
Continuously Generating Models of Cloud Systems with 
Applications in Privacy

Tristan Ravitch, Amazon Web Services

(2) Infrastructure Analysis
In our setting, infrastructure is able to self-report its current 
configuration. We query live cloud infrastructure for both 
allocated resources (e.g., storage and compute) as well as the 
connections between them, producing a graph.

Example: The infrastructure analysis captures relationships that 
include 1) the log destinations for each component in the system, 
and 2) infrastructure-driven data flows.

Future Work: Detect drift by comparing against IaC.

In cases where drift is not possible, analysis of IaC would be 
simpler and more direct. IaC analysis requires implementing a
semantics for each IaC language. In the embedded systems space, 
it may also require analysis of build systems.

Challenge: System Configuration
Complex systems almost always have configuration to control their behavior in different operational 
scenarios. If configuration values are not accounted for, analysis of code artifacts cannot account for 
their effects and cannot fully understand the system.

Privacy Example: Scalable cloud systems are regionalized and behave differently in different regions; 
they select close data stores (e.g., to reduce latency) and may have features enabled or disabled due to 
local regulations (e.g., GDPR).

Configuration can come in many forms including configuration files and configuration stores (e.g., 
configuration services). Configuration files have an enormous diversity of syntax and semantics, with 
some approximating or even exhibiting the characteristics of programming languages. Service based 
configuration is dynamic and enables great flexibility (e.g., run-time provisioning or adaptation), but 
poses challenges for static analysis.

Generalizing beyond configuration files, environment variables, scripts, and system processes can move 
sensitive data in ways not visible from a view of only application code. For example, system daemons can 
periodically move logs or data across network links.

Challenge: Component Organization
Both enterprise cloud systems and embedded cyber-physical systems are collections of components that 
communicate over networks (either WAN or local). Understanding and modeling the behavior of these 
systems requires modeling which components communicate with each other and what they 
communicate.

Privacy Example: Cloud data stores have user-configurable mechanisms to automatically replicate data; 
understanding the replication policy is critical to determine compliance with data sovereignty 
regulations. Modeling access permissions and data retention policies is also necessary to fully understand 
the privacy impact of a data store.

Ideally we could analyze Infrastructure as Code (IaC) configurations to understand how components 
connect. In some cases we can, but in others we may not be able to due to drift or incompleteness. 
Infrastructure drift occurs when manual or automated processes change infrastructure configurations 
after IaC runs, potentially leading to incorrect results. Incompleteness occurs when IaC systems generate 
additional infrastructure that is not syntactically obvious. The automation provided by IaC systems (like 
CloudFormation) is helpful, but obscures the true nature of the system. Replicating their logic with full 
fidelity is unsustainable, so other solutions are required.

(0.5) Configuration Analysis
We model the set of configuration sources for our use case including 
both static configuration files and query dynamic configuration. We 
unify configuration in a standard format that maps configuration APIs to 
the values they return for use in the code analysis. Configuration 
analysis includes modeling dependency injection, which is widely used 
to facilitate testing and component reuse.

We account for regionalized (or instanced) configuration and run one 
code analysis per concrete configuration.

Future Work: Monitor for run-time configuration changes, explore 
parameterized configurations to reduce the cost of re-analysis

(1) Code Analysis
The code analysis chosen for model generation depends on the nature 
of the models required for a given use case: it is a parameter. 

We inline configuration values and use context-sensitive constant 
propagation to associate configuration with the critical components that 
they configure. We are experimenting with a value-set analysis to 
support conditional configuration that can be resolved later (3).

Privacy instantiates the analysis framework with taint analysis to track 
the flow of data. It produces a model of flows from inputs to outputs, 
which may include unresolved nodes (e.g., log groups). We track the 
flow of every data value through the service without attempting to 
categorize it as privacy-relevant or not, as data categorization at the
level of code is not necessarily possible (e.g., the same service may 
handle private data or non-private data, depending on context).

A coarse architectural model may prefer a constant analysis, while a 
security model may require a typestate analysis.

• Reasoning (verification, audit/compliance) about complex systems requires models
• Complex systems lack up-to-date models
• Work using code analysis for model synthesis is promising, but not enough by itself

Goal: Automatic and continuous generation of up-to-date models to support high-confidence system reasoning

Systems cannot be understood without considering their configuration and their infrastructure

(3) Aggregation
We combine the results of the infrastructure and code analysis to
create a global data flow model. It matches unresolved node 
references from the code analysis results with their corresponding 
nodes in the infrastructure.

Key Observations: The configuration analysis gives the code 
analysis precise names for system entities that can be matched 
against the infrastructure analysis.

Privacy Use: We label privacy-relevant data values and compute
graph reachability relations to build data mappings that enable 
reasoning about where data flows to, who has access, and how 
long it is retained.

This aggregation architecture could be used to generate SysML
models. The analysis as described captures some behavioral
aspects that can be represented in models; however, higher-
fidelity abstractions are required to support model checking.

Code Analysis

Resource and Aggregation
Analysis

DDB

S3

S3Kinesis
Stream

Kinesis
Firehose

CloudWatch

API Gateway Lambda

2a. The Resource Analysis finds this connection: 
arn:aws:apigateway:us-east-2:lambda:path/2015-
03-31/functions/arn:aws:lambda:us-east-
2:240853550644:function:OpenBookService-
Service-b-CoralLambdaEndpointLambd-
d1uHkZVPHZd8:live/invocations

Learn: Which lambda entry point this API flows to

1a. By seeding the Dataflow 
Analysis with the results of the 
configuration analysis it learns: S3 
bucket = openbookservice-service-
reqstorage-mizpjnfyl57n

1b. Dataflow Analysis Learns: 
Request components flow to the 
DynamoDB table Request:
(AWS::DynamoDB::Table::Requests)

2b. The Resource Analysis describes the 
DynamoDB table to discover this 
connection: arn:aws:kinesis:us-east-
2:240853550644:stream/OpenBookService
-Service-beta-us-east-2-
dbstreamfirehoses3KinesisStreamEB0DC69
E-iYKu0V6qeVKG

2c. The Resource Analysis describes the 
Kinesis stream to discover the flow from 
DynamoDB to S3: 
arn:aws:s3:::openbookservice-service-
dbstreamfirehoses3kinesi-mizpjnfyl57n

From there, it queries the S3 bucket to 
determine access permissions

2d. The Resource Analysis finds this log 
group: arn:aws:logs:us-east-
2:240853550644:log-
group:/aws/lambda/OpenBookService-
Service-b-CoralLambdaEndpointLambd-
d1uHkZVPHZd8:*

3a. Data Aggregation connects this 
flow to the DynamoDB resource 
arn:aws:dynamodb:us-east-
2:240853550644:table/Requests

3b. Data Aggregation connects the abstract log 
destination from the lambda to CloudWatch 
because it understands the log group is 
assigned to the lambda (from resource calls)

Request
Acct#

IP Addr

Param

Acct#

IP Addr

Param

Acct#

IP Addr

Param


