Common Data Security
Architecture (CDSA) Formal
Development

Peter White
Galois Connections

Outline
o

e Whatis CDSA?

e Why formal development of CDSA?
e Our CSSM architecture

e Our CDSA demo

e Future of CDSA Formal development

What 1s CDSA?

A place to plug my
pluggable crypto

Legend
AC = Authorization Computation
CL = Certificate Library
CSSM = Common Security Service Manager
CSP = Cryptographic Service Provider
DL = Data Library
MM = Module Manager
SPI = Service Provider Interface
= Trust Policy

A receptacle for pluggable crypto
-

e Provide common API to
pluggable CSPs and CLs

-~ Common Application API w
Module Director g i
-~ Underlying service can be

hardware, software or both
- Maintain algorithm context CSSM API

e Provide assurance of the

integrity of underlying <integrity services > <__Security Contexts_

modules — e
e Provide a multi-threaded e 'V'M e MM 'V'M
SPI SPI SPI SPI SPI U

execution environment M\
D SN
‘L CL ‘L TP ‘L AC ‘L CL ‘L DL

The business case for CDSA:
CDSA as a market maker

The application provider seeks as
large a market as possible, selling to
users equipped with a variety of
underlying service technologies.

00o0 OOO
ApP,

App,

he broker mediates the desires of the
application provider and the service
provider, by standardizing the

interfaces, and providing a platform
supporting many service provider plug

A service broker
ORBA, CDSA, ..))

The service provider also seeks
as large a market as possible,
servicing users of a variety of
applications.

The business case for CDSA:
Avold commitment until the last minute

Application relieved of many security
requirements. Avoids committing to
any particular cryptographic
technology

® 00 OOO
App,

Provides flexible market that enables
applications and service providers te
avoid commitment

A service broker
ORBA, CDSA, ..))

The service provider avoids
exclusive commitments to
particular applications

Why formal development of
CDSA?

Discovering the
essence of CDSA

CDSA and assurance
7

e Any CDSA can increase assurance of some
security properties

e CDSA itself Is a low assurance program
- 1000 page specification
- 90 megabyte distribution
- 100,000’'s C LOC

Achieving high assurance

Underlying Platform

Platform Embedding

Formalize the essence of

CDSA | Application API
— Secure Object Repository Security Context Layer

e Formalize the properties to be (SSL, GSS, ...)
assured Application API

e Implement the essence of RceggzitggAAda{’tef Layer 4
CDSA s

e Grow to the full CDSA Repository Layer
Implementation

e Drive the process with an _alComponent Adapter Layer
application

Component Layer
(RSA, Rijndael, ...)

Our CSSM (Secure Object
Repository) architecture

Highlights of module management
-

e Module Directory

- Database of information about
modules available on the platform

e Introduce a module

- Tell CSSM about a module
e Load a module

- Make the module runnable
e Attach a module

— Provide a handle to an execution
environment for the module

e Create a context

- Create a context for executing an
instance of the module

e Use a context

— Call an algorithm provided by the
module

Architectural theme: Separation of
concerns

e Memory management

e Protection mechanisms

e Bilateral authentication mechanisms
e Algorithm Context methods

e Plug in receptacle methods

e Authorization mechanisms

Create a structure in which these variables can
be isolated, and set to values appropriate to the
platform architecture where CSSM is running.

Architectural parameters

e Memory management

Application centric
Haskell heap
Underlying platform
CSP centric

e Protection mechanisms

None
Pointer validation checks
Types and parametricity

e Bilateral Authentication

None
Signed manifests

Underlying Platform (Separation
kernel)

e Algorithm context

— CSP centric
— CSSM centric

Plug in receptacle
- Haskell CSP
— Process
— thread
— process group
Authorization mechanism
— protocol

— callbacks
— higher order functions

The layers of the architecture
-

Connection
Cipher Suite
CSSM (API layer)
Module Manager: load, introduce CSSM
Attach Record: attach Bookkeeping
Context Record: create context Layers

