

GALOISCONNECTIONS

purely functional

Cryptol: A Domain Specific Language for Cryptography

www.cryptol.net

Cryptol Goals

- Specification correspondence "Cryptol programs should be able to look like their specifications"
- Freedom from data entry
 - "There shall be no barrier to the programmer specifying a lookup table via a calculation"
- Abstraction Conduction

"Cryptol should provide a path towards higher-level specifications of Cryptographic algorithms"

Crypto-algorithm domain analysis

Spoke with crypto-algorithm designers

- What are the important elements of algorithm specification?
- Studied five AES finalists and DES
 - What do these algorithms have in common?
 - What differences occur between them?
- Embody the domain analysis within a language
 - Obtain feedback from crypto specialists

Relevant Concepts and Abstractions

- Block ciphers
- Vectors and matrices
- Permutations
- Lookup tables
- Various Finite Element arithmetics
- Multiple views of data
- Iteration and recurrence

Block Ciphers

Interface

encrypt : (Xkey, PT) -> CT

decrypt : (Xkey,CT) -> PT

keySchedule : Key -> Xkey

- Chained together to operate on streams
- Simple standard stream modes:
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)

Bit Vectors

- Sizes ranging from 4 bits to 128 bits (8 and 32 most common)
- All the usual boolean ops
 - Exclusive-or prevalent
- Simple modulo arithmetic (+, -, *, /)
- Permutations
 - Mostly just rotations of bit vectors
 - More general permutation used in DES

Bit Vector Operations in RC6

- a + b integer addition modulo 2^w
- a-b integer subtraction modulo 2^w
- $a \oplus b$ bitwise exclusive-or of w-bit words
- $a \times b$ integer multiplication modulo 2^w
- $a \ll b$ rotate the *w*-bit word *a* to the left by the amount given by the least significant $\lg w$ bits of *b*
- $a \gg b$ rotate the *w*-bit word *a* to the right by the amount given by the least significant $\lg w$ bits of *b*

Lookup Tables

W	ORD Sbox[] =	= {				
	0x09d0c479,	0x28c8ffe0,	0x84aa6c39,	0x9dad7287,	0x7dff9be3,	0xd4268361,
	0xc96dald4,	0x7974cc93,	0x85d0582e,	0x2a4b5705,	0x1ca16a62,	0xc3bd279d,
	0x0f1f25e5,	0x5160372f,	0xc695clfb,	0x4d7ffle4,	0xae5f6bf4,	0x0d72ee46,
	0xff23de8a,	0xblcf8e83,	0xf14902e2,	0x3e981e42,	0x8bf53eb6,	0x7f4bf8ac,
	0x83631f83,	0x25970205,	0x76afe784,	0x3a7931d4,	0x4f846450,	0x5c64c3f6,
	0x210a5f18,	0xc6986a26,	0x28f4e826,	0x3a60a81c,	0xd340a664,	0x7ea820c4,
	0x526687c5,	0x7eddd12b,	0x32alldld,	0x9c9ef086,	0x80f6e831,	0xab6f04ad,
	0x56fb9b53,	0x8b2e095c,	0xb68556ae,	0xd2250b0d,	0x294a7721,	0xe21fb253,
	0xae136749,	0xe82aae86,	0x93365104,	0x99404a66,	0x78a784dc,	0xb69ba84b,
	0x04046793,	0x23db5cle,	0x46caeld6,	0x2fe28134,	0x5a223942,	0x1863cd5b,
	0xc190c6e3,	0x07dfb846,	0x6eb88816,	0x2d0dcc4a,	0xa4ccae59,	0x3798670d,
	0xcbfa9493,	0x4f481d45,	0xeafc8ca8,	0xdb1129d6,	0xb0449e20,	0x0f5407fb,
	0x6167d9a8,	0xdlf45763,	0x4daa96c3,	0x3bec5958,	0xababa014,	0xb6ccd201,
	0x38d6279f,	0x02682215,	0x8f376cd5,	0x092c237e,	0xbfc56593,	0x32889d2c,
	0x854b3e95,	0x05bb9b43,	0x7dcd5dcd,	0xa02e926c,	0xfae527e5,	0x36a1c330,
	0x3412elae,	0xf257f462,	0x3c4f1d71,	0x30a2e809,	0x68e5f551,	0x9c61ba44,
	0x5ded0ab8,	0x75ce09c8,	0x9654f93e,	0x698c0cca,	0x243cb3e4,	0x2b062b97,
	0x0f3b8d9e,	0x00e050df,	0xfc5d6166,	0xe35f9288,	0xc079550d,	0x0591aee8,
	0x8e531e74,	0x75fe3578,	0x2f6d829a,	0xf60b21ae,	0x95e8eb8d,	0x6699486b,
	0x901d7d9b,	0xfd6d6e31,	0x1090acef,	0xe0670dd8,	0xdab2e692,	0xcd6d4365,
© 2001, Galo	0xe5393514,	0x3af345f0,	0x6241fc4d,	0x460da3a3,	0x7bcf3729,	0x8bfldle0,
<i>c , <i></i></i>	0x14aac070,	0x1587ed55,	0x3afd7d3e,	0xd2f29e01,	0x29a9d1f6,	0xefb10c53,

