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Outline

e What is META?
e Project vision
e Tool environment
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- System-level modeling and translation
— Complexity-reducing architectural patterns
— Compositional verification

e Next steps
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What is META?

Devise, implement, and demonstrate a radically different approach to the design,
integration/manufacturing, and verification of defense systems/vehicles

Enhance designer’s ability to manage system complexity

manufacturing
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Vision
e Improve effectiveness and scalability of system design and

verification through pre-verified design patterns and
compositional reasoning
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SPECIFICATION M DEVELOPMENT FOUNDRY

Approach Complexity-reducing design patterns
e | . » Capture best solutions to architectural
: b N o : design problems
N —" - (DETOITE « Reuse of formally verified solutions
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System architecture modeling

» Apply formal specification and analysis
tools to system-level design
Separate component specification and

Compositional verification 3
+ Reason about system behavior

based on contracts and system
design model structure

« Compositional approach scales to
large software systems

implementation
Automated model translation 1
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Tool chain
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System architecture modeling

e We have been very successful at applying formal methods to
software components produced in model-based development

environments
— Gryphon translation framework
— Verification of Simulink/Stateflow models

® ObJeCt|Ve Simulink S, SCADE

- Leverage this knowledge and Lustre
apply formal methods to the e o
. StateFIomey» achines
system design process Mach
o ISS u es Rockwell Collins/U of Minnesota

—_—
— Esterel Technologies
—
—

SRI International

— Modeling language and tools
— Different models of computation
— Scalability

MathWorks

© Copyright 2012 Rockwell Collins, Inc.
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Model Checkers:
NuSMV, Prover,
BAT, Kind, SAL

-

Theorem Provers:
ACL2, PVS

Programming
Languages:
SPARK (Ada), C

Design
Verifier
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System modeling and translation

e AADL is a good fit and provides sufficiently formal notation
— Available tools do not provide stable graphical environment
— OSATE: open source, Eclipse-based
e SysML is being adopted by many organizations for system design
- But has no formal semantics
- No common textual representation across tools
e Solution: Eclipse plugin that provides bidirectional translation
- Based on Enterprise Architect SysML tool used by Rockwell Collins
- Define block stereotypes that correspond to AADL objects

€34 Conirol_Surfice Aciuaiars
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Scale and composition

e Architectural model does not capture implementation details
— Component descriptions, interfaces, interconnections
e Assume/guarantee contracts provide the information needed
from other modeling domains to reason about system-level
properties
— Guarantees correspond to the component requirements

— Assumptions correspond to the environmental constraints that were
used in proving the component requirements

— Contract specifies precisely the information that is needed to reason
about the component’s interaction with other parts of the system

— Supports hierarchical decomposition of verification process
e Contract can be applied to both components and design
patterns
— Mechanism for verification reuse
— More about this later

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.
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Complexity-Reducing l_l

: _ Jesion Patterns
Architectural Design Patterns o

Design pattern = model transformation
- p:M—> M (partial function)
— Applied to system models
Reuse of verification is key
— Not software reuse
— Guaranteed behaviors associated with patterns
(and components)
Reduce/manage system complexity
— Separation of concerns
— System logic vs. application logic (e.g., fault tolerance)
— Process complexity vs. design complexity
Encapsulate & standardize good solutions
— Raise level of abstraction
— Codify best practices

© Copyright 2012 Rockwell Collins, Inc. 12
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SYNCHRONOUS NETWORK
e Provide virtual synchrony for parts of async system
e Assumptions

- Structural preconditions on system model (bounded
jitter, computation, message delivery...)