CSP :: SubService -> ModuleAPI: use context

Algorithm Context CSP layers

API :: Dynamic -> Maybe Dynamic

Example of abstraction:
The module API

Function Selector Authorization method

Selector =1 Make private key

Selector =3 _ Decrypt private key,

Selector = 15 GetDataO2

Passing the arguments to the algorithm through CSSM

Dynamic Typed . Typed Dynamic
blob unwrap args CSP result wrap blob
internal

function

The module API: A Haskell code
fragment

type APIIO®" = ContextParameter -> Dynamic -> 10 (Maybe Dynamic)

data API = API APIIO"

-- // Existential type to hide the details of the authorization

data AuthorizedAPl = forall a. (Authorize a) => AuthorizedAPl a API
-- // Associate module APl (and authorization) with function selector
type ModuleAPl = AssocList FunctionSelector AuthorizedAPI

-— // Implement the calling mechanism to a CSP api

apiCall :: Dispatcher -- // items in blue came from calling app
apiCall fs modapi args ctxtp appevidence =
let mapi = allookup modapi fs — // find the api for the selector given
In case mapi of
Nothing ->

do { putStrLn (""*** No function with selector "™ ++ show fs)
; return Nothing

+
Just (AuthorizedAPl auth (APl api)) ->
1T authorize auth appevidence -- //check if authorized

then api ctxtp args
else return Nothing

Our CDSA Demo

Demo Architecture

Socket
Handle

Secure Socket Layer

Module directory system

Netscape | HTTP Port
Browser 80
Socket Socket
Handle | | Handle

»

Socket
|

ytiP

Haskell
Web
Server

Reyuest SSL cipher suite

AP
calls

Connection Mgr

\\CSSMcaHs

CSSM

\%N

Legend
Pink
Blue
Green
Yellow

Built by Galois i1n Haskell
Built in Haskell

MySQL
DL

Built by Intel
Freeware from the

in C

Internet

A

A 4

MySQL

Intel Eay
CSP

RSA, DES,

MD5, SHA

Haskell
RSA
CSP

Haskell
DES
CSP

Haskell
SHA
CSP

Haskell
MD5
CSP

Future of CDSA Formal
Development

Next tasks
o

e Add CL component

—- Very easy to do in Haskell, except

- Requires ASN.1/BER / DER encode and decode to
be developed in Haskell

e To be implemented using parser combinators
e Export some of CSSM and prove some
properties, for example
- Module can be attached only if loaded
- APl can be called only if authorized

Future tasks
CDSA Trust Policy Description

e CDSA Specification defines a very nice concept of trust
policy in terms of a graph of credentials, actions, and
objects

- Does the requestor have sufficient credentials to perform the
requested action upon the specified object?

e Translate this description into an abstract graph data
structure, and generalize the “trust” relationship so that
different trust evaluation methods can be used.

e Implement this in a trust policy module

Future tasks
o

e Bilateral Authentication

- Ensuring the application that the CSP being used is
the CSP that is desired

e Multi threading

- Permitting concurrent operation of CSPs, in support
of multiple applications

- Haskell has very powerful thread primitives

JCE/JCA:
Standardized
interface for
crypto algorithms

SSL:
Standardized

security contexts
between peers

Secure Object Repository:
» Tamper proof storage

e Isolated execution of algorithms
e Support separate application
connections

e Algorithm agility

Application:
Establish secure
connections,

with algorithm e Krenz:
agility o Filters between
e < NetTop: information
Flow restrictors processing modes
between virtual T

" machines

Underlying Platform

The VISIon Platform Embedding

Application API

Security Context Layer
(SSL, GSS, ...)

_ Repository Adapter Layer
A, (CDSA, JCA, ...) Ay

Repository Layer

AComponent Adapter Layer

Component Layer
(RSA, Rijndael, ...)

	Common Data Security Architecture (CDSA) Formal Development
	Outline
	What is CDSA?
	A receptacle for pluggable crypto
	The business case for CDSA:�CDSA as a market maker
	The business case for CDSA:�Avoid commitment until the last minute
	Why formal development of CDSA?
	CDSA and assurance
	Achieving high assurance
	Our CSSM (Secure Object Repository) architecture
	Highlights of module management
	Architectural theme: Separation of concerns
	Architectural parameters
	The layers of the architecture
	Example of abstraction:�The module API
	The module API: A Haskell code fragment
	Our CDSA Demo
	Demo Architecture
	Future of CDSA Formal Development
	Next tasks
	Future tasks�CDSA Trust Policy Description
	Future tasks
	Ways to go from here
	The vision

