8: Compile kernel
9: end if

10: Compile kernel modules
11: Install kernel and modules into guest image
12: Finalize guest image for testing operations
13: Boot guest image using Xen hypervisor
14: Execute test set for syscall in dedicated VM
15: End testing cycle by shutting down the VM and perform clean-up
16: Import test results into SQL database for further analysis
17: end function
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Sample Query and Results
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Combinatorial Methods for Kernel
Software

KERIS: Combinatorial Kernel Security
Testing



KERIS: KASAN Enhanced ERIS

KERIS Overview

• KERIS’ features cover the complete testing cycle: modelling, test
case generation, test case execution, log archiving and subsequent
post-processing of the results

• Additional oracle: Integrating KernelAddressSANitizer (KASAN), a
dynamic memory error detector for the Linux kernel

• Other improvements: Various bug fixes and improved usability
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Reproducing Security Vulnerabilities with KERIS8

Security Vulnerability in Linux Networking Stack

• First discovered by Google’s Project Zero team (also with the help of
KASAN for detecting memory errors)

• Input model: We created a fine-tuned combinatorial model of a
network configuration setup

• SUT: Together with assigning parameter values to the sendto
system call

[30.605462] BUG: unable to handle kernel paging request at
ffff880007a60b28

[30.605500] IP: [<ffffffff818baf55 >] prb_fill_curr_block.isra .62+0
x15/0xc0

[30.605525] PGD 1e0c067 PUD 1e0d067 PMD ffd4067 PTE 8010000007 a60065
[30.605550] Oops: 0003 [#1] SMP KASAN

Excerpt of a Kernel crash produced with KERIS

8Garn, Wurfl and Simos, HVC 2017
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Detecting Hardware Trojan Horses



The Problem of Malicious Hardware Logic Detection

Cryptographic Trojans as Instances of Malicious Hardware

• Scenario: Trojans reside inside cryptographic circuits that perform
encryption and decryption in FPGA technologies

• Examples: Block ciphers (AES), Stream Ciphers (Mosquito)

• Problem: Hardware Trojan horse (HTH) detection
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Combinational Trojans

A Combinational Trojan in AES-128

• Activates when a specific combination of key bits appears

• When all monitored inputs are ”1”, the Trojan payload part (just one
XOR gate!) is activated

• Trojan reverses the mode of operation (DoS attack)
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Trojan Design Nowadays

Allegedly Reported Cases of Hardware Trojans

• 2007: Syrian radar failed to warn of an incoming air strike (a
backdoor built into the system’s chips was rumored to be
responsible)

• 2012: Counterfeit semiconductor chips on the rise (commercial,
military grade), rumored to be traced back to China

How Large are Today’s Hardware Trojan Horses?
Recent study added fewer than 1,000 transistors to the 1.8 million already
on the chip (a small backdoor circuit that gave access to privileged
regions of chip memory)

• Increased Awareness: DARPA Report, 2011, US House of
Representatives, 2012, US DoD Trusted Foundry Program 2012
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Exciting (Triggering) Hardware Trojan Horses

Threat Model

• The attacker can control the key or the plaintext input and can
observe the ciphertext output

• The attacker combines only a few signals for the activation

Input Model for Symmetric Ciphers

• Activating Sequence: Trojan monitors k << 128 key bits of
AES-128

• Attack vectors: Model activating sequences of the Trojan
(black-box testing); 128 binary parameters for AES-128

• Input space: 2128 = 3.4× 1038 for 128 bits key

• Exhaustive testing becomes intractable
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The Problem of Generating a Test Set

The Problem for Testing of Hardware Trojans

• How to efficiently test all possible k -bit input vectors for Trojan
activation?

The General (Combinatorial) Test Generation Problem
Let n and k << n parameters of a SUT. Construct sets of test vectors of
minimal size that cover all possible k -subspaces

• Equivalent to finding a CA(N; t , k , v ) with minimum number of rows
(also called the t-way covering problem)!

• The t-way covering problem is a hard combinatorial optimization
problem studied for centuries
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Overview of Algorithmic Methods for Constructing Test Sets

Main Research Line

• Determining achievable lower bounds

• Either via algorithms or theoretical constructions

Algorithms for Covering Arrays (t-way Test Sets)

• Evolutionary algorithms (SA, TS)

• IPO strategy (extension algorithms)

• One-test-at-a-time methods (greedy, density-based)

Recent Approaches

• Algebraic models for t-way coverage

• Set-based representation of CAs

• Optimization techniques
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Optimized Test Sets from CAs

• Comparison of test set sizes using the constant weight vectors
(CWV) procedure (Tang and Woo, 1983) and the CA generation
methods

n t Lesperance et al. (2015) CWV ours
128 2 27 129 11
128 3 - 256 37
128 4 213 8, 256 112
128 5 - 16, 256 252
128 6 - 349, 504 720
128 7 - 682, 752 2, 462
128 8 223 11, 009, 376 17, 544

Employed CA Generation Methods:

• Simulated Annealing (SA) algorithms

• CAs from cyclotomy, constructions via Hash families
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Case Study for Exciting Hardware Trojan Horses

Test Execution

• Hardware implementation: AES symmetric encryption algorithm
over the Verilog-HDL model with the Sakura-G FPGA board

Oracle
Compare the output with a Trojan-free design of AES-128 (e.g. software
implementation)
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Test Results for Detecting Hardware Trojan Horses9

• Test suite strength (t) vs. Trojan length (k )

Suite Number of activations
t size k = 2 k = 4 k = 8
2 11 5 3 0
3 37 12 4 0
4 112 32 7 1
5 252 62 14 1
6 720 307 73 6
7 2462 615 153 10
8 17544 4246 1294 178

Our Evaluation Results at a Glance

• There are about 366 trillion possible combinations for the Trojan
activation;

• The whole space is covered with less than 18 thousands vectors

• .. and these vectors activate the Trojan hundreds of times
9Kitsos, Simos, Jimenez and Voyiatzis, ISSRE 2015
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Similar (Malicious?) Patterns for AES Software Implementa-
tions10

Figure 5: Distinct patterns found via combinatorial coverage measurement
analysis on AES validation test sets (comprised of Known-Answer-Tests (KAT))

10Simos, Mekezis, Kuhn and Kacker, STC 2017 57



Summary & Future Work



CST: Current State of the Art

CST

Application
&Network Layer

System Layer

Web Security

Protocol Security

Kernel Software

Crypto CT
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Major Goals and Research Challenges Ahead

Accurate models and thorough combinatorial security testing of
composed software systems (e.g. Cyber-Physical Systems:
Automotives, Avionics Systems, IoT, Critical Infrastructures)

Grand Research Challenge: Cryptographic CT (CCT)

Combinatorial methods for crypto testing (e.g. AES testing, families
of cryptographic Trojans)

Grand Research Challenge: Automotive CST

Combinatorial methods for security testing of automotives (e.g.
protocol communication)
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Questions - Comments

Thank you for your Attention!

dsimos@sba-research.org
cst@sba-research.org
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