- Required data connections exist
e Guarantees
- Sync logic executes with period T
- Data from step i consumed in step i +1

ASYNCHRONOUS BOUNDED DELAY NETWORK WITH PALS

Leader Selection

e Create leader for group of
nodes

e Assumptions

| - Nodes communicate
i synchronously

Pupgans natane Disarem  Leaser Prac mpl o same
— — ‘

(
. ,:.:'..'.'::'—I—
|

|
) - At least one non-
failed node
j e Guarantees
- - All non-failed nodes

agree on leader

- If leader fails, new
leader in next step

- Non-failed node

remains leader
© Copyright 2012 Rockwell Collins, Inc.
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Replication
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Merge
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e Create identical copies of portions of the system
e Assumptions

- Replicas hosted on platform HW with independent
failure modes

e Guarantees

— One or replicas will operate normally in the event of
a single fault

Voting/Fusion

Fugion Example impl / No narme

Process Instance Diagram ; Fusion

= o o o oy,
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e Combine several component interfaces
e Assumptions
- Interfaces terminate at same destination component
- Interfaces have same data type
e Guarantees
- Varies with component type
- Agreement, mid-value select, output select, average
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Initial Avionics System
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79 | B EDICT Design 5 ABDL [ Resaurce
3 EDICT Design Workspace = Efiiii ko Final_pwviorics System £3 = &
= System Architecture - Pattern Transform
Design Effort:  META Design Effort
D ,g Opti META D ,g Opti Pattern Instantiations: System Architecture:  Initial_Avionics_System
esign Option: esign Dption N
c.] 5.5 Type [ Mame o Pls Applied
E 7. System Composition @ 1 & Repleation Replicate FG5
=% core 2 &  Leader Select Insert FGS Leader Selection
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Model verification results are not available,

© Copyright 2012 Rockwell Collins, Inc.

All

rights reserved.

14



Rockwel/
Collins

Final Avionics System (after pattern transformations)
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System verification

COMPOSITIONAL
REASONING & |
ANALYSIS

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

| [ b i
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| 7 L Lo :
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1 | 1 1 1 1
1 1 1 ! ! 1
1 1 1 ! ! 1
1 1 1 ! ! 1
| | | - i
| | ANNOTATE PATTERN & | | SYSTEM SYSTEM o AUTO SYSTEM !
! & VERIFY MODELING MODEL | | IMPLEMENTATION| !

COMP SPEC| | GENERATE !
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] LIBRARY | i I i
1 1 ! ! 1
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1 1 ! 1
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1 | 1
: : :
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1 | |

Reusable Verification: o Compositional Verification:

Instantiation: : o
Proof of component and pattern System properties are verified
requirements (guarantees) and by model checking using
specification of context component & pattern
(assumptions) contracts

Check structural constraints,
Embed assumptions &
guarantees in system model

© Copyright 2012 Rockwell Collins, Inc. 16
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Categories of system properties

/e Structural/static )
- Properties of the transformed model
- Pattern assumptions, post-conditions
- Specified and checked using Lute
— PALS period constraint
Deadline < PALS Period - Max_Latency - 2*Clock Jitter

e Behavioral/dynamic
- Pattern and component interactions
- Specified in PSL, verified by AGREE using model checking
- Failed node will not be leader in next step

\_ G(ldevice_ok[jJ] -> X(leader[1] !'= })) ; y,

e Resource allocation
- RT schedulability, memory allocation, bandwidth allocation
- ASIIST tool (UIUC/RC)
— Threads can be scheduled to meet their deadlines

e Probabilistic
- Failure analysis of system
- Behavior and failure rates described using AADL error annex
- PRISM/PRISMATIC (SIFT/RC)
- P(all sensors failed) < 10-°

© Copyright 2012 Rockwell Collins, Inc. 17
All rights reserved.
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Contracts between patterns and components

e Avionics system requirement

Under single-fault assumption, GC

output transient response is bounded
in time and magnitude

e Relies upon

— Guarantees provided by
patterns and components

— Structural properties of
model

— Resource allocation feasibility

— Probabilistic system-level
failure characteristics

Principled mechanism for

“passing the buck”

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.
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Structural/static properties

e Software + HW platform
— Process, thread, processors, bus
Ex: PALS vertical contract

