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Topology

• The study of geometric 
properties and spatial relations 
unaffected by the continuous 
change of shape or size of 
figures.
• Two spaces are topologically 

equivalent if one can be formed 
into the other without tearing 
edges, puncturing holes or 
attaching non-attached edges

How can a mug and a torus be equivalent?



Topology: The Structure of Manifolds
● Topology is used to study the structure of sets
● Why do the mug and donut have same topology?

○ They have differences, different geometries for example
○ What do they share? What is invariant between them?

● They share the same shape (Betti numbers, etc.)



Simplex & simplicial complex

0-simplex
(point, vertex)

1-simplex
(edge)

2-simplex
(triangle mesh, 3-clique)

Simplicial complex: 
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Simplicial complex: a set of
• 0-simplex: A, B, C, D, E, F, G
• 1-simplex: AB, AC, BC, CD, BD, BG
• 2-simplex: ABC

Simplex:



Simplex & simplicial complex

• An !-simplex is the convex hull of ! + 1 affinely independent points, 
i.e the set of all convex combinations $%&% + $'&' + ⋯+ $)&) where 
$' + $* +⋯+ $) = 1 and $, ≤ 1, ∀0 ∈ [!]
• A simplicial complex is a finite collection of simplices 4 such that

1. Every face of a simplex in 4 also belongs to 4
2. For any two simplices 5' and 5*, if 5' ∩ 5* ≠ ∅ then 5' ∩ 5* is a common 

face of both 5' and 5*



Filtration

• Nested family of simplicial complexes
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Example: Vietoris-Rips Filtration

• Defined from any metric space ! and distance "
• Forming a simplex for every finite set of points that has diameter at 

most "



Persistence Homology

• Topological Features: Information related to components, holes, 
voids, etc. in the data
• Persistence Homology: A topological summary; a method for 

computing topological features of a space at different spatial 
resolutions
• Persistence Diagrams: Set of (birth, death) where each is 

corresponding to a topological feature of the data



Visualization



Persistence Homology

https://datawarrior.wordpress.com/2015/12/20/tda-4-persistence/

Homology:
• Degree 0: connectedness of the data
• Degree 1: holes and tunnels
• Degree 2: voids

Betti number: (rank of homology groups  = 
number of barcodes)
• !": number of components
• !#: number of holes (or cycles)

“essential”



Betti Numbers
● Betti numbers count the # and 

dimensionality of holes in a set
○ B0 number of connected components
○ B1 number of 1D or “circular” holes
○ B2 number of 2D “voids” or “cavities”

● Bk is maximum # of k-dimensional curves 
which can be removed while object 
remains connected

● # of k-dimensional holes
● # of “non-contractible” k-dimensional 

loops



Topology of Datasets
● If we apply topology to dataset alone

○ B0 = # of datapoints, everything else 0
● What we see and know:

○ Top is torus, B0 = 1, B1 = 2, B2 = 1
○ Bottom 3 clusters

■ 3 connected components
■ B0 = 3



Persistent Homology
● Persistence Diagrams track the “births” and 

“deaths” of Betti holes as data points are 
expanded into disks

● Can identify number of clusters, structure of 
data, types of periodicity and much more



Persistent Homology: Robustness
● Has demonstrated robustness to 

noise
○ Not robust to anomalous noise

● Demonstrated stability
○ Data subsetting
○ Noise
○ Point addition



Persistence Diagrams and Bar Codes
● We have used persistence diagrams in our analysis thus far

○ Persistence bar codes contain the same information in a  different format
○ Both used frequently and interchangeably in the field



Powerful Features
● Powerful engineered feature
● Can detect anomalies simply in complex data
● Can detect trends simply in complex data



Powerful Features work Separately from 
traditional Statistical Features
● Traditional statistics has already 

simplified intuitive properties of data 
such as “center” and “spread”
○ Mean and Variance

● Persistent Homology can simplify slightly 
more complex but still highly intuitive 
properties of data, its structure

● Statistics and Persistent Homology Can 
be used together, they measure different 
properties



Persistent Homology for Signals
● Thresholded signals
● Give persistent signal 

values
● Simple, but effective



Time Series Applications and Anomaly Detection
● Has been used as powerful preprocessing
● Can and has been used for anomaly 

detection
● Compare persistence diagram of current 

time window to history of persistence 
diagrams

● Periodicity
○ Simple Periodicity => B1 = 1, ie: sin(3x)
○ More complex Periodicities also:

■ Torus Betti Numbers, ie: 2*sin(pi*x)+sin(e*x) 



Side-Chanel Analysis & Data Collection



Examples of Classification Experiments
Devices Class

es
Class explanation Samples Sampli

ng rate
Trace
Length

Sync Classification
Acc.

