Composing High-Assurance Software
with the Evidential Tool Bus

Natarajan Shankar

SRI International Computer Science Laboratory

The Software Stack

Software Stack
* The modern software stack is one of ppiaton
mankind’s greatest engineering Middleware
achievements
* With a few keystrokes, we can send Frameworks
email, make video calls, edit images,

operate factories, control air traffic, and e
manage sensitive data.

* But this power comes with a price: a
large attack surface where bugs can
have serious consequences.

* Estimated engineering cost of software
errors for the US is around 2.1T S/year. Hypervisor

* Cybercrime is seen as a 6TS/year
problem, and growing

Database

OS drivers & runtimes

Firmware

Hardware

https://www.synopsys.com/blogs/software-
security/poor-software-quality-costs-us/

https://appvance.com/wp—content/upIoads/Software-Stack.QOl.jpeg

https://appvance.com/wp-content/uploads/Software-Stack.001.jpeg
https://www.synopsys.com/blogs/software-security/poor-software-quality-costs-us/

What Makes Software Weird?

* Unlike other engineering artifacts, software supports greater flexibility,
resiliency, and versatility in the design and maintenance of a system

* However, software can be a significant source of system failure due to bugs
and security vulnerabilities - even a small design, coding error, or malicious
modification can have big consequences

» Software applications tend to be sui generis - we lack a mature engineering
discipline of principled software construction

» Attackers can relentlessly probe software for vulnerabilities and
compromise security and reliability

* The resulting attacks can wreak havoc on a global scale

* To secure the software supply chain, we need to invest in design and
composable assurance, and not band-aids.

What can go wrong?

Software-intensive systems must possess a
stringent suite of virtues spanning
functionality, performance, reliability,
robustness, resilience, persistence, security,
and maintainability.

For safety, the design must mitigate all
possible hazards, potentially dangerous events
caused by a failure.

A failure is a deviation from the intended
behavior caused by errors in the functioning
of one or more components, due to faults
such as a bad or missing check in the
software.

Failures can arise from a combination of many
sources: poor regulation, inept management,
bad design, defective engineering, inadequate
maintenance, and improper operation.

The cost of finding/fixing faults rises dramatically

through the software development lifecycle.

120
100

100x

80

60

40

20

15x

1x

0 -

— 1

6.5x
[—]

Design

Implementation

Testing

1
Maintenance

Phase/Stage of the S/W Development in Which the Defect is Found

https://www.isixsigma.com/industries/software-

it/defect-prevention-reducing-costs-and-enhancing-

quality/

https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/

Hardware

Side Channel
Calculation
Memory/Type
Crypto

Input Validation
Race/Reset condition

Code injection/reuse

Provenance/Backdoor

Social Engineering

Intel FDIV, Spectre/Meltdown,
Power, timing, radiation, wear-and-tear (Row Hammer)
NASA Mariner, Mars Polar Lander, Ariane-5

Buffer Overflow, null dereference, use-after-free, bad cast

SHA-1, MD5, TLS Freak/Logjam, Needham-Schroder, Kerberos
SQL/Format string, X.509 certificates, Heartbleed
Therac-25, North American Blackout, AT&T crash of 1990, Mars Pathfinder

Shell injection, Return-oriented Programming, Jump-oriented
programming

Athens Affair, Solar Winds

Phishing, Spear Phishing, phone/in-person exploits

Software-Related Risks: The Enemy is Us

I

Hardware Intel FDIV, Spectre/Meltdown,

Side Channel Power, timing, radiation, wear-and-tear (Row Hammer)

Calculation NASA Mariner, Mars Polar Lander, Ariane-5

Memory/Type Buffer Overflow, null dereference, use-after-free, bad cast

Crypto SHA-1, MD5, TLS Freak/Logjam, Needham-Schroder, Kerberos

Input Validation SQL/Format string, X.509 certificates, Heartbleed

Race/Reset condition Therac-25, North American Blackout, AT&T crash of 1990, Mars Pathfinder
Code injection/reuse Shell injection, Return-oriented Programming, Jump-oriented

programming

Provenance/Backdoor Athens Affair, Solar Winds

Social Engineering Phishing, Spear Phishing, phone/in-person exploits 6

What then shall we do?

* Many vulnerabilities are consequences of original sins:
 conflating call and parameter/variable stacks: data and control should only interact through code
stack abuse: allocating non-scalar data (arrays, structs) on the variable stack
broken abstractions: program access to privileged data
weakened protections, and many more.