— PALS timing constraints on
platform

— Check AADL structural properties
e Guarantees

— Sync logic executes at
PALS Period

— Synchronous_Communication
=> “One_Step Delay”
e Assumptions (about platform)
— Causality constraint:
Min(Output time) = 2 — umin
— PALS period constraint:
Max(Output time) < T - pmax - 2¢ |

BBBBBB

Platform

© Copyright 2012 Rockwell Collins, Inc. 19
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Structural property checks

PALS Threads := {s in Thread_Set | Property_ Exists(s,
P Contra Ct “PALS_Properties: :PALS_I1d")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");

— Platform model satisfies PALS_IA(t) := Property(t, “PALS_Properties::PALS_Id™);
PALS assumptions PALS_Group(t) := {s in PALS Threads | PALS_Ild(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=

Max({Property(p, "Clock Jitter'™) for p in Processor_Set |
¢ AttaChed at pattern Cardinal ({t in Threads | Is_Bound_To(t, p)}) > 0});
I n Sta ntl atl O n Connections_Among(Set) :=
. {c in Connection_Set | Member(Owner(Source(c)), Set) and
- MOdeI‘lndependent Member (Owner (Destination(c)), Set)}:
— Assumptlons theorem PALSTPeriod_is_Period
foreach s in PALS Threads do
oy s check Property_ Exists(s, "Period') and
- Pre/post'cond|t|0ns PALS_Period(s) = Property(s, "Period");
end;
i LUte theorems theorem PALS_Causality
foreach s in PALS_Threads do
— Based on REAL PALS_Group := PALS_Group(s);
Clock_Jitter := Max_Thread_Jitter(PALS_Group);
—_ 1 -1 Min_Latency := Min({Lower(Property(c, "Latency')) for
ECIIpse plug In o ol o c in (éonnegtions_gmc;ng(;A;S_Grogp)gzl;_s . .
. . utput Delay := roperty(t, "'Output Delay" or t in roup};
- StrUCtu ral prOpertleS N check (if 2 * Clock_Jitter > Min_Latency then
Min(Output_Delay) > 2 * Clock_Jitter - Min_Latenc
AADL model e ) = ey
g true);
end;
© Copyright 2012 Rockwell Collins, Inc. 20
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Compositional behavior verification

e Given

- Assumptions for system

- Assumptions/Guarantees for components (A, P)
e Prove

- System guarantees (requirements)
e New analysis plug-in (AGREE)

- Automatic translation of model structure, contracts, and verification
conditions

- Verify via k-induction model checker (KIND - Tinelli @ Univ. of Iowa)

Contract compliance:

Assumption: Input < 20 A tion:
Guarantee: Output < 2*Input ssumption: none
Guarantee: Output = Inputl

AS 9 AA + Input2

Ag A Py APg 2> A
Ag APy APgAP:2> Pg

Assumption: Input < 20 Assumption: Input < 10
Guarantee: Output < Input + 15 Guarantee: Output < 50

Example (to prove)

© Copyright 2012 Rockwell Collins, Inc. 21
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Contract specification in AADL

Derived from Property
Specification Language
(PSL) formalism
— IEEE standard
— In wide use for
hardware verification
Assume / Guarantee
style specification
— Assumptions: “Under
these conditions”
— Guarantees: “...the
system will do X"
Local definitions can
be created to simplify
properties

For now, this is an
AADL string property

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Contract:

[fun abs(x: real) : real = if (x > 0) then x else -x ;]