Arduino 2 Same math operation
with 2 set of different
operands

800 125Mh
z

4096 Yes 100%

Raspberry 
Pi 

2 Same operation with
or without botnet
attack

600 30518
Hz

305180 No 100%

Siemen’s 
PLC 

5 4 different machine
operations + botnet
attack

1000 30518
Hz

305180 No 91.28%



Anomaly Detection by Autoencoder

• Anomaly detection
• Use only negative
examples for training

• Unsupervised learning
• Detect positive
examples in inference

• Autoencoder
• Reconstruction of
input

• From compressed
latent variable



Side-channel Analysis: Anomaly Detection

Autoencoder

Normal examples

Training

loss

Autoencoder
Inference

Normal
examples
& examples
samples

loss loss threshold
compare

If larger than the threshold, flag
it as anomalous



Anomaly Detection: Performance Evaluation

Best F1-score point:
True positive=0.935
False positive=0.33
Threshold=113.59

AUC = 0.9166

random guess



Windowing the time-series signals



Results on Benchmark datasets

TABLE I
EXPERIMENTAL RESULTS, F1 SCORES

Model NASA YAHOO NAB
SMAP MSL A1 A2 A3 A4 Art AdEx AWS Traf Tweets µ �

DenseAE w/ Post 0.623 0.797 0.916 0.995 0.976 0.912 0.8 0.762 0.762 0.8 0.71 0.823 0.115
DenseAE w/o Post 0.655 0.608 0.496 0.283 0.097 0.041 0.667 0.533 0.764 0.333 0.742 0.474 0.252

TADGAN [6] 0.623 0.704 0.8 0.867 0.685 0.6 0.8 0.8 0.644 0.486 0.609 0.693 0.114
LSTM [4] 0.46 0.69 0.744 0.98 0.772 0.645 0.375 0.538 0.474 0.634 0.543 0.623 0.171

ARIMA [3] 0.492 0.42 0.726 0.836 0.815 0.703 0.353 0.583 0.518 0.571 0.567 0.599 0.156
Deep AR [18] 0.583 0.453 0.532 0.929 0.467 0.454 0.545 0.615 0.39 0.6 0.542 0.555 0.142

HTM [10] 0.412 0.557 0.588 0.662 0.325 0.287 0.455 0.519 0.571 0.474 0.526 0.489 0.113
MADGAN [19] 0.111 0.128 0.37 0.439 0.589 0.464 0.324 0.297 0.273 0.412 0.444 0.35 0.144
MS Azure [20] 0.218 0.118 0.352 0.612 0.257 0.204 0.125 0.066 0.173 0.166 0.118 0.219 0.152

the reconstruction errors by multiplying each reconstruction
value by (sizewindow � |index� delay|)2 creating a spike at
the “current” time step and a quadratic decay to either side.
Because the “current” time step is especially important, we
further amplified this value.

We set the autoencoder’s latent dimension to 10 and trained
with the mean squared error loss function. Experiments were
run using PyTorch [21]. We use the simple deep multilayer
perceptron (MLP) architecture with layer sizes 100-80-40-20-
10-20-40-80-100.

IV. EXPERIMENTS

A. Datasets

Three collections of datasets stand out in the literature
for benchmarking time series anomaly detection algorithms –
the Yahoo collection, the Numenta collection, and the NASA
collection. We have selected to benchmark using the same
subset of these datasets as TADGAN’s recent state-of-the-
art work. We benchmark using the entire Yahoo collection,
consisting of four univariate datasets, A1 sourced from real
Yahoo service metrics, and A2-A4 synthetically created. We
also benchmark on the entire NASA collection, consisting
of multivariate telemetry measurements from systems aboard
the Mars Science Laboratory (MSL) rover and Soil Mois-
ture Active Passive (SMAP) satellite. From the Numenta
Anomaly Benchmark (NAB) collection we test on five datasets
– advertisement clicking rate data, Amazon Web Services
(AWS) server metrics, Twitter volume data, vehicle traffic data,
and a synthetically created artificial dataset. Benchmarking
on these datasets together provides a method for comparing
performance between different anomaly detection algorithms
across a variety of domains. Although each of these datasets
is labeled, the training must remain unsupervised in order
to ensure that good benchmark performance implicates good
performance on other unlabeled datasets. Testing and training
data was not split due to the small sample size.

