
Cryptol:
A Domain-Specific Language for
Cryptographic Service Providers

John Launchbury, Jeff Lewis, Thomas Nordin
Galois Connections Inc.

Plan for this Talk

 Why domain-specific languages?
 Domain analysis for crypto-algorithms
 Primitive components of Cryptol
 Intrinsic control structures
 Examples
 Mode specifications

Tension

 Domain-specific languages attempt to
bridge this semantic gap

 Programs written in domain-specific terms

Programming
Language
Concepts

Application
Concepts

tension

Domain-Specific Languages

 Classic examples
 Spreadsheets

 Accountancy concepts and notations

 LEX, YACC
 Use BNF descriptions of grammars

 Value of DSLs
 Design-level programming
 Huge productivity increase
 Major flexibility in evolvability
 Natural maintenance of design documents
 Broadening the programmer base
 Multiple use: code, test generation, analysis

Where do DSLs come from?

 Existing domain notations
 Textual
 Mathematical
 Graphical
 Gestural, etc.

 Semantics must be precise
 Prototype interpretation must match compiled

interpretation must match testing interpretation etc.
 Source level reasoning

 DSL programmers may not understand traditional programming

How do domain
experts talks to

each other?

Crypto-algorithm domain analysis

 Application concepts
 Data comes in

 Bits
 Bit-collections (words)
 Word-collections, etc.

 Multiple views of data
 Equational definitions
 Bounded iteration
 Feedback circuits
 Parameterized definitions

Cryptol

Domain-specific
language for

cryptoalgorithms

Data in Cryptol

 The smallest elements: Bits
 Everything else is a matrix (a parameterized collection)

[False True False True False False True]

0x4A

[0x3F 0x02 0x41 0xD8]

[[1 2 3 4] [5 6 7 8]]

[1 .. 10]

7 single bits

7 (or more) bits 4 elements, each
8 (or more) bits

2 elements, each
having 4 elements,

each 4 (or more) bits

10 elements, each
of 4 (or more) bits

Hierarchical Views of Data

0x99FAC6F975BABB3EDADD847FC237249F

[0xDADD847FC237249F 0x99FAC6F975BABB3E]

[[0xC237249F 0xDADD847F] [0x75BABB3E 0x99FAC6F9]]

Primitive Operations

 Arithmetic operators
 Result is modulo the word

size of the arguments

 Boolean operators
 From bits, to arbitrarily

nested matrices

 Comparison operators
 Equality, order

 Conditional operator
 Expression-level if-then-else

 Shift and rotate operators

 Matrix operators
 Concatenation, indexing, size

Indexing Matrices

 Zero-based indexing from the left
[50 .. 99] @ 10 = 60

 Numbers are written in traditional notation, but still accessed little-
endian

0x40 @ 6 = True

 Bulk indexing
[50 .. 99] @@ [10 .. 20] = [60 .. 70]

 Permutations
[1 .. 4] @@ [1 2 3 0] = [2 3 4 1]
[1 .. 4] @@ [3 2 .. 0] = [4 3 2 1]

Cryptol Definitions

 First-order non-recursive equations
x = 13;
incr x = x + 1;
f (x, y) = 2 * x + 3 * y + 1;

 Pattern Matching on Matrices
sum4 [a b c d] = a + b + c + d

 Nested definitions
f x = [y z]
where {y = x + 1;

z = not x};

Each definition
is assigned a

type

add32 0xB4 0x3A0x3A

Size Polymorphism

How many
bits am I?

Aha!
Must be
32 bits

Size Polymorphism

x = 0x3A

How many
bits am I?

At least 6
bits ...

x : {a} (a >= 6) =>
[a]

Shape Polymorphism

swab [a b c d] = [d c b a]

What types do
I handle?

Four of
something

...

Four of
something
to four of
the same
thing...

swab : {a} [4]a -> [4]a

Controlling Polymorphism

xor(xs, ys) = [(x & ~y) | (~x & y)
|| x <- xs
|| y <- ys]

xor : {a b c}
([a]b,[c]b) -> [min(a,c)]b

Controlling Polymorphism

xor : {a} ([a], [a]) -> [a]
xor(xs, ys) = [(x & ~y) | (~x & y)

|| x <- xs
|| y <- ys]

A Cryptol Idiom: Padding

Key padding for MD5:

pad : {a} (6 >= a) =>
[a] -> [512*((a+65+511)/512)]

pad key = key # [True] # 0 # size
where
size : [64]
size = sizeOf key

0 can have any
size, so fills out
to satisfy the

type constraint

Bounded Iteration

 Borrowed the comprehension notion from set theory
 { a+b | a ∈ A, b ∈ B}
 Adapted to matrices (i.e. sequences)

 Applying an operation to each element
[2*x + 3 || x <- [1 2 3 4]] = [5 7 9 11]

 Cartesian traversal
[[x y] || x <- [0..2], y <- [3..4]]

= [[0 3] [0 4] [1 3] [1 4] [2 3] [2 4]]

 Parallel traversal
[x + y || x <- [1..3]

|| y <- [3..7]] = [4 6 8]