Iconst ADS_MAX_PITCH_DELTA: real = 3.0 ; ]
~WAX_PTTCH_SIDE DELTA: rear = 2.0 ;
const CSA_MAX_PITCH_DELTA: real = 5.0 ;

const CSA_MAX_PITCH_DELTA_STEP: real = 5.0 ;

property AD_L Pitch_Step_Delta Valid =
true ->
abs(AD_L.pitch.val - prev(AD_L.pitch.val, 0.0)) < ADS_MAX_PITCH_DELTA ;

property AD_R_Pitch_Step_Delta Valid =
true ->
abs(AD_R.pitch.val - prev(AD_R.pitch.val, 0.0)) < ADS_MAX_PITCH_DELTA ;

property Pitch_Ir_ok =
abs(AD_L.pitch.val - AD_R.pitch.val) < FCS_MAX_PITCH_SIDE_DELTA ;

property some_fgs_active =
(FD_L.mds.active or FD_R.mds.active) ;

active_assumption: assume some_fgs_active ;

assume AD_L_Pitch_Step_Delta Valid and

transient_assumption :
AD_R_Pitch_Step_Delta_Valid and Pitch_Ir_ok ;

transient_response_1 :
assert true -> abs(CSA.CSA_Pitch_Delta) < CSA _MAX_PITCH_DELTA ;
transient_response_2 :
assert true ->
abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0)) <
CSA_MAX_PITCH_DELTA_STEP ;

22
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Compositional reasoning for FCS

e Want to prove a transient response  mevmmmmrreE G
property
- The autopilot will not cause a sharp
change in pitch of aircraft.
- Even when one FGS fails and the other
assumes control
e Given assumptions about the
environment
- The sensed aircraft pitch from the air

data system is within some absolute
bound and doesn’t change too quickly
- The discrepancy in sensed pitch

between left and right side sensors is
bounded.

e and guarantees provided by
components
-  When a FGS is active, it will generate
an acceptable pitch rate
e As well as facts provided by pattern
application

. .. transient_response_1 : assert true ->
- Leader selection: at least one FGS will abs(CSA.CSA_Pitch_Delta) < CSA MAX_PITCH_DELTA ;
eIV\{ayS bf active (modulo one transient_response 2 : assert true ->
failover” step) abs(CSA.CSA_Pitch Delta - prev(CSA.CSA Pitch_Delta, 0.0))
< CSA_MAX_PITCH_DELTA STEP ;

Flight_Control_System

Flight_Ci ystem Impl

FCI : Flight_Crew_Interface

THROTR2FCI
THROTL2FCI

YOKER2FCI

THROT_L YOKE_L YOKE_R THROT_R

© Copyright 2012 Rockwell Collins, Inc. 23
All rights reserved.



Collins

Compositional Reasoning and Patterns

pattern_instance Leader_Select_1 :

-- sync single-step delay between elements

() Guara ntees prOV|ded by assume single_step_delay_comm(FGS_L, FGS_R);
assume single_step_delay_comm(FGS_R, FGS_L);
pattern are encoded as

faCtS leader_agreement:
assert (FGS_L.LSO.valid and FGS_R.LSO.vValid) =>

FGS_L.LSO.Leader = FGS_R.LSO.Leader;
o Attached at pattern

-- All non-failed nodes agree on who is the leader

-- If a node fails, leadership is transferred to a non-failed node

1 1 1 leader_transfer_1:
InStantIatlon assert (prev(ﬁot(FGS_L.LSO.VaIid), false) =>
) (FGS_R.LSO.valid =>
- MOdeI—lndependent FGS_R.LSO.Leader != Get_Property(FGS_L, Leader_Select_ID)));
— 1 leader_transfer_2:
Assumptlons assert prev(not(FGS_R.LSO.vValid), false) =>
- (FGS_L.LSO.vValid =>
- Pre/pOSt-COndltIOI’lS FGS_L.LSO.Leader !'= Get_Property(FGS_R, Leader_Select_ID));
1 1 1 —— If any non-failed nodes exist, one of them will be the leader
e Describe relationships = 0y Tl

assert (prev(FGS_L.LSO.Valid or FGS_R.LSO.valid, false)) =>

between Seve ral (C FGS_L.LSO.vValid => (FGS_L.LSO.Leader >= 1 and FGS_L.LSO.Leader <= 2)) and

