
Common Data Security
Architecture (CDSA) Formal

Development

Peter White
Galois Connections

Outline

 What is CDSA?
 Why formal development of CDSA?
 Our CSSM architecture
 Our CDSA demo
 Future of CDSA Formal development

What is CDSA?

A place to plug my
pluggable crypto

A receptacle for pluggable crypto

 Provide common API to
pluggable CSPs and CLs

– Common Application API
– Common SPI
– Underlying service can be

hardware, software or both
– Maintain algorithm context

 Provide assurance of the
integrity of underlying
modules

 Provide a multi-threaded
execution environment

CSSM API

Integrity services Security Contexts

CSP
MM

TP
MM

AC
MM

CL
MM

DL
MM

SPI SPI SPI SPI SPI

CLCLCL
CLCLTP

CLCLAC
CLCLCL

CLCLDL

Applications in C or C++

Legend
AC = Authorization Computation
CL = Certificate Library
CSSM = Common Security Service Manager
CSP = Cryptographic Service Provider
DL = Data Library
MM = Module Manager
SPI = Service Provider Interface
TP = Trust Policy

Module Directory
System (MDS)

The business case for CDSA:
CDSA as a market maker

App1 Appn

Sp1 Spn

A service broker
(CORBA, CDSA, …)

The application provider seeks as
large a market as possible, selling to
users equipped with a variety of
underlying service technologies.

The service provider also seeks
as large a market as possible,
servicing users of a variety of
applications.

The broker mediates the desires of the
application provider and the service
provider, by standardizing the
interfaces, and providing a platform
supporting many service provider plug
ins

The business case for CDSA:
Avoid commitment until the last minute

App1 Appn

Sp1 Spn

A service broker
(CORBA, CDSA, …)

Application relieved of many security
requirements. Avoids committing to
any particular cryptographic
technology

The service provider avoids
exclusive commitments to
particular applications

Provides flexible market that enables
applications and service providers to
avoid commitment

Why formal development of
CDSA?

Discovering the
essence of CDSA

CDSA and assurance

 Any CDSA can increase assurance of some
security properties

 CDSA itself is a low assurance program
– 1000 page specification
– 90 megabyte distribution
– 100,000’s C LOC

Achieving high assurance

 Formalize the essence of
CDSA

– Secure Object Repository
 Formalize the properties to be

assured
 Implement the essence of

CDSA
 Grow to the full CDSA

implementation
 Drive the process with an

application Component Layer
(RSA, Rijndael, …)

Repository Layer

Component Adapter Layer

Repository Adapter Layer
(CDSA, JCA, …)

Platform Embedding
Underlying Platform

Security Context Layer
(SSL, GSS, …)

Application API

Application API

Our CSSM (Secure Object
Repository) architecture

Highlights of module management

 Module Directory
– Database of information about

modules available on the platform
 Introduce a module

– Tell CSSM about a module
 Load a module

– Make the module runnable
 Attach a module

– Provide a handle to an execution
environment for the module

 Create a context
– Create a context for executing an

instance of the module
 Use a context

– Call an algorithm provided by the
module

Architectural theme: Separation of
concerns

 Memory management
 Protection mechanisms
 Bilateral authentication mechanisms
 Algorithm Context methods
 Plug in receptacle methods
 Authorization mechanisms
Create a structure in which these variables can
be isolated, and set to values appropriate to the
platform architecture where CSSM is running.

Architectural parameters

 Memory management
– Application centric
– Haskell heap
– Underlying platform
– CSP centric

 Protection mechanisms
– None
– Pointer validation checks
– Types and parametricity

 Bilateral Authentication
– None
– Signed manifests
– Underlying Platform (Separation

kernel)

 Algorithm context
– CSP centric
– CSSM centric

 Plug in receptacle
– Haskell CSP
– process
– thread
– process group

 Authorization mechanism
– protocol
– callbacks
– higher order functions

The layers of the architecture

Connection

Cipher Suite

CSSM (API layer)

