
Composing High-Assurance Software
with the Evidential Tool Bus

Natarajan Shankar
SRI International Computer Science Laboratory

The Software Stack

• The modern software stack is one of
mankind’s greatest engineering
achievements

• With a few keystrokes, we can send
email, make video calls, edit images,
operate factories, control air traffic, and
manage sensitive data.

• But this power comes with a price: a
large attack surface where bugs can
have serious consequences.

• Estimated engineering cost of software
errors for the US is around 2.1T $/year.

• Cybercrime is seen as a 6T$/year
problem, and growing

https://appvance.com/wp-content/uploads/Software-Stack.001.jpeg
https://www.synopsys.com/blogs/software-
security/poor-software-quality-costs-us/ 2

https://appvance.com/wp-content/uploads/Software-Stack.001.jpeg
https://www.synopsys.com/blogs/software-security/poor-software-quality-costs-us/

What Makes Software Weird?
• Unlike other engineering artifacts, software supports greater flexibility,

resiliency, and versatility in the design and maintenance of a system
• However, software can be a significant source of system failure due to bugs

and security vulnerabilities - even a small design, coding error, or malicious
modification can have big consequences
• Software applications tend to be sui generis - we lack a mature engineering

discipline of principled software construction
• Attackers can relentlessly probe software for vulnerabilities and

compromise security and reliability
• The resulting attacks can wreak havoc on a global scale
• To secure the software supply chain, we need to invest in design and

composable assurance, and not band-aids.

3

What can go wrong?
• Software-intensive systems must possess a

stringent suite of virtues spanning
functionality, performance, reliability,
robustness, resilience, persistence, security,
and maintainability.

• For safety, the design must mitigate all
possible hazards, potentially dangerous events
caused by a failure.

• A failure is a deviation from the intended
behavior caused by errors in the functioning
of one or more components, due to faults
such as a bad or missing check in the
software.

• Failures can arise from a combination of many
sources: poor regulation, inept management,
bad design, defective engineering, inadequate
maintenance, and improper operation.

https://www.isixsigma.com/industries/software-
it/defect-prevention-reducing-costs-and-enhancing-
quality/

The cost of finding/fixing faults rises dramatically
through the software development lifecycle.

4

https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/

Software-Related Risks: The Enemy is Us
Channel Instances

Hardware Intel FDIV, Spectre/Meltdown,

Side Channel Power, timing, radiation, wear-and-tear (Row Hammer)

Calculation NASA Mariner, Mars Polar Lander, Ariane-5

Memory/Type Buffer Overflow, null dereference, use-after-free, bad cast

Crypto SHA-1, MD5, TLS Freak/Logjam, Needham-Schroder, Kerberos

Input Validation SQL/Format string, X.509 certificates, Heartbleed

Race/Reset condition Therac-25, North American Blackout, AT&T crash of 1990, Mars Pathfinder

Code injection/reuse Shell injection, Return-oriented Programming, Jump-oriented
programming

Provenance/Backdoor Athens Affair, Solar Winds

Social Engineering Phishing, Spear Phishing, phone/in-person exploits 5

Software-Related Risks: The Enemy is Us
Channel Instances

Hardware Intel FDIV, Spectre/Meltdown,

Side Channel Power, timing, radiation, wear-and-tear (Row Hammer)

Calculation NASA Mariner, Mars Polar Lander, Ariane-5

Memory/Type Buffer Overflow, null dereference, use-after-free, bad cast

Crypto SHA-1, MD5, TLS Freak/Logjam, Needham-Schroder, Kerberos

Input Validation SQL/Format string, X.509 certificates, Heartbleed

Race/Reset condition Therac-25, North American Blackout, AT&T crash of 1990, Mars Pathfinder

Code injection/reuse Shell injection, Return-oriented Programming, Jump-oriented
programming

Provenance/Backdoor Athens Affair, Solar Winds

Social Engineering Phishing, Spear Phishing, phone/in-person exploits 6

What then shall we do?
• Many vulnerabilities are consequences of original sins:

• conflating call and parameter/variable stacks: data and control should only interact through code
• stack abuse: allocating non-scalar data (arrays, structs) on the variable stack
• broken abstractions: program access to privileged data
• weakened protections, and many more.