Lookup Tables

- AKA S-boxes
 - n-bit by m-bit lookup tables
- Both fixed and data-dependent (TwoFish)
- Fixed S-boxes are often calculated
- Intent is to capture notion of pre-computed values

Generating SBoxes

In the design of the S-box S, we generated the entries of S in a "pseudorandom fashion" and tested that the resulting S-box has good differential and linear properties. The "pseudorandom" S-boxes were generated by setting for $i = 0 \dots 102$, $j = 0 \dots 4$, $S[5i+j] = \text{SHA-1}(5i | c1 | c2 | c3)_j$ (where $\text{SHA-1}(\cdot)_j$ is the j'th word in the output of SHA-1). Here we view i as a 32-bit unsigned integer, and c1, c2, c3 are some fixed constants. In our implementation we set c1 = 0 xb7e15162, c2 = 0 x243f6a88 (which are the binary expansions of the fractional parts in e, π , respectively) and we varied c3 until we found an S-box with good properties. We view SHA-1 as an operation on byte-streams, and use little-endian convention to translate between words and bytes.

<i>a</i> _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}	<i>k</i> _{0,0}	<i>k</i> _{0,1}	<i>k</i> _{0,2}	<i>k</i> _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}	<i>k</i> _{1,0}	<i>k</i> _{1,1}	k _{1,2}	k _{1,3}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}	k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}	k _{3,0}	k _{3,1}	k _{3,2}	k _{3,3}

Figure 1: Example of State (with Nb = 6) and Cipher Key (with Nk = 4) layout.

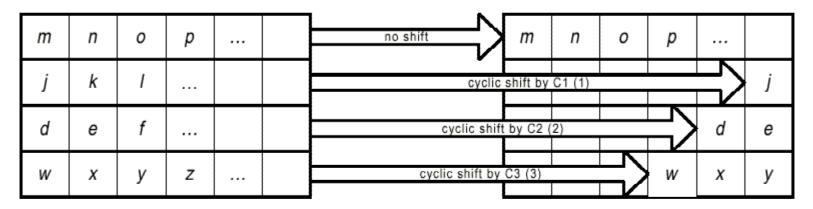


Figure 3: ShiftRow operates on the rows of the State.

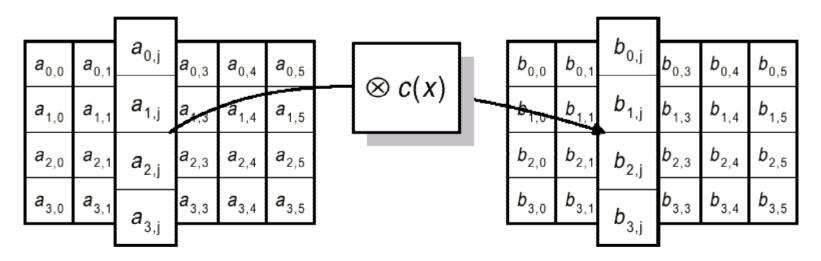


Figure 4: MixColumn operates on the columns of the State.

Matrix Arithmetic

Matrix/vector multiplication arises on paper

$$\begin{aligned} x_i &= \lfloor X/2^{8i} \rfloor \mod 2^8 \qquad i = 0, \dots, 3 \\ y_i &= s_i [x_i] \qquad i = 0, \dots, 3 \\ \begin{pmatrix} z_0 \\ z_1 \\ z_2 \\ z_3 \end{pmatrix} &= \begin{pmatrix} \ddots & \cdots & \cdot \\ \vdots & \text{MDS} & \vdots \\ \cdot & \cdots & \cdot \end{pmatrix} \cdot \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} \\ Z &= \sum_{i=0}^3 z_i \cdot 2^{8i} \end{aligned}$$

 But rarely makes it into the reference code at that level of abstraction

Other Arithmetic

- Polynomials
 - often with bit coefficients
 - different interp of a bit vector

A byte *b*, consisting of bits $b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0$, is considered as a polynomial with coefficient in $\{0,1\}$:

 $b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0$

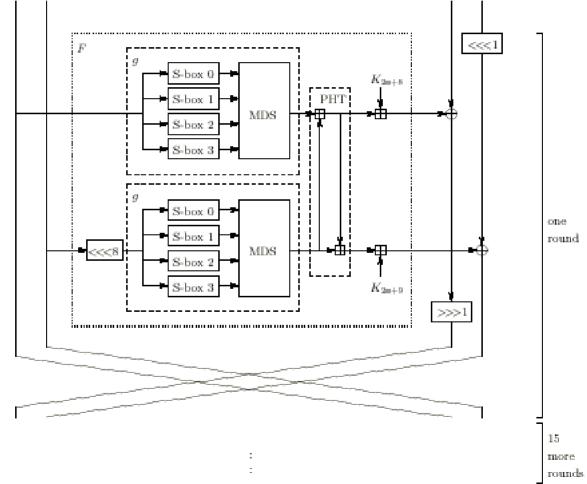
Galois Fields (TwoFish, Rijndael)