Recurrence

 Textual description of shift circuits
 Traditionally use a language of commands

 Arrays, updates, and command-loops

 Alternatively, use stream-equations
 Stream-definitions can be recursive

output = [0] # [y+1 || y<-output];

0output

+1

Stream Equations

as = [Ox3F OxE2 Ox65 OxCA] # new;
new = [a ^ b ^ c || a <- as

|| b <- as @@ [1 ..]
|| c <- as @@ [3 ..]];

3Fas E2

^

65 CA

^

new

Alternative Description

as = [Ox3F] # bs;
bs = [OxE2 Ox65] # cs;
cs = [OxCA] # [a ^ b ^ c || a<-as

|| b<-bs
|| c<-cs];

3Fas E2

^

65 CA

^

bs cs

Additional Complexity

as = [Ox3F OxE2 Ox65]
[c^c’ || c <- cs

|| c’<- cs @@ [1 ..]];
cs = [OxCA] # [a^a’ || a <- as

|| a’<- as @@ [1 ..]];

3Fas E2

^

65 CA^
cs

RC6 Key Expansion

 Original specification is written in terms of arrays
and updates
 Key expansion code appears entirely symmetrical
 Cryptol demonstrates exposes non-symmetry

 No hidden effects

ss = [(s+a+b) <<< 3 || s <- initS # ss
|| a <- [0] # ss
|| b <- [0] # ls];

ls = [(l+a+b)<<<(a+b) || l <- initL # ls
|| a <- ss
|| b <- [0] # ls];

“Circuit” Diagram

0

0

ss

ls

initS

initL

a
s

b

b
a

l

Cryptol Idiom: For Loops

 Factors
 Capture the body of the for-loop as a function
 Identify the state variables
 Define a recurrence

 Example
 Sum the elements of a matrix:

sum xs = sums @ (sizeOf xs - 1)
where sums = [x + y || x <- xs

|| y <- [0] # sums];

DES Encryption

des (pt, keys) = permute (FP, swap last)
where
{ pt' = permute (IP, pt);
iv = [round (k, lr) || k <- keys

|| lr <- [pt'] # iv];
last = iv @ (sizeOf keys - 1);

};

round (k, [l r]) = r # (l ^ f (r, k))
where
f (r, k) = permute(PP, SBox(k ^ permute(EP, r)));

DES SBox Lookup

SBox : [48] -> [32]
SBox x = join [sbox (n, b) || n <- [0 .. 7]

|| b <- split x];

sbox : ([4], [6]) -> [4]
sbox (n, [b1 b2 b3 b4 b5 b6]) = (s @ n

@ [b1 b6]
@ [b2 b3 b4 b5]);

Indexing nested
structures.

@ is left-associative

Cryptol Types

 Two kinds of types

 Value types (Bits, n-Dimensional matrices)
Bit [32] [a][48] [6][b]c

 Size types (describe the size of matrices)
 Finite: 16 a+7 2**(b-1)
 Infinite: ko(4)

 Definitions have constraints
 Size constraints: provide lower-bounds on sizes
a >= 6 b >= min(7, c + d)

 Subtype constraints (experimental):
[a*b]c <= [a][b]c

Current Cryptol Compiler

 Type System
 Variant of Hindley-Milner style type system

 Prevents inconsistent use of sizes
 Identifies large class of ill-formed streams

 Implementation
 Constraint-simplification is currently done ad hoc
 Plan to integrate in an off-the-shelf arithmetic solver

 Execution
 Interpreter is well developed
 C-code generator is nearly finished

 Can then use Cryptol as a crypto-YACC

One Specification,
Multiple Implementations

 Fundamental DSL concept:

Distinguish between model and rendition

 Cryptol specifications are designed to be independent of
the target language
 Interpret specification
 Reference implementation
 Generate C code or Java
 Machines with a alternate word sizes
 Generate AIM code
 Wrapper to make CDSA compliant

But what about
cryptographic

modes?

Electronic code book

ecb(pt, key) = ct
where
ct = [encrypt (x, key) || x <- pt]

enckey

Cipher Block Chaining

cbc(iv, pt, key) = ct
where
ct = [encrypt (x^y, key) || x <- pt

|| y <- iv # ct]

enckey^ iv

	Cryptol:�A Domain-Specific Language for Cryptographic Service Providers
	Plan for this Talk
	Tension
	Domain-Specific Languages
	Where do DSLs come from?
	Crypto-algorithm domain analysis
	Data in Cryptol
	Hierarchical Views of Data
	Primitive Operations
	Indexing Matrices
	Cryptol Definitions
	Size Polymorphism
	Size Polymorphism
	Shape Polymorphism
	Controlling Polymorphism
	Controlling Polymorphism
	A Cryptol Idiom: Padding
	Bounded Iteration
	Recurrence
	Stream Equations
	Alternative Description
	Additional Complexity
	RC6 Key Expansion
	“Circuit” Diagram
	Cryptol Idiom: For Loops
	DES Encryption
	DES SBox Lookup
	Cryptol Types
	Current Cryptol Compiler
	One Specification,�Multiple Implementations
	Electronic code book
	Cipher Block Chaining