• Formal modeling and analysis is practical and even necessary, but not a panacea
• Software should be designed hand-in-hand with assurance artifacts that are verifiable by

clients (or trusted third parties)
• Design for assurance must be based on efficient (fail-big, fail-easy) compositional

arguments with low amortized cost
• Software designs ought to be centered around software architectures (models of

computation & interaction) that deliver efficient arguments for isolation and composition
• Software development workflows must capture design refinements while maintaining

the associated claims and evidence (the value proposition).

7

The Possibility of Perfection
• Software and hardware behavior can be

modeled with mathematical precision.
• Software can, in principle, be

engineered to perfection (modulo messy
reality) given accurate specifications
(which is easier said than done).
• Even if perfection were only partially

attainable, the strategic deployment of
lightweight and heavyweight analysis
techniques can yield huge dividends.

• CLinc verified stack (1989)
• SPARK/Ada verification of avionics,

medical device, air traffic control, crypto
software

• NASA Langley verification of air traffic
control algorithms/software (2004)

• CompCert verified compiler for subset
of C (2008)

• Intel i7 processor verification (2009)
• seL4 microkernel verification (2010)
• Airbus 340 & 380 avionics software

(2010)
• CakeML hardware/software stack (2014)
• Everest verified HTTPS, TLS code (2017)

Formal Verification Milestones

8

Evidence-Based Assurance
FDA Draft Guidance document Total
Product Life Cycle: Infusion Pump -
Premarket Notification [510(k)]
Submissions: … an assurance case is a
formal method for demonstrating the
validity of a claim by providing a
convincing argument together with
supporting evidence. It is a way to
structure arguments to help ensure that
top-level claims are credible and
supported. In an assurance case, many
arguments, with their supporting
evidence, may be grouped under one top-
level claim. For a complex case, there
may be a complex web of arguments and
sub-claims.

Gold components are verified; Green
ones are assumptions/models
supported by empirical evidence.

9

Assurance Guidelines

https://en.wikipedia.org/wiki/DO-178C

• Multiple standards: ISO 26262, MIL-STD-882E, SAE
ARP4754/4761, DO-178C

• RTCA DO-178C guidance specifies four levels of
assurance: A (catastrophic), B (hazardous), C (major), D
(minor)

• Traceability establishes a bidirectional correspondence
across levels

• Assurance case must (partially) comply with 71
objectives

• Overarching Properties (OAP) is outcome-based
• Intent: What should the software do?
• Correctness: Does the software satisfy the intent?
• Innocuity: Does the extraneous functionality impact

correctness?

10

https://en.wikipedia.org/wiki/DO-178C

Designing with Efficient Arguments
• On 2 September 2006, RAF Nimrod XV230 “suffered a catastrophic mid-air fire" while

flying in Helmand province, Afghanistan. All fourteen people aboard the plane died. The
fire happened 90 seconds following air-to-air refueling (AAR).

• The Haddon-Cave report observed that the cross-feed duct was placed dangerously close
to a fuel tank:

• An efficient argument, one whose flaws, if any, are easily identified, would support the
claim that fuel and ignition should not interact outside the combustion chamber.

• For assurance-driven development, a design must reflect the goal of an efficient
assurance argument: verifiable requirements, operational testing theory, formal
architecture, property-preserving model transformations, code generation, strong static
analysis, precise/inclusive fault/threat models, and trusted automation.

As a matter of good engineering practice, it would be extremely unusual (to put it no higher)
to co-locate an exposed source of ignition with a potential source of fuel, unless it was
designated a fire zone and provided with commensurate protection. Nevertheless, this is
what occurred within the Nimrod.