Bounded Iteration

- Crypto tends to avoid interesting control
- For loops
 - Over fixed counts

for
$$i = 1$$
 to r do
{
 $t = (B \times (2B + 1)) \ll \lg w$
 $u = (D \times (2D + 1)) \ll \lg w$
 $A = ((A \oplus t) \ll u) + S[2i]$
 $C = ((C \oplus u) \ll t) + S[2i + 1]$
 $(A, B, C, D) = (B, C, D, A)$
}

Feistel Network (TwoFish)



Found in key expansion

$$\begin{array}{l} v = 3 \times \max\{c, 2r + 4\} \\ \textbf{for } s = 1 \ \textbf{to} \ v \ \textbf{do} \\ \{ \\ A = S[i] = (S[i] + A + B) \lll 3 \\ B = L[j] = (L[j] + A + B) \lll (A + B) \\ i = (i + 1) \mod (2r + 4) \\ j = (j + 1) \mod c \\ \end{array}$$

Parameters

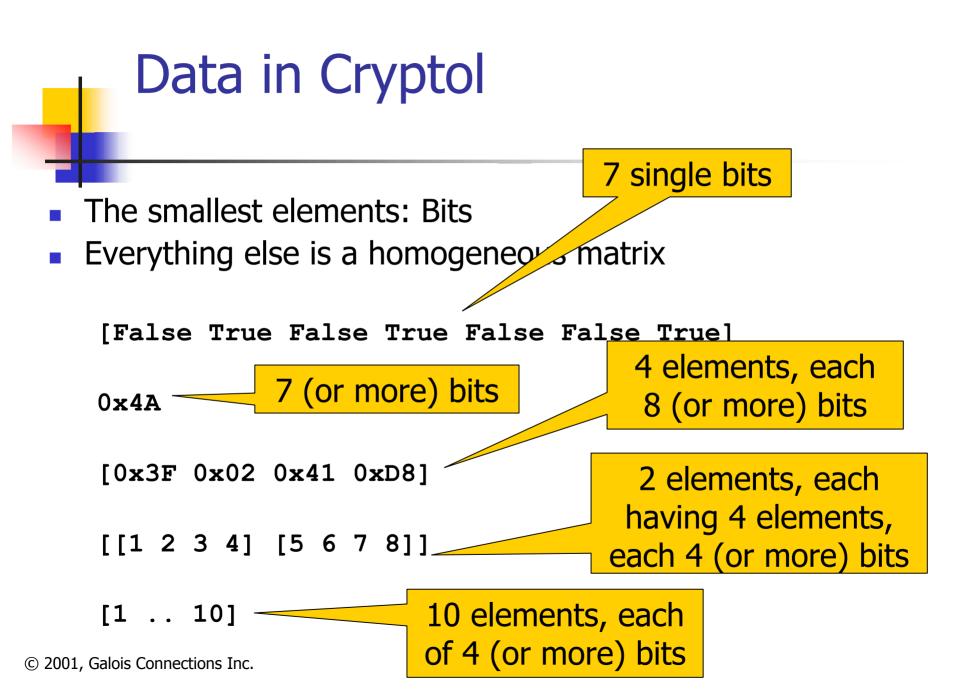
- Most algorithms operate on a range of sizes
 - Key
 - Block
- Sizes may be constrained

Number of iterations may depend on size

Like RC5, RC6 is a fully parameterized family of encryption algorithms. A version of RC6 is more accurately specified as RC6-w/r/b where the word size is w bits, encryption consists of a nonnegative number of rounds r, and b denotes the length of the encryption key in bytes. Since the AES submission is targeted at w = 32 and r = 20, we shall use RC6 as shorthand to refer to such versions. When any other value of w or r is intended in the text, the parameter values will be specified as RC6-w/r. Of particular relevance to the AES effort will be the versions of RC6 with 16-, 24-, and 32-byte keys.

From Domain Analysis to a Language

Domain-specific language for cryptoalgorithms



Numbers

- Numbers are matrices of bits
- Decimal, octal (00), hex (0x), binary (0b)
- Compile-time switch chooses between

```
Little endian:

0xC5 ==

[True False True False False False True True]

Big endian:

0xC5 ==

[True True False False False True False True]
```

Standard Operations

- Arithmetic operators
 - Result is modulo the word size of the arguments
 - + * / % **

- Comparison operators
 - Equality, order
 - == != < <= > >=
 - returns a Bit

- Boolean operators
 - From bits, to arbitrarily nested matrices of the same shape
 - & | ^ ~