* Formal modeling and analysis is practical and even necessary, but not a panacea

e Software should be designed hand-in-hand with assurance artifacts that are verifiable by
clients (or trusted third parties)

* Design for assurance must be based on efficient (fail-big, fail-easy) compositional
arguments with low amortized cost

* Software design_s ought to be centered around software architectures (models of
computation & interaction) that deliver efficient arguments for isolation and composition

* Software development workflows must capture design refinements while maintaining
the associated claims and evidence (the value proposition).

The Possibility of Perfection

e Software and hardware behavior can be
modeled with mathematical precision.

e Software can, in principle, be
engineered to perfection (modulo messy
reality) given accurate specifications
(which is easier said than done).

* Even if perfection were only partially
attainable, the strategic deployment of
lightweight and heavyweight analysis
techniques can yield huge dividends.

Formal Verification Milestones

CLinc verified stack (1989)

SPARK/Ada verification of avionics,
medical device, air traffic control, crypto
software

NASA Langley verification of air traffic
control algorithms/software (2004)
CompCert verified compiler for subset
of C (2008)

Intel i7 processor verification (2009)
selL4 microkernel verification (2010)
Airbus 340 & 380 avionics software
(2010)

CakeML hardware/software stack (2014)
Everest verified HTTPS, TLS code (2017)

Evidence-Based Assurance

FDA Draft Guidance document Total Requirements]

Product Life Cycle: Infusion Pump -

Premarket Notification [510(k)] ')

Submissions: ... an assurance case is @ IPEIAOn ,
formal method for demonstrating the Environment Physical Plant
validity of a claim by providing a Plant. | Sansors. |
convincing argument together with : , <
supporting evidence. It is a way to Control | slEicuds |
structure arguments to help ensure that ,
top-level claims are credible and Architechure |
supported. In an assurance case, many Components
arguments, with their supporting B

evidence, may be grouped under one top-
level glalm' FOFIG Comglex CaseE, there d Gold components are verified; Green
may De a compliex we Of arguments an ones are assumptions/models

sub-claims. supported by empirical evidence.

Assurance Guidelines

Multiple standards: ISO 26262, MIL-STD-882E, SAE
ARP4754/4761, DO-178C

RTCA DO-178C guidance specifies four levels of
assurance: A (catastrophic), B (hazardous), C (major), D

(minor)

Traceability establishes a bidirectional correspondence
across levels

Assurance case must (partially) comply with 71
objectives

Overarching Properties (OAP) is outcome-based
* |ntent: What should the software do?
* Correctness: Does the software satisfy the intent?

* |nnocuity: Does the extraneous functionality impact
correctness?

System
Requirements
Allocated to
Software

A-3.6, 5.5a, 6.3.1f

v

-

Software
High Level
Requirements A-7.3, 653%

/ Test Cases
A-4.8,5.2.2a, 6.3.3a
/ A-4.6, 5.5b, 6.3.2f
/ A'7.4, 6.5a, 6.4.5a - 6.50 6.4.5b
¥ Y //// !
Software

Architecture

Software
Low Level

Requirements

Software Design

A

Objective,
<— Activity, —»
Review

«—A—>
<«—A,B,C—>

<«—A,B,C,D—>»

Legend

A-5.5, 5.5¢c, 6.3.4e

l

Source Code

A-7.9, -, 6.4.4.2b

v

Executable Object
Code

Test Procedures

-, 6.5¢, 6.4.5¢

v

Test Results

https://en.wikipedia.org/wiki/D0O-178C

10

https://en.wikipedia.org/wiki/DO-178C

Designing with Efficient Arguments

On 2 September 2006, RAF Nimrod XV230 “suffered a catastrophic mid-air fire" while
flying in Helmand province, Afghanistan. All fourteen people aboard the plane died. The
fire happened 90 seconds following air-to-air refueling (AAR).

The Haddon-Cave report observed that the cross-feed duct was placed dangerously close
to a fuel tank:

As a matter of good engineering practice, it would be extremely unusual (to put it no higher)
to co-locate an exposed source of ignition with a potential source of fuel, unless it was
designated a fire zone and provided with commensurate protection. Nevertheless, this is
what occurred within the Nimrod.

An efficient argument, one whose flaws, if any, are easily identified, would support the
claim that fuel and ignition should not interact outside the combustion chamber.

For assurance-driven development, a design must reflect the goal of an efficient
assurance argument: verifiable requirements, operational testing theory, formal
architecture, property-preserving model transformations, code generation, strong static
analysis, precise/inclusive fault/threat models, and trusted automation.

11

A Simple Efficient Assurance Argument

Requirements:
Maintain room
temperature between
min and makx.