11

A Simple Efficient Assurance Argument
Requirements:

Maintain room
temperature between

min and max.

Assumptions:
Leakage rate, heater, sensor

accuracy.

Logical Radler Architecture:
Sensor + Controller + Console

+ Safety Monitor
Channel Latencies

Physical architecture:
Machines, VMs, OS,

Transport, Configuration

Code
Components

• Assumptions + Architecture => Requirements
• Architecture = Nodes + Channels + Timing
• Nodes = Step function contracts
• Physical Architecture => Architecture
• Code => Step function contracts + WCET bounds

Radler logical architecture
guarantees
• Message ordering
• Bounded/zero message loss
• End-to-end latency bounds
• Failure warnings
• No DoS attacks
• Partitioning

Node
A Node

C
Node

B Mailbox: bounded
FIFO and non-

blocking

[delaymin,
delaymax]

[periodAmin,
periodAmax]

[periodBmin,
periodBmax]

zero
logical
execution
time

[periodCmin, periodCmax]

12

https://github.com/SRI-CSL/radler

https://github.com/SRI-CSL/radler

Evidential Tool Bus (ETB2)[SRI/fortiss]
• The Evidential Tool Bus (ETB) is a distributed tool

integration framework for constructing and
maintaining claims supported by arguments based
on evidence generated by static analyzers, dynamic
analyzers, satisfiability solvers, model checkers, and
theorem provers.

• Key ideas are:
• Datalog as a metalanguage
• Denotational and operational semantics
• Interpreted predicates for tool invocation, and

uninterpreted predicates for scripts
• Datalog inference trees as proofs
• Git as a medium for file identity and version

control
• Cyberlogic, a logic of attestations, to

authenticate the claims and authorize the
services https://github.com/SRI-CSL/ETB2

13

https://github.com/SRI-CSL/ETB2

Evidential Transactions on ETB

14

ETB Layers
sat(F, M) :- yices(F, S, M), equal(S, ’sat’).
unsat(F) :- yices(F, S, M), equal(S, ’unsat’).
allsat(F, Answers) :- sat(F, M), negateModel(F, M, NewF),

allsat(NewF, T), cons(M, T, Answers).
allsat(F, Answers) :- unsat(F), nil(Answers).

DO-178C compliance
workflow can be captured
through Datalog + Cyberlogic

15

Ontic Type Analysis
• Basic types in programming language (such as int, struct, array) abstract

from the representation of the data
• They are insensitive to the intended use of the data, e.g., an authenticated

user ID, a private encryption key, the vertical acceleration of a vehicle in
m/sec2, an IP address, a URL, or an SQL query.

• Ontic type analysis (see Checker Framework from U.Washington) checks for
the proper usage of data in terms of units/dimensions, freshness, nullity,
mutability, taint, authentication, privacy, format validity, provenance, and
constraints derived from the domain ontology (e.g., coordinate systems).

char input[30];
int response;
scanf("%s", input);
sqlstmt = "select␣*␣from␣employees␣where␣id␣=␣" + input + ";";
response = sqlite3_exec(db, sqlstmt, ...);

Models to Code: HMAC in PVS
function hmac is

input:
key: Bytes // Array of bytes
message: Bytes // Array of bytes to be hashed
hash: Function // The hash function to use (e.g. SHA-1)
blockSize: Integer // The block size of the hash function

//(e.g. 64 bytes for SHA-1)
outputSize: Integer // The output size of the hash function

//(e.g. 20 bytes for SHA-1)

// Keys longer than blockSize are shortened by hashing them
if (length(key) > blockSize) then

key ← hash(key) // key is outputSize bytes long

// Keys shorter than blockSize are padded to blockSize by padding
//with zeros on the right
if (length(key) < blockSize) then

key ← Pad(key, blockSize) // Pad key with zeros to make it
// blockSize bytes long

o_key_pad ← key xor [0x5c * blockSize] // Outer padded key
i_key_pad ← key xor [0x36 * blockSize] // Inner padded key
return

hmac(blockSize: uint8,
key : bytestring,
(message : bytestring | message`length + blockSize < bytestring_bound),
outputSize: upto(blockSize),
hash: [bytestring->lbytes(outputSize)]): lbytes(outputSize)