- Conditional operator
 - Expression-level *if-then-else*
 - Like C's *a?b:c*

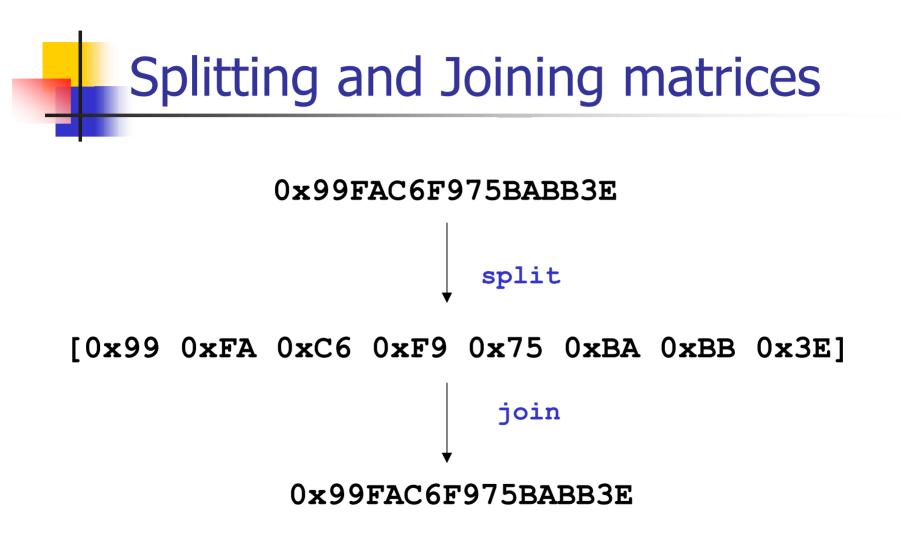
- Matrix operators
 - Concatenation, indexing, size
 - # @ @@ width

[1..5] # [3 6 8] = [1 2 3 4 5 3 6 8]

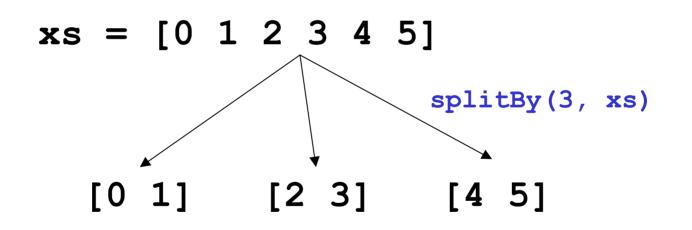
Zero-based indexing from the left [50 .. 99] @ 10 = 60

Shifts and Rotations

- Shifts<< >>
- Rotations <<< >>>
- Operate over top-level of a matrix
 [0 1 2 3] << 2</p>
 [2 3 0 0]
- For words, corresponds to usual notion 0xF381 >>> 4 0x1F38

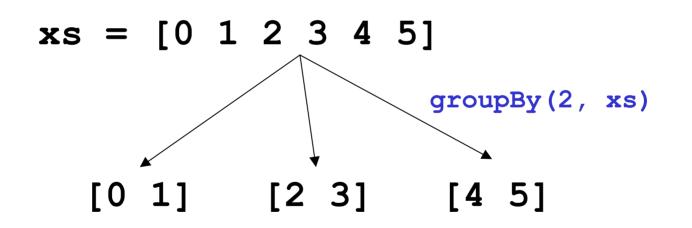


how shall we: split [0 1 2 3 4 5]?



groupBy

how shall we: split [0 1 2 3 4 5]?



Matrix Comprehensions

- Borrowed the comprehension notion from set theory
 - { a+b | a ∈ A, b ∈ B}
 - Adapted to matrices (i.e. sequences)
- Applying an operation to each element

$$\begin{bmatrix} | 2*x + 3 | | x < - [1 2 3 4] | \end{bmatrix}$$

= [5 7 9 11]

- Cartesian traversal
 - $\begin{bmatrix} | [x y] | | x < [0..2], y < [3..4] | \end{bmatrix}$ $= \begin{bmatrix} [0 3] [0 4] [1 3] [1 4] [2 3] [2 4] \end{bmatrix}$
- Parallel traversal

$$[| x + y || x <- [1..3]$$
$$|| y <- [3..7] |]$$
$$= [4 6 8]$$

m	n	о	р		no shift m n o p	
j	k	Ι			cyclic shift by C1 (1)	j
d	е	f			cyclic shift by C2 (2) d	е
w	x	у	z		cyclic shift by C3 (3) W X	у

Figure 3: ShiftRow operates on the rows of the State.

