
Document reference: S.P9999.99.99, issue 1.0

1

Copyright © Praxis Critical Systems Limited 2003 Slide 0

Correctness by Construction of High-
Integrity Software

Rod Chapman
Praxis Critical Systems Limited

Copyright © Praxis Critical Systems Limited 2003 Slide 1

Observation

• Despite good requirements, design,
protocols, crypto etc. etc, many
software projects "throw it all away"
through sloppy implementation
practices. For example - the ubiquitous
buffer-overflow.

Document reference: S.P9999.99.99, issue 1.0

2

Copyright © Praxis Critical Systems Limited 2003 Slide 2

Thesis

• The regulated safety-critical industries (e.g.
Mil Aero, Commercial Aero, Rail) have been
building very reliable systems for many years.
How do they do it?

• The security industry may have something to
learn from the safety world.

• This presentation offers a UK-centric view of
this situation.

Copyright © Praxis Critical Systems Limited 2003 Slide 3

Contents

• Correctness by Construction
• The Catch…
• Languages
• SPARK

– Design goals and features
– Security
– Projects & Theorem proving performance

• What's next
• Conclusions

Document reference: S.P9999.99.99, issue 1.0

3

Copyright © Praxis Critical Systems Limited 2003 Slide 4

Correctness by Construction

• See John Rushby's talk from Tuesday!
– Let's "Narrow the Vee…"

• We can't rely on testing alone as the
primary verification activity - much too
expensive and risk prone.

• Also, for the most critical systems,
testing can never generate sufficient
evidence.

Copyright © Praxis Critical Systems Limited 2003 Slide 5

Correctness by Construction (2)

• A design approach characterized by:
– Use of static verification to prevent defects at all

stages.

– Small, verifiable design steps.

– Appropriate use of formality.

– “Right tools and notations for the job” approach.

– Generation of certification/evaluation evidence as
a side-effect of the development process. E.g. for a
safety-case.

Document reference: S.P9999.99.99, issue 1.0

4

Copyright © Praxis Critical Systems Limited 2003 Slide 6

Correctness by Construction (3)

• Let's focus on what's achievable now.
– Real languages with real tools that are

fielded in industry right now.
– Stuff that we know works at the highest

safety-integrity/evaluation levels and is
acceptable to the regulatory authorities.

– Most high-integrity systems are also hard
real-time and embedded.

• This may not be "research", but some
of this may be new to you - good!

Copyright © Praxis Critical Systems Limited 2003 Slide 7

The Catch…

• Our ability to perform static verification
critically depends on the language or
notation under analysis.

• In particular, ambiguity in the definition
of the language severely limits what is
achievable.

• Ideally, languages and notations should
be as unambiguous as possible.

Document reference: S.P9999.99.99, issue 1.0

5

Copyright © Praxis Critical Systems Limited 2003 Slide 8

Ambiguity in Computing Languages

• This idea is not new…
“… one could communicate with these

machines in any language provided it
was an exact language …”

“… the system should resemble normal
mathematical procedure closely, but at
the same time should be as
unambiguous as possible.”

Copyright © Praxis Critical Systems Limited 2003 Slide 9

Ambiguity in Computing Languages

• This idea is not new…
“… one could communicate with these

machines in any language provided it
was an exact language …”

“… the system should resemble normal
mathematical procedure closely, but at
the same time should be as
unambiguous as possible.”

Alan Turing (1948)

Document reference: S.P9999.99.99, issue 1.0

6

Copyright © Praxis Critical Systems Limited 2003 Slide 10

Ambiguity in Software Engineering

• Unfortunately, ambiguity plagues us at every
turn:
– English requirements
– UML and other “OO” notations
– Programming languages

• Does anyone understand C++ Templates?!?

• Machine code is often the first unambiguous
representation we get, which can be tested
but not much else…oh dear...

Copyright © Praxis Critical Systems Limited 2003 Slide 11

Programming Languages…

• Standard languages? C, C++, Java?
– All fall down on ambiguity and therefore

verifiability.
– "Modern" language design is going the

wrong way! E.g. OO polymorphism,
exceptions etc.

• Special purpose languages?
– Ever heard of "NewSpeak"? Nope…

Document reference: S.P9999.99.99, issue 1.0

7

Copyright © Praxis Critical Systems Limited 2003 Slide 12

Programming Languages…

• High-Integrity Language subsets?
– Potentially combine the best of both

worlds: desirable properties for H-I, using
standard compilers, tools, staff etc.