= LET newkey = IF length(key) > blockSize THEN hash(key) ELSE key ENDIF,
newerkey: lbytes(blockSize)

= IF length(newkey) < blockSize
THEN padright(blockSize)(newkey)

ELSE newkey
ENDIF,

oKeyPad = lbytesXOR(blockSize)(newerkey, nbytes(0x5c, blockSize)),
iKeyPad = lbytesXOR(blockSize)(newerkey, nbytes(0x36, blockSize))

IN hash(oKeyPad ++ hash(iKeyPad ++ message))

hmac256((blockSize: uint8 | 32 <= blockSize),
key : bytestring,

(message : bytestring |
message`length + blockSize < bytestring_bound))

: lbytes(32)
= hmac(blockSize, key, message, 32, sha256message)

• HMAC is a higher-order operation with complex type
dependencies (not specified in the pseudocode)

• These dependencies are accurately captured in PVS
• C code generation is bit-accurate

From https://en.wikipedia.org/wiki/SHA-2 Distribution D 17

https://en.wikipedia.org/wiki/SHA-2

OCCAM: Debloating and Sealing Software
Application arguments
Environment variables

Configuration files

Config Priming
(Deployment Lifting)

Check Policy

Intra-module
Specialization/
Optimization

Inter-module
Specialization/
Optimization

Linker

Specialized
Libraries

Specialized
Program

Libraries

Program

Target architecture Manifest
(Deployment Context)

App +
Libraries

Debloated
App +
Libraries

LLVM modules

LLVM
modules

• Application is developed on top
of a large software stack, but
uses only a fraction of it

• The rest of the code might
contain exploitable
vulnerabilities

• OCCAM is a whole-program
LLVM partial evaluator that
• Eliminates unreachable

code
• Specializes reachable code

to the known parameters
• Preserves legal executions
• Seals the code with

defenses
• Significant reduction in

#functions, #instructions, code
size

• Drew Dean & S, Transforming untrusted applications into trusted executables
through static previrtualization. US Patent No. US20130111593A1, 2013.

• G. Malecha, A. Gehani, & S, Automated Software Winnowing, SAC 2015.
18

https://github.com/SRI-CSL/OCCAM

https://github.com/SRI-CSL/OCCAM

Securing the Software Universe

19

• Software processes information: bank accounts, grades, medical records, books, videos, power grid
controls, avionics, and medical devices

• Code is a poor representation of design: untrusted code should not be the input, trusted code should
be the output

• Shotgun composition of code without an architecture has no chance of being correct
• So,

• Take information seriously and annotate the artifacts with ontic type information
• Take requirements serious since many major flaws are traceable to poor requirements
• Take architecture seriously since it is the keystone of an efficient argument
• Take assurance seriously – composable evidence should be the coin of the realm
• Take inline and independent runtime monitoring seriously to track integrity
• Re-engineer the platforms to root out the sins of our ancestors
• Build workflows that create and maintain evidence as part of the design flow
• Integrate attestation into the evidence as a foundation for trust

A Software Proof of Virtues (SPOV)

• Software is a core mediator of our perception of truth
• Software failures and cyber-attacks weaken trust and incur a huge cost
• The current strategy of applying larger and larger band-aids is only fueling a

futile and costly arms race
• We have the tools and insights to build the infrastructure of trust in software

from the ground up:
• Software development lifecycle workflows that continuously maintain both process and

outcome-based assurance evidence
• Tools and models that support designs annotated with traceable ontic information that

are founded on efficient arguments
• Verified platforms and services whose integrity is certified by audit logs and audits
• Composable assurance cases validating intent, correctness, and innocuity

20