B. Measuring Performance

We measure the performance using the F1 metric. F1 =
TP

TP+1/2⇤(FP+FN) . A good monitoring system will correctly
identify anomalies without flooding the user with false alarms.
The F1 metric rewards true positive prediction (TP) and

penalizes both false negatives (FN) and false positives (FP).
Unfortunately, time-series anomaly detection algorithms are
plagued by a lack of standardization for scoring models. In an
effort to remedy this situation, Numenta released their own
scoring metric [22] along with their collection of datasets,
but perhaps because people desire to use one metric easily
across multiple datasets, including the Yahoo and NASA
datasets, Numenta’s scoring function has not been widely
adopted. Area under the curve (AUC) struggles to differentiate
between any models with decent performance. Therefore,
most literature uses the F1 metric, a well established metric
used across multiple domains, but many have used time
series specific variations, which can either drastically boost
or plunge scores. Variations agree that partially overlapping
prediction and anomaly windows should still count as true
positives, but variations differ on how to count anomalies.
One group measures each anomaly window as a singular
anomaly, and another measures an anomaly window according
to the windows width. This difference can have a drastic
effect. If a correctly predicted anomaly window is length
100, then the first of these variations will record one true
positive and the second will record 100, giving full credit
even in the case of partial overlap and significantly boosting
scores. We think it is more sensible to count each anomaly
window as a singular true positive or false negative, and each
contiguous false positive also as a singular value. Each of
these is a singular event, and should be counted as such.
Therefore, we use the F1-metric time series variation used by
[6]: (1) If a known anomalous window overlaps any predicted
windows, a single true positive is recorded. (2) If a know
anomalous window does not overlap any predicted windows,
a single false negative is recorded. (3) If a predicted window
overlaps with no anomalous windows, a single false positive is
recorded. We selected optimal thresholds in order to measure
the performance of our anomaly scoring function.

C. Results

Table I shows the experimental results of our model both
with and without post-processing alongside competitor results.
With the post-processing included, our model achieves the best
results on 8 of 11 datasets, and near the best results for the
other 3.



Graph Classification

• Input: a set of graph (V, E) with its label
• Optional properties: vertex label / weight, edge label / weight
• Some benchmark data sets for classification task

No. graphs No. classes Avg. no. nodes Avg. no. edges Note
MUTAG 188 2 18.0 19.8 Chemical compounds

NCI109 4127 2 29.7 32.1 Chemical compounds

COLLAB 5000 3 74.5 2457.8 Scientific collaboration

IMDB-BINARY 1000 2 19.8 96.5 Movie collaboration

REDDIT-MULTI-5K 4999 5 508.5 594.9 Online discussion

REDDIT-MULTI-12K 11929 11 391.4 456.9 Online discussion



Graph filtration: vertex-based

• Let !: # → ℝ be a function defined on vertices (vertex weights)
• Sublevel graphs &' = #', *'

#' = + ∈ #: ! + ≤ . ,
*' = { 0, + ∈ *: 0, + ∈ #'}

• Possible choices of !: 
• given vertex label
• vertex degree, curvature
• heat kernel signature, etc.



Graph filtration: edge-based

• Let !:#×# → ℝ be a function defined on edges (edge weights)
• Subgraphs '( = #, +(

+( = { -, . ∈ +:! -, . ≤ 1}
• Possible choices of !: given edge weight, distance by node 

embedding, etc.



Persistent Homology in Machine Learning

Persistence diagram is a set of points: (birth, death). How to utilize 
the unusual structure of topological signatures in machine learning?
• Embed PD to a vector space

• Vectorization: Persistence Image [Adams et. al, 2015], Persistence 
Landscape [Bubenik et. al, 2015] maps PD to a k-dimensional vector
• Learning Representation: train a neural network to learn the embedding

• Define a distance or kernel
• Define a distance between PDs: bottleneck distance, k-Wasserstein 

distance
• Positive definite kernels: Slice Wasserstein kernel [Kolouri et. al, 2015], 

Persistence Fisher kernel [Le et. al., 2018]



Deep Learning with Topological Signatures 
[Hofer et. al., 2017]
• Drawback of previous approaches:
• Vectorization:  pre-defined, suboptimal, agnostic to any specific task
• Kernel methods: suffer scalability issues

• How to find a task-optimal representation of topological signatures?



Deep Learning with Topological Signatures 
[Hofer et. al., 2017]

• Results on graph classification: considerably outperforms state-of-the-art 
methods (metric: accuracy)



WIP: Use multi-filtration input

• Use return probabilities of random walks with different hops to build multiple 
filtrations, each captures the local structure at different scales
• Design a neural network to embed multi-PD (RP and RP-W below):

• Embed each PD to a k-dimensional vector
• Weight-pooling over PD (weights are trained/fixed to 1)
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