Leonidas Lampropoulos

Michael Hicks
Benjamin C. Pierce

HCSS
April 29, 2019

Q: Is it a good idea to combine specification-
based testing a la QuickCheck with fuzzing?

A: Yes

WONBUR-O" JA>u A YEZL, 2 1FM Vb
@A t)'cg-ﬂ'u'c-ko K"O-ibb‘%?s
P\ +=HH DAY | yOF<G* OAhXéLe! 92¢
* ATE&m,Gr-6P1B0INC)

e Start with a sample input to a
System-Under-Test

* Use bit-level mutations to
generate lots of similar inputs

 See if any of them lead to
crashes

Some Flavors of Fuzzing

Fuzzing with Custom Input
Generators / Grammars
(e.g., libfuzzer, IMF, FuzzM)

Coverage-
Guided Fuzzing “Smart” Coverage-

Guided Fuzzing (e.g.
(e'g' AFL) Driller, VUzzer)

User Effort

Completely Bug-Finding Efficiency
Random
Fuzzing

Coverage-Guided Fuzzing

Random bits

Mutated
Initial Seed

Mutator

Seed Pool

Fuzzer

Binary Input

Program Under
Test

1Crash

Report to User

Throw away

Instrumentation

Coverage info

Random

Specification-Base
Testin

Koen

* Programmer writes a formal specification
of software system or component as a
function from sample inputs to Booleans

* Executable “property” of S-U-T

* Tool generates many random inputs and
applies the function to each one
* If a counterexample is found, a greedy shrinking
process is used to find a minimal one
 Attractive midpoint between unit tests
and full-scale formal verification

* Famously embodied in Haskell
QuickCheck

John
Hughes"

An Example Property

Definition prop_sort_correct (I : list nat) : bool :=
is_sorted (sort).

QuickCheck uses the type of this function to
automatically generate random inputs of the
appropriate form (lists of numbers)

Random Specification-Based Testing

Random
bits

Generator

Random
structured
data

SUT + Property
Success/

lFaiIure Discard

Report to User

SOFTWARE

QuickChick

Property-Based Testing in Coq

PHOTO: Benjamin C. Pierce

e A variant of Haskell’s QuickCheck
tool...

* ported to the Coq proof assistant...

* and fed on steroids

* e.g., a mechanically verified

coretness proof for the testing
framework itself

A Harder Property

Definition prop_insert_correct (x : nat) (I : list nat) : bool :=
is_sorted | ==>is_sorted (insert x).

QuickChick’s default behavior:
* Generate many random input lists
e Evaluate is_sorted on each one
* Discard the ones for which is_sorted returns
false
* Evaluate is_sorted (insert x I) on those that are left

Flavors of Random Specification-Based Testing

Hand-
Written
¢ Generators

User Effort ;

2

Naive Bug-Finding Efficiency

Random
Testing

Key Insight

Use coverage information to guide the
mutation of complex structured data just
like AFL uses it to mutage bit strings!

“Semantic Mutation”

overage-Guided,

Specification-Based
Testing

FuzzChick

FuzzChick
Generator Semantllf:
Mutator
Structured
Random data
structured structured
data data Seed Pool

SUT + Property Throw away

lFaiIure

Report to User

Instrumentation

Coverage info

Semantic Mutators

a e ‘ All “stepwise variants”*

* Actually, a probability distribution over all stepwise variants...

Semantic Mutators: Modification

Semantic Mutators: Deletion

Semantic Mutators: Addition

6 5

& aaeaae
3 () — D g @
(& ofe

Case Study: Dynamic IFC

e System under test:
* Simple machine with built-in dynamic information-flow monitor
* Sensitive data is tagged “Secret”

* Monitor detects illicit flows from Secret inputs to Public outputs
* i.e. violations of noninteference

* Evaluation setup:
* Manually create many buggy “variants” of correct monitor

* See how long it takes to find a counterexample for each bug, under various testing
regimes
* Purely random
* FuzzChick
* Hand-crafted test input generators

Noninterference — Abstract Machines

Heap
Register File
r0: O 2
r1: 42 3
17
r2: 1

Noninterference — Security Labels

Heap
Register File
r0: 0 @Public 2 @Public
r1: 42 @Public 3 @Public
17 @S t
r2: 1 @Secret @5ecre

Noninterference — Indistinguishability

Register File

Heap

Register File

Heap

r0: 0 @Public

2 @Public

rl: 42 @Public

3 @Public

rO: 0 @Public

2 @Public

r2: 1 @Secret

17 @Secret

rl: 42 @Public

3 @Public

r2: 1 @Secret

17 @Secret

Noninterference — Indistinguishability

Register File

Heap

Register File

Heap

r0: 0 @Public

2 @Public

rl: 42 @Public

3 @Public

rO: 0 @Public

2 @Public

r2: 1 @Secret

17 @Secret

rl: 42 @Public

3 @Public

r2: 0 @Secret

17 @Secret

Noninterference — Property

Definition prop_noninterference (m1 m2 : machine) : bool :=
indistinguishable m1 m2 ==
indistinguishable (step m1) (step m2).

* Generate many random input machines
* Register file, heap, and program
* Evaluate indistinguishable on each one
* Discard the ones for which indistinguishable
returns false
» Step the machines
* Evaluate indistinguishable on the result

Noninterference — Property

Definition prop_noninterference (m1 m2 : machine) : bool :=
indistinguishable m1 m2 ==>

indistinguishable (step m1) (step m2).

Three approaches:

1. Naive automatic generate-and-test

2. FuzzChick with an almost trivial random seed generator
3. Optimized handwritten generators (ICFP 2013)

10000

\
o

)
W \ 1000

MTTF (SECONDS)

100

[any
o

[

0.1

0.01

9 10 11 12

2

B HandWritten

B FuzzChick

26 27 28 29

B Pure Random

30

31 32 33

Numbers on x axis
denote buggy
variants of a correct
IFC enforcement
mechanism, sorted
by height of the
orange bar
(effectiveness of
FuzzChick)

What does “almost automatic” mean?

Defin/'/
Tl
Tl

FuzzChick
N
(l Generator Semantllf:
Mutator
N Structured
Random Mutated data
structured structured
data data Seed Pool
es
New N\ No

SUT + Property

Paths?

Instrumentation

Success/
lFaiIure Discard

Report to User

Coverage info

Throw away

/

Initial random seed = Pair of machines

Approaches to finding “interesting” pairs of low-indistinguishable
machine states:

1. Generate two random states. Mutate them until they become low-
indistinguishable.

2. Generate one random state. Copy it. Mutate until it becomes
interesting.

User Effort

NEVE
Random
Testing

Hand-

Written
< Generators

Bug-Finding Efficiency

Future work: Import more ideas from fuzzing!

Fuzzing with Custom Input
Generators / Grammars
(e.g., libfuzzer, IMF)

Coverage-

Guided Fuzzing “Smart” Coverage-

Guided Fuzzing (e.g.
(e'g' AFL) Driller, VUzzer)

User Effort

Completely Bug-Finding Efficiency lots of other

Random interesting points
Fuzzing in this space...!

» We introduced coverage quided, property based testing (CGPT), a novel
combination of specification-based random testing and coverage-guided
fuzzing

* We implemented this technique in FuzzChick, a redesign of QuickChick

* We evaluated FuzzChick by using it to test an existing formalized
development of low-level information-flow tracking

* On this challenging application domain, FuzzChick significantly outperforms
QuickChick

* not nearly as good as carefully hand-written generators
* but requires almost no effort to use