[| row >>> i || row <- state || i <- shifts |]</pre>

Column traversals

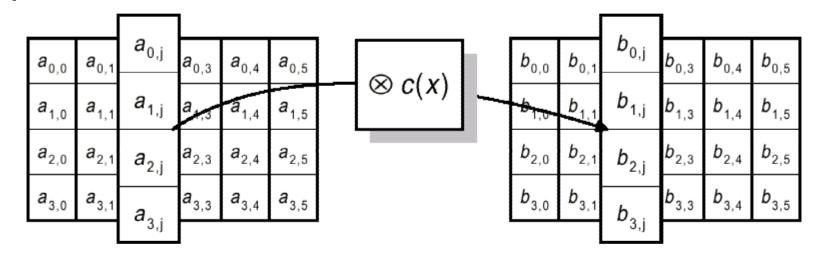
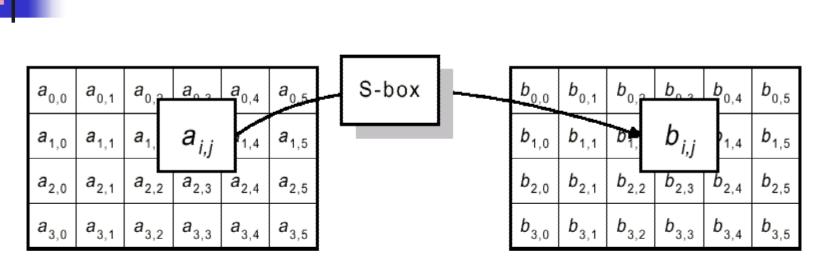


Figure 4: MixColumn operates on the columns of the State.

transpose [| ptimes (col, cx) || col <- transpose state |]</pre>



Nested traversals

Figure 2: ByteSub acts on the individual bytes of the State.

[| [| sbox a || a <- row |] || row <- state |]

Cryptol Types

- Capture the size and dimensions of matrices
- Written as a sequence of bracketed dimensions outermost to innermost:

213

has type: [8]Bit

[[0 1] [2 3] [4 5] [6 7]] has type: [4][2][8]Bit

Cryptol Types

- Capture the size and dimensions of matrices
- Written as a sequence of bracketed dimensions outermost to innermost:

213

has type: [8]

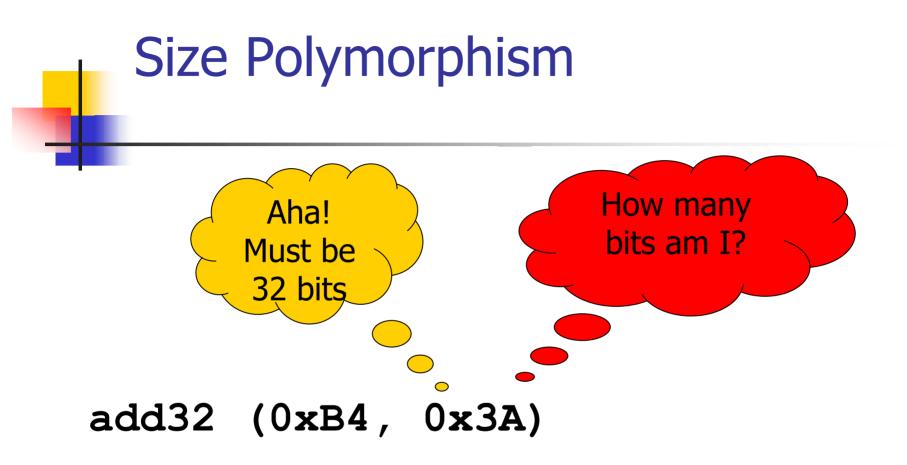
[[0 1] [2 3] [4 5] [6 7]] has type: [4][2][8]