Module Manager: load, introduce

Attach Record: attach

Context Record: create context

CSP :: SubService -> ModuleAPI: use context

Algorithm Context

API :: Dynamic -> Maybe Dynamic
CSP layers

CSSM
Bookkeeping

Layers

Example of abstraction:
The module API

Selector = 1

Selector = 3

Selector = 15

Callback password
authorization Make private key

Biometric response
authorization

Certificate
authorization

Decrypt private key

GetData02

Function Selector Authorization method CSP Function

Dynamic
blob

Authorization method

Dynamic
blob

Typed
args

Typed
resultunwrap wrapCSP

internal
function

Passing the arguments to the algorithm through CSSM

The module API: A Haskell code
fragment

type APIIO' = ContextParameter -> Dynamic -> IO (Maybe Dynamic)
data API = API APIIO'
-- // Existential type to hide the details of the authorization
data AuthorizedAPI = forall a. (Authorize a) => AuthorizedAPI a API
-- // Associate module API (and authorization) with function selector
type ModuleAPI = AssocList FunctionSelector AuthorizedAPI
-- // Implement the calling mechanism to a CSP api
apiCall :: Dispatcher -- // items in blue came from calling app
apiCall fs modapi args ctxtp appevidence =

let mapi = allookup modapi fs –- // find the api for the selector given
in case mapi of

Nothing ->
do { putStrLn ("*** No function with selector " ++ show fs)

; return Nothing
}

Just (AuthorizedAPI auth (API api)) ->
if authorize auth appevidence -- //check if authorized
then api ctxtp args
else return Nothing

Our CDSA Demo

Demo Architecture
Netscape
Browser

Socket
Handle

Socket
Handle

Haskell
Web
Server

Port
80

Port
443

HTTP

Socket
Handle

Socket
Handle

Secure Socket Layer

Connection Mgr

CSSM

Haskell
RSA
CSP

Haskell
DES
CSP

Haskell
SHA
CSP

Haskell
MD5
CSP

Request SSL cipher suite

API
calls

CSSM calls

Module directory system

Intel Eay
CSP

RSA, DES,
MD5, SHA

MySQL
DL

MySQL

Legend
Pink = Built by Galois in Haskell
Blue = Built in Haskell
Green = Built by Intel in C
Yellow = Freeware from the Internet

API / SPI calls

Future of CDSA Formal
Development

Next tasks

 Add CL component
– Very easy to do in Haskell, except
– Requires ASN.1 / BER / DER encode and decode to

be developed in Haskell
 To be implemented using parser combinators

 Export some of CSSM and prove some
properties, for example
– Module can be attached only if loaded
– API can be called only if authorized

Future tasks
CDSA Trust Policy Description

 CDSA Specification defines a very nice concept of trust
policy in terms of a graph of credentials, actions, and
objects

– Does the requestor have sufficient credentials to perform the
requested action upon the specified object?

 Translate this description into an abstract graph data
structure, and generalize the “trust” relationship so that
different trust evaluation methods can be used.

 Implement this in a trust policy module

Future tasks

 Bilateral Authentication
– Ensuring the application that the CSP being used is

the CSP that is desired
 Multi threading

– Permitting concurrent operation of CSPs, in support
of multiple applications

– Haskell has very powerful thread primitives

NetTop:
Flow restrictors
between virtual
machines

Krenz:
Filters between
information
processing modes

GSS:
Standardized
security contexts
between peers

JCE/JCA:
Standardized
interface for
crypto algorithms

SSL:
Standardized
security contexts
between peers

Application:
Establish secure
connections,
with algorithm
agility

Secure Object Repository:
• Tamper proof storage
• Isolated execution of algorithms
• Support separate application
connections
• Algorithm agility

Ways to go from here

The vision

Component Layer
(RSA, Rijndael, …)

Repository Layer

Component Adapter Layer

Repository Adapter Layer
(CDSA, JCA, …)

Security Context Layer
(SSL, GSS, …)

Application API

Platform Embedding
Underlying Platform

	Common Data Security Architecture (CDSA) Formal Development
	Outline
	What is CDSA?
	A receptacle for pluggable crypto
	The business case for CDSA:�CDSA as a market maker
	The business case for CDSA:�Avoid commitment until the last minute
	Why formal development of CDSA?
	CDSA and assurance
	Achieving high assurance
	Our CSSM (Secure Object Repository) architecture
	Highlights of module management
	Architectural theme: Separation of concerns
	Architectural parameters
	The layers of the architecture
	Example of abstraction:�The module API
	The module API: A Haskell code fragment
	Our CDSA Demo
	Demo Architecture
	Future of CDSA Formal Development
	Next tasks
	Future tasks�CDSA Trust Policy Description
	Future tasks
	Ways to go from here
	The vision