( FGS_R.LSO.vValid => (FGS_R.LSO.Leader >= 1 and FGS_R.LSO.Leader <= 2)));

p -- ITf the leader does not fail, it shall remain the leader.
— 1 leader_persistence_1: assert
In thls examplel the (prev(FGS_L.LSO.valid and
Leader and Valld flelds FGS_L.LSO.Leader = ?et_Property(FGS_L, Leader_Select_ID), false)) =>
(FGS_L.LSO.vValid =>
for the Ieft and rlght FGS_L.LSO.Leader = Get_Property(FGS_L, Leader_Select_ID));
FGSS leader_persistence_2: assert
- (prev(FGS_R.LSO.valid and
FGS_R.LSO.Leader = Get_Property(FGS_R, Leader_Select_ID), false)) =>
(FGS_R.LSO.Valid =>
FGS_R.LSO.Leader = Get_Property(FGS_R, Leader_Select_ID));
end pattern_instance Leader_Select_1 ;
© Copyright 2012 Rockwell Collins, Inc. 24
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Proof Process

Flight_Control_System

e Order of data flow through
system components is
computed by AGREE L

xﬂxﬂxﬂxﬂ st v
.

.
-

- {System |npUtS} - x 5357
mmmmmm,wm -
{ FG S L FG S R} Fo_L [l EGSEIDRDE FGSRIOAP. FGSRIOFDR L
—b —
- {FGS_L, FGS_R} > {AP}
- {AP} > {System outputs
e Based on flow, we establis e L ] e
. . o B L L S — -
four proof obligations e L . :
e .

-

.
=
-

ADLtoFGSL s ﬁ%xﬁ e ADRtOFGSR
| L .

-

-

b

. System assumptions >
FGS_L assumptions

. System assumptions >
FGS_R assumptions

. System assumptions +
FGS_L guarantees +
FGS_R guarantees > ———{- -
P assumptions

4. System assumptions + {FGS_L, FGS_R, AP} guarantees - System guarantees

e System can also handle circular flows, but user has to choose where to
break cycle (usually a time delay)

L e
e
o

"
R

FCltoFGSL FCItoFGSR

THROTR2FCI

YOKER2FCI

YOKEL2FCI
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Next steps

e Extend compositional verification to more complex models of
computation

— Multiple rates, delays, asynchrony
e Incorporate additional design patterns in library

— Especially fault tolerance patterns with existing verification artifacts
e Improved annotation of contracts in architecture models

— AADL annex? Alternate representations (e.g., sequence diagrams?)

e More general mechanism for composing evidence from multiple
sources

— Evidence graph, assurance case
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Download

e AADL Tools wiki
- https://wiki.sei.cmu.edu/aadl/index.php/RC_META

/= RC META - AadIWiki - Microsoft Internet Explorer provided by Rockwell Collins

=10l =]

Iﬁ Google |}3 ~ |
LI "'l Search + | Mare 3> ‘ ddcofer S -

m = Ig, htkps: ] fwiki. =i, emu.edufaadlfindes:. php/RC_META jl&l |§| |z

J File Edit Wew Faworites Tools  Help JX Go g]t|

o Favorites @ RC META - Aadiiiki | |

2 Login

|»

page || discussion | [ viewsource || history |

RC META

The Rockwell Collins META toolset was developed under DARPA's META program. This Eclipse-hased toolset provides a SysML-AADL translator. an
architectural design pattern tool based on EDICT, a static model verification tool {Lute), and a compositional verification tool (AGREE) based on the
KIMD model checker.

navigation For more information contact Darren Cofer at Rockwell Collins Advanced Technology Center.
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1.1 Enterprise Architect
1.2 Examples
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1.6 Kind
1.7 User Manuals

1.5 Plug-ins for OSATE and EDICT

Installation

An installer for Windows & is available (waming: =300MB). The Guided Tour document & provides an overview of the tools and a demonstration based

on the example models.

In general. all of the files you need will be provided by the installer. However, there are several additional steps and dependencies. some of which are
automated by the installer. In case you need to complete any of them manually. they are:
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