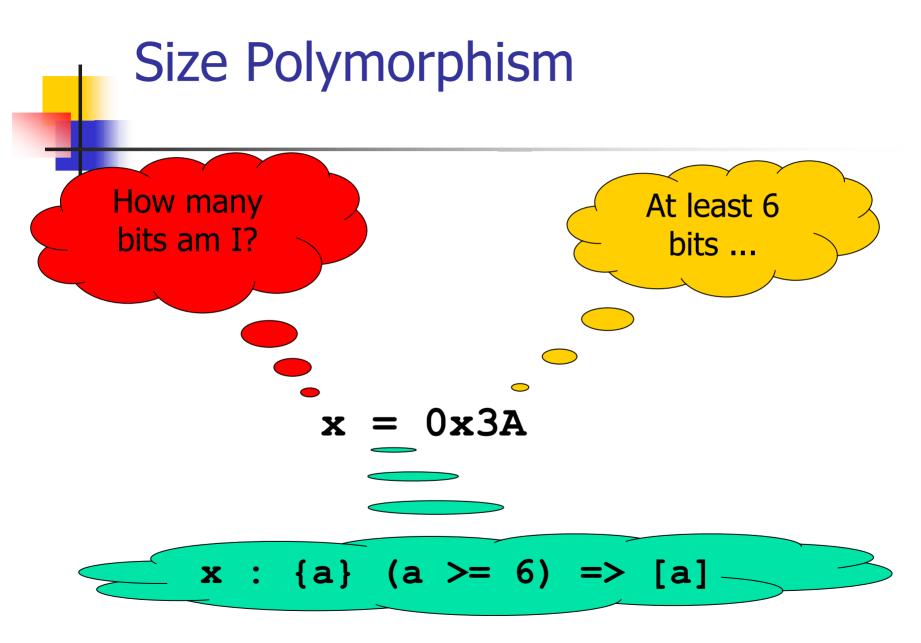
Cryptol Types

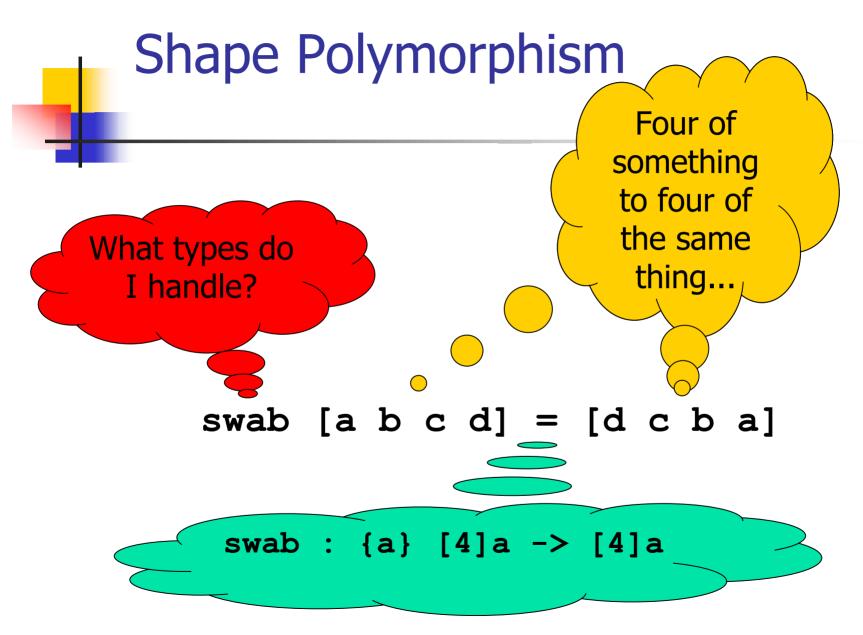
- "The State can be pictured as a rectangular array of bytes. This array has four rows, the number of columns is denoted by Nb and is equal to the block length divided by 32."
- state : [4][Nb][8];

Cryptol Types

- "The input and output used by Rijndael at its external interface are considered to be one-dimensional arrays of 8bit bytes numbered upwards from 0 to the 4*Nb-1. The Cipher Key is considered to be a one-dimensional array of 8-bit bytes numbered upwards from 0 to the 4*Nk-1."
- input : [4 * Nb][8];
- key : [4 * Nk][8];



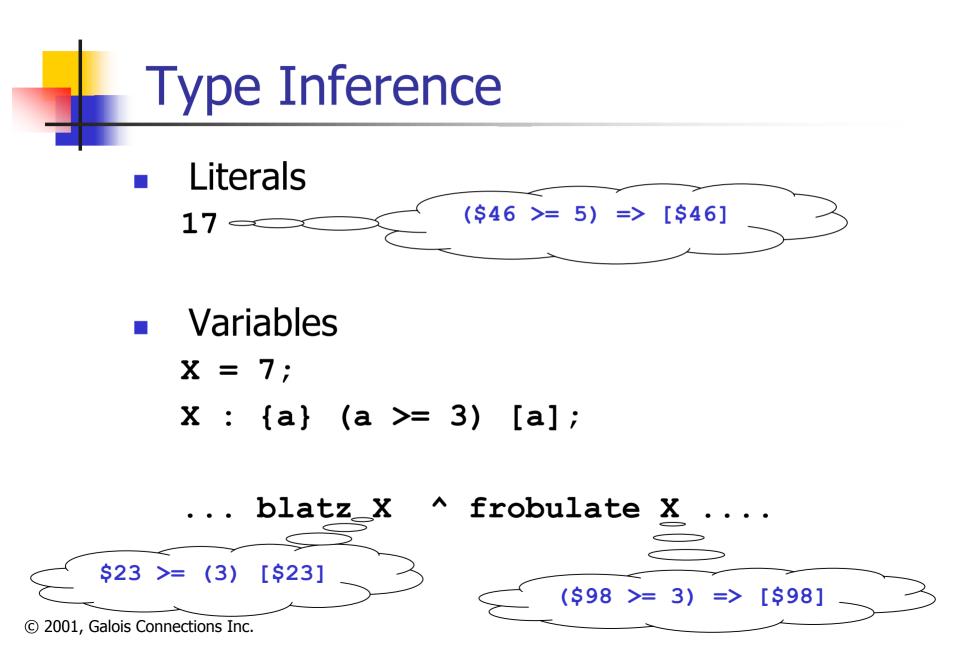




Syntax of Types

P ::= {a1 .. ai} (P1, ..., Pj) => (T1, ..., Tk) -> T

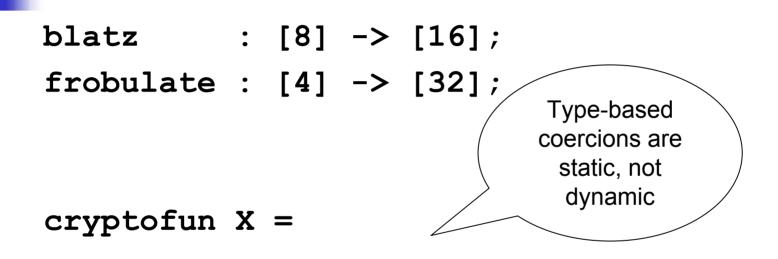
T ::= a S ::= a | Bit | Nat | [S]T | f (T1, ..., Tn) | T1 (+) T2 | inf f ::= width, lg2, min, max (+) ::= +, -, *, /, %, **