– Integrity achievable critically depends on
selection of base language.

– For the highest integrity levels, subsetting
alone may not be enough. Addition of
annotations to strengthen the language
("design by contract"™) may be required.

Copyright © Praxis Critical Systems Limited 2003 Slide 13

So…What is SPARK?

• The “SPADE Ada Kernel”
– What does the “R” stand for?

• A sub-language of Ada95 with particular
properties that make it ideally suited to the
most critical of applications:
– Completely unambiguous
– All rule violations are detectable
– Formally defined
– Tool supported

• SPARK facilitates Correctness by Construction

Document reference: S.P9999.99.99, issue 1.0

8

Copyright © Praxis Critical Systems Limited 2003 Slide 14

SPARK Design Goals

• Logical Soundness
• Simplicity of Language Definition
• Expressive Power
• Security and Integrity
• Formal definition
• Verifiability
• Bounded Space and Time
• Verifiability of Compiled Code
• Minimal Runtime Library

Copyright © Praxis Critical Systems Limited 2003 Slide 15

SPARK Features

• Base language: ISO-8652:1995 Ada95
• Removes: Tasking, Generics, lots of tricky stuff…
• Limits: Some control flow structures, visibility

rules etc.
• Adds: a language of annotations to allow efficient

and deep static analysis, including information-
flow analysis, and mathematical proof of program
properties.

• Tool support: The SPARK Examiner, Simplifier and
Checker

Document reference: S.P9999.99.99, issue 1.0

9

Copyright © Praxis Critical Systems Limited 2003 Slide 16

SPARK Features (2)

• SPARK is statically free from all
– Aliasing
– Function side-effects
– Erroneous behaviour
– Implementation-dependent behaviour

• These analyses are all decidable in
polynomial time. i.e. tool is very fast!
This enables constructive use.

Copyright © Praxis Critical Systems Limited 2003 Slide 17

Static Analysis of SPARK

• The Examiner tool implements a number of
analyses, again all in P-Time:
– Subset checking and static semantics

– Information flow analysis

– Verification Condition Generation - allows
proof of properties such as exception
freedom, partial correctness, and safety
properties.

• Theorem prover tool (the Simplifier) does a
good job of proving VCs.

Document reference: S.P9999.99.99, issue 1.0

10

Copyright © Praxis Critical Systems Limited 2003 Slide 18

Exception freedom

• Exception freedom proof - why is it important?
– Can be attempted without a formal spec.,

or explicit pre- and post-conditions, so is
approachable.

– Provides evidence that compiler-generated
checks can be turned off with justification,
or left on for "belt and braces."

– Forces you to really think about your code.
Correctness emerges.

• You mainly need CPU cycles for theorem
proving - and these are cheap.

Copyright © Praxis Critical Systems Limited 2003 Slide 19

SPARK and Secure Systems

• SPARK has many properties that make
it ideal for the implementation of
secure, embedded systems:
– No data-flow errors. A subtle and possibly covert

source of information flow.
– Verification of required information flow. Very

useful to support system and software partitioning.
– Proof of the absence of exceptions. Virtually free

given theorem proving, and very worthwhile.
– SPARK can be compiled with absolutely no COTS

run-time library or operating system. No acquisition
or evaluation problem!

Document reference: S.P9999.99.99, issue 1.0

11

Copyright © Praxis Critical Systems Limited 2003 Slide 20

SPARK and Secure Systems (2)

• Ironically, SPARK was pretty-much
invented by the security community:
– 1977 Denning/Denning paper on

information flow analysis.

– Later work at UK DERA Malvern and CESG.

• SPARK "diverted" into the safety world
in about 1990 - it's about time it came
home!

Copyright © Praxis Critical Systems Limited 2003 Slide 21

SPARK Projects

• Military Aerospace:
– EuroFighter Typhoon - nearly all critical

systems are SPARK - about 5 Million lines
of code.

– Harrier II SMS. Partly specified in Z and
100% implemented in SPARK. Approx
5000 VCs discharged in proof work.

– SHOLIS - First Def Stan 00-55 SIL4 project.
9000 VCs proved, including top-level
safety-properties, partial correctness, and
exception freedom. 200 pages Z spec.