Logical Radler Architecture:
Sensor + Controller + Console
+ Safety Monitor
Channel Latencies

[periodA, iy,
: ! periodA]
Assumptions: 7610 [periodC,ip, periodC]
Leakage rate, heater, sensor logical
accuracy. execution
time
Radler logical architecture
[delay,in,
guarantees del ,
ClaYmax Mailbox: bounded

* Message ordering

* Bounded/zero message loss
e End-to-end latency bounds

* Failure warnings
* No DoS attacks
* Partitioning

Physical architecture:
Machines, VMs, OS,
Transport, Configuration

Code
Components

FIFO and non-
[periodB,;,, blocking
periodB,]

e Assumptions + Architecture => Requirements

e Architecture = Nodes + Channels + Timing

* Nodes = Step function contracts

e Physical Architecture => Architecture

* Code => Step function contracts + WCET bounds

https://github.com/SRI-CSL/radler

12

https://github.com/SRI-CSL/radler

Evidential Tool Bus (ETB2)[SRI/fortiss]

The Evidential Tool Bus (ETB) is a distributed tool
integration framework for constructing and
maintaining claims supported by arguments based
on evidence generated by static analyzers, dynamic
analyzers, satisfiability solvers, model checkers, and
theorem provers.

Key ideas are:

Datalog as a metalanguage

Denotational and operational semantics
Interpreted predicates for tool invocation, and
uninterpreted predicates for scripts

Datalog inference trees as proofs

Git as a medium for file identity and version
control

Cyberlogic, a logic of attestations, to
authenticate the claims and authorize the
services

= E E E N E E E E N & & & & &&= &E = m

Workflows

Integration Engine D
Software @
Analysis Tools q @ '® « D

O

F
il client

https://github.com/SRI-CSL/ETB2

13

https://github.com/SRI-CSL/ETB2

Evidential Transactions on ETB

Component Functionalities Implementation Challenges

Logical Foundations Digital Certificates

. T —— How to define executable
Cyberlogic operational semantics Cyberlogic business logic for
argument . . . 9
evidential transactions?
r —G

Evidential transaction as a
Cyberlogic argument

Services ETB service
. automated
Evidential Verifiable Evidential Esiseiogic Progeins . How to generate and
Tool Bus Transactions continuously maintain
Automated construction of B & D » sousb evidential transactions?
a Cyberlogic argument manual
Docker :
service
Distributed Execution Network Nodes N, N>
Distributed Secure Distributed e DID N3 How to securely
E . d Substrate e ETB Service distribute and build
viaence s ') e Verification Tools e, trusted and accountable
ecure construction of a e polic p 2
Network ey ey 7 |#fas&elaims | evidential transactions?
argument. s g (issuer, holder, validator,
e contracts~ _ - _ manager)

ETB Layers

sat(F, M) :- yices(F, S, M), equal(S, ’sat’).
unsat(F) :- yices(F, S, M), equal(S, 'unsat’).
allsat(F, Answers) :- sat(F, M), negateModel(F, M, NewF),

Claim + Certificate

Query

allsat(NewF, T), cons(M, T, Answers).

I |

ETB component

Sub-Query ﬂ

]

Logic Layer

ISub-Claim

allsat(F, Answers) :- unsat(F), nil(Answers).

Query: DEN component
[Orchestration Layer] l : [Authenticator]
Clain : ,
Query ﬂ I Claim FE O Query ﬂ ﬂ Query DO-178C compliance
[Storage Layer] [Certificate] \ [Contract] . workflow can be captured
Manager Manager i through Datalog + Cyberlogic
Concrete Concrete Query
Quer\y Claim ..

[

Evidence Layer

15

Ontic Type Analysis

Basic types in programming language (such as int, struct, array) abstract
from the representation of the data

They are insensitive to the intended use of the data, e.g., an authenticated
user ID, a private encryption key, the vertical acceleration of a vehicle in
m/sec?, an IP address, a URL, or an SQL query.

char input[30];

int response;

scanf("%s", input);

sqlstmt = "select_.* _from_.employees_ where_.id_=_"+input+";";
response = sglite3_exec(db, sqlstmt, ...);

Ontic type analysis (see Checker Framework from U.Washington) checks for
the proper usage of data in terms of units/dimensions, freshness, nullity,
mutability, taint, authentication, privacy, format validity, provenance, and
constraints derived from the domain ontology (e.g., coordinate systems).