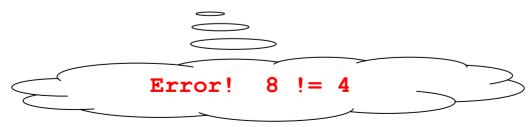
Definitions are Polymorphic

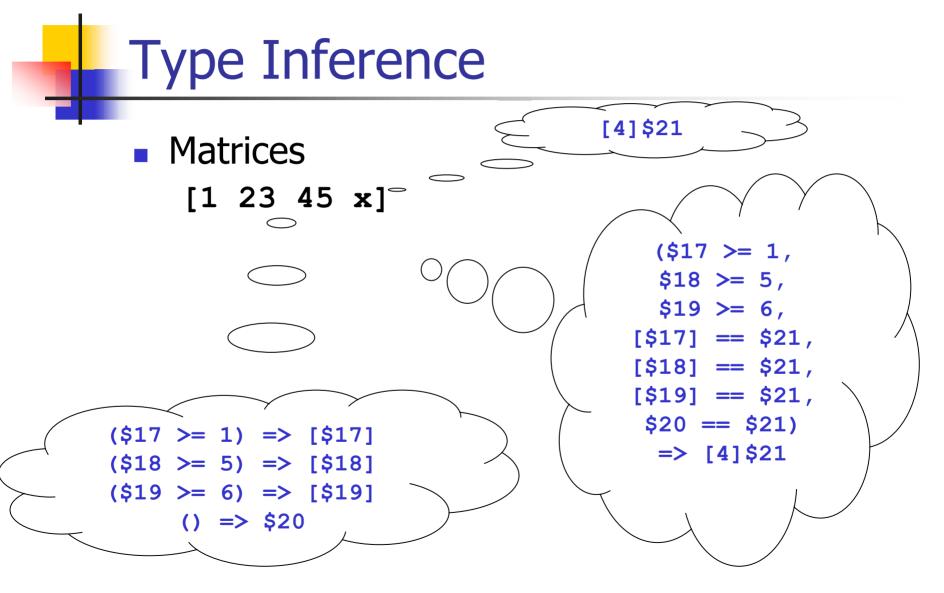
- blatz : [8] -> [16];
- frobulate : [4] -> [32];
- ... blatz X ^ frobulate X

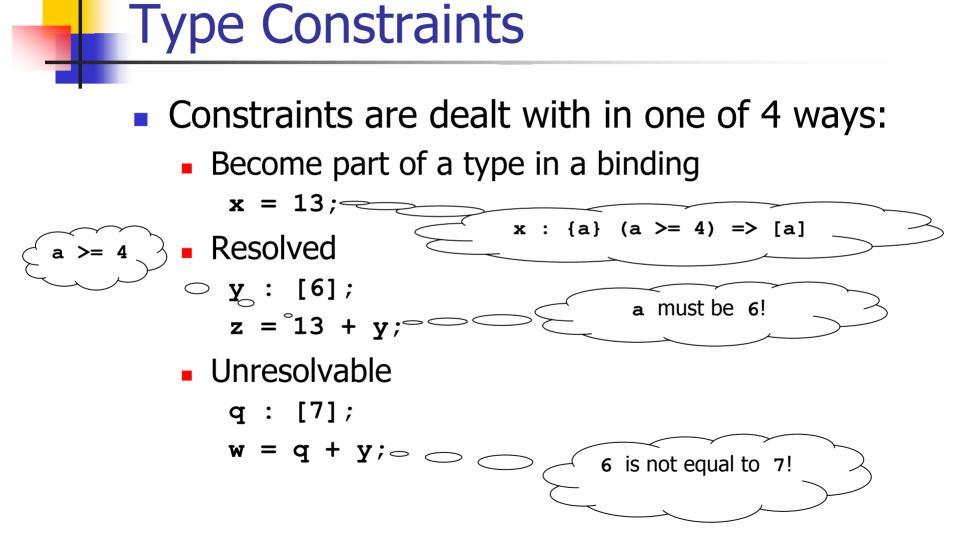
Parameters are not!