Document reference: S.P9999.99.99, issue 1.0

12

Copyright © Praxis Critical Systems Limited 2003 Slide 22

SPARK Projects (2)

• Commercial Aerospace: LM C130J
Mission Computers and Bus-Interface units.
– Dual cert to DO-178B Level A and 00-55.
– Latent defect rate of SPARK code found to

be >10 times better than any other
software on the aircraft.

– Proof of partial correctness (against
Parnas tables) and exception freedom for
core functions - about 40 kloc.

Copyright © Praxis Critical Systems Limited 2003 Slide 23

SPARK Projects (3)

• Security:
– The MULTOS CA. (See last year's HCSS…)
– All Praxis-generated deliverables to ITSEC E6.
– Formal Security Policy in Z
– Functional spec in Z (500 pages)
– Concurrency design in CSP + Model Checking
– 100,000 lines of code (mixed-language), 3500

person-days, 27 loc per day.
– Only 4 defects 1 year after delivery, corrected

under our warranty of course!

Document reference: S.P9999.99.99, issue 1.0

13

Copyright © Praxis Critical Systems Limited 2003 Slide 24

Some performance data for the
theorem prover

• These figures are for discharging the
VCs for exception freedom for 3
programs:
– The SPARK Examiner
– SHOLIS
– "Project R" - a SIL3 stores management

system

Copyright © Praxis Critical Systems Limited 2003 Slide 25

Performance data (December 2002)

Examiner 6.1, Simplifier 2.07, running on 1.3GHz Athlon,
Windows 2000. All runtime-check VCs generated (including
Overflow_Check).

91.4%90.3%91.8%Hit rate

10017608819127RTC VCs proven by
Simplifier 2.07

10963674120833Total RTC VCs

1 hours 48 mins8 hours 14 mins5 hours 19 minsSimp. time

2 mins 2 secs4 mins 34 secs4 mins 58 secsAnalysis & VCG time

229681638856760Executable loc

Project RSHOLISExaminerTest Set

Document reference: S.P9999.99.99, issue 1.0

14

Copyright © Praxis Critical Systems Limited 2003 Slide 26

What's next

• Distributed theorem-proving.
– All VCs are independent, so why not use a

network of N PCs?

• Tasking! SPARK now includes a
deterministic, predictable tasking
subset - the "Ravenscar Profile".
– Amenable to static schedulability analysis.

• Model Checking (much further off, but
looks interesting…)

Copyright © Praxis Critical Systems Limited 2003 Slide 27

So What’s Wrong with SPARK?

• It’s unfashionable, and British…

• "But we can't hire Ada programmers…"

• Selling an approach that slows coding is very
hard.

• Fear of formality. (Don’t mention the “P”
word!)

• Adopting SPARK is seen as difficult.

Document reference: S.P9999.99.99, issue 1.0

15

Copyright © Praxis Critical Systems Limited 2003 Slide 28

Conclusions

• C-by-C works - we have projects and
data to prove it, meeting the most
demanding levels of all the toughest
standards.

• Having done DO-178B level A, 00-55
SIL4, ITSEC E6 etc., we feel that CC
EAL5 is well within reach.

Copyright © Praxis Critical Systems Limited 2003 Slide 29

Conclusions (2)

• Design-by-Contract in software is a
good thing. Simply writing the
contracts forces you to think more.

• So write stronger contracts elsewhere -
in specifications, in designs, in
requirements and in procurement.

Document reference: S.P9999.99.99, issue 1.0

16

Copyright © Praxis Critical Systems Limited 2003 Slide 30

Final Quote

"There is still no silver bullet, but dramatic
improvements in software quality can
be achieved through the rigorous and
systematic application of what we
already know…"

Martyn Thomas - the founder of Praxis.

Copyright © Praxis Critical Systems Limited 2003 Slide 31

Resources

• Book: “High-Integrity Software: The
SPARK Approach to Safety and
Security” by John Barnes.
ISBN 0-321-13616-0

• www.sparkada.com
– Information
– White papers and publications

Document reference: S.P9999.99.99, issue 1.0

17

Copyright © Praxis Critical Systems Limited 2003 Slide 32

Praxis Critical Systems Limited
20 Manvers Street
Bath BA1 1PX
United Kingdom
Telephone: +44 (0) 1225 466991
Facsimilie: +44 (0) 1225 469006

Website: www.praxis-cs.co.uk, www.sparkada.com

Email: rod.chapman@praxis-cs.co.uk