Models to Code: HMAC in PVS

function hmac is
input:
key: Bytes // Array of bytes
message: Bytes // Array of bytes to be hashed
hash: Function // The hash function to use (e.g. SHA-1)
blockSize: Integer // The block size of the hash function
//(e.g. 64 bytes for SHA-1)
outputSize: Integer // The output size of the hash function
//(e.g. 20 bytes for SHA-1)

// Keys longer than blockSize are shortened by hashing them
if (length(key) > blockSize) then
key €& hash(key) // key is outputSize bytes long

// Keys shorter than blockSize are padded to blockSize by padding
//with zeros on the right
if (length(key) < blockSize) then

key & Pad(key, blockSize) // Pad key with zeros to make it

// blockSize bytes long

o_key pad & key xor [0x5c¢ * blockSize] // Outer padded key
i_key_pad ¢ key xor [0x36 * blockSize] // Inner padded key
return

From https://en.wikipedia.org/wiki/SHA-2

hmac(blockSize: uint8,
key : bytestring,
(message : bytestring | message length + blockSize < bytestring_bound),
outputSize: upto(blockSize),
hash: [bytestring->1bytes(outputSize)]): Ibytes(outputSize)
= LET newkey = IF length(key) > blockSize THEN hash(key) ELSE key ENDIF,
newerkey: lbytes(blockSize)
=IF length(newkey) < blockSize
THEN padright(blockSize)(newkey)
ELSE newkey
ENDIF,
oKeyPad = lbytesXOR(blockSize)(newerkey, nbytes(0x5c¢, blockSize)),
iKeyPad = IbytesXOR(blockSize)(newerkey, nbytes(0x36, blockSize))
IN hash(oKeyPad ++ hash(iKeyPad ++ message))

hmac256((blockSize: uint8 | 32 <= blockSize),
key : bytestring,
(message : bytestring |
message length + blockSize < bytestring bound))
: Ibytes(3R)
= hmac(blockSize, key, message, 32, shal56message)

* HMAC is a higher-order operation with complex type

dependencies (not specified in the pseudocode)

* These dependencies are accurately captured in PVS
* Ccode generation is bit-accurate

Distribution D 17

https://en.wikipedia.org/wiki/SHA-2

OCCAM: Debloating and Sealing Software

* Application is developed on top (Target architecture) e Maniftesct ot
eploymen ontex
of a large software stack, but (_Application arguments _| Py
uses only a fraction of it __Environment variables
. l Configuration files |
* The rest of the code might A%p +
. . Libraries
contain exploitable v
. p . .. Libraries
vulnerabilities Config Prlmllng _ LLVM modules
i (Deployment Lifting) <
e OCCAM is a whole-program Program
LLVM partial evaluator that - onted
.. Debloate
* Eliminates unreachable (" Check poiicy] App +
Libraries
code °
o . I h bl d I c N. I LLVM Spgcial_ized
SpeCIa IZzesS reachable code Intra_-moqlule « Inter_-n_*loc;lule modules Linker 1—» Slel.'aIr.lesd
to the known parameters T G T it e
* Preserves legal executions 1
e Seals the code with

defenses https://github.com/SRI-CSL/OCCAM
* Significant reduction in

_) . * Drew Dean & S, Transforming untrusted applications into trusted executables
#functions, #instructions, code through static previrtualization. US Patent No. US20130111593A1, 2013.

size * G. Malecha, A. Gehani, & S, Automated Software Winnowing, SAC 201158.

https://github.com/SRI-CSL/OCCAM

Securing the Software Universe

» Software processes information: bank accounts, grades, medical records, books, videos, power grid
controls, avionics, and medical devices

* Code is a poor representation of design: untrusted code should not be the input, trusted code should
be the output

* Shotgun composition of code without an architecture has no chance of being correct
* So,
* Take information seriously and annotate the artifacts with ontic type information
* Take requirements serious since many major flaws are traceable to poor requirements
* Take architecture seriously since it is the keystone of an efficient argument
* Take assurance seriously — composable evidence should be the coin of the realm
* Take inline and independent runtime monitoring seriously to track integrity
* Re-engineer the platforms to root out the sins of our ancestors

* Build workflows that create and maintain evidence as part of the design flow
* Integrate attestation into the evidence as a foundation for trust

A Software Proof of Virtues (SPOV)

e Software is a core mediator of our perception of truth
e Software failures and cyber-attacks weaken trust and incur a huge cost

* The current strategy of applying larger and larger band-aids is only fueling a
futile and costly arms race

* We have the tools and insights to build the infrastructure of trust in software
from the ground up:

* Software development lifecycle workflows that continuously maintain both process and
outcome-based assurance evidence

e Tools and models that support designs annotated with traceable ontic information that
are founded on efficient arguments

* Verified platforms and services whose integrity is certified by audit logs and audits
 Composable assurance cases validating intent, correctness, and innocuity