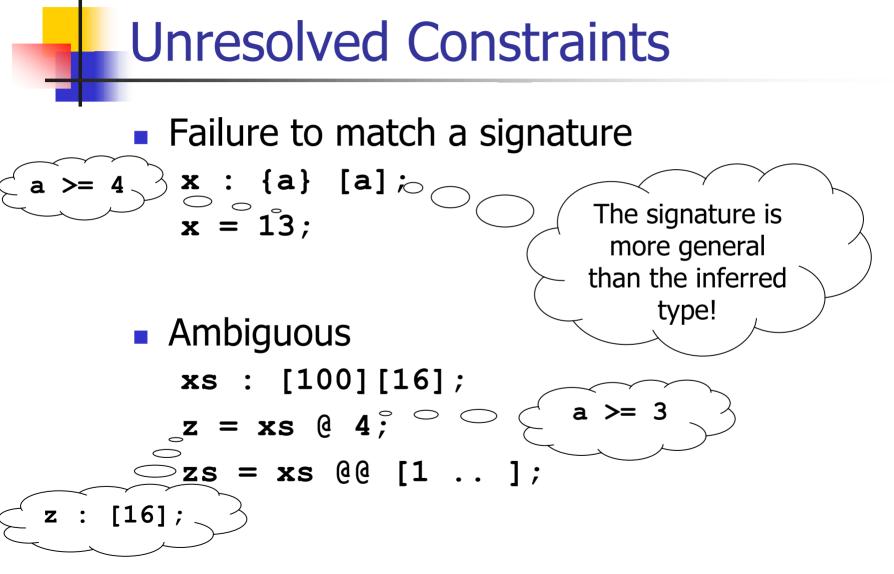


... blatz X ^ frobulate X









Defaulting

 Ambiguous constraints are subject to defaulting

a >= 4 becomes a == 4

Defaulting is not always desirable
 1 + 1 = ...

User Feedback – the Positives

- arbitrary bit widths
- ease of rearranging data
- streams
- interactive development
- declarative nature
- ease of extracting substructures

- no need to worry about space allocation
- bulk operations
- feedback from types

User Feedback – the Negatives

- no emacs mode
- interference from types
- no control over defaulting
- not enough higher-level abstractions
- no facility to format data

- want better debugging support
- type errors can be difficult to understand
- want more control over endianness

The Endian Problem

- Cryptol made the following design choices:
 - matrices indexed from the left
 [x₀ x₁ x₂ x₃ x₄ x₅ x₆ x₇]
 - literals indexed from the right

 $X_7 X_6 X_5 X_4 X_3 X_2 X_1 X_0$

consistent with little endian

e.g.: 0b10100110 ==
 [False True True False
 False True False True]

The Endian Problem

 But there are consequences:

 the swap: 0xab # 0xcd == 0xcdab split 0xcdab == [0xab 0xcd]
 in a left shift, whose "left" is it anyway? 0b0111 << 1 == 0b1110

> [True True True False] << 1 == [True True False False] == 0b0011

The Endian Problem

- Could chose differently:
 - matrices still indexed from the left
 - literals also indexed from the left
- Avoids swap and shift problems
- But less natural for encodings of numbers
- any fixed choice will lose: specifications feel free to use different conventions, thus we set up a road block to specification correspondence

Endianess

Design space:

- (syntactic) Bit 0 on the left or on the right
- (semantic) Bit 0 least or most significant

	MSB	LSB
right 	1000	0001
left	0001	1000

$$a = \sum_{i=0}^{23} a_i \cdot 2^{32i},$$

where each a_i is a 32-bit integer. If we write a and the a_i 's as bit streams then a is just the concatenation of all the a_i 's. That is, let || denote concatenation. Then we write

$$a = (a_{23} || a_{22} || \dots || a_1 || a_0).$$

The expression for $a \mod p$ turns out to be

$$a = t + 2s_1 + s_2 + s_3 + s_4 + s_5 + s_6 - d_1 - d_2 - d_3 \mod p.$$

Here the s_i 's and d_i 's are 384-bit numbers defined by:

© 2001,

The Endian Problem: Exploring the Solution Space

- Use a declarative approach
 - associate endianness with the type
- Use an operator-based approach
 - Special versions of operators:
 - splitBE, splitLE, joinBE, joinLE
 - what to do about #, @?

Sample Key Expansion Fragment

```
keyX key = ss @@ [ 0 .. n ]
 where {
    initS, initL : [1][32];
    initS = [0];
    initL = split (join key);
    ss = [|(s + a + b)| <<< 3 || s <- initS # ss
                              || a <- [1] # ss
                              || b <- [0] # ls |];
    ls = [| (l + a + b) <<< (a + b)
                              || 1 <- initL # 1s
                              || a <- ss
                              || b <- [0] # ls |];
```

Generated C code

```
extern uint32* keyX32(uint32*);
uint32* keyX32 (uint32* key keyX32)
{
    static uint32 arr0[2];
    uint32 v6, v5, v4, v3, v0;
    v0=joinWord(4, 8, key keyX32);
    v3=(v0)+(8);
    v4 = ROL(v3, 8);
    v5=(16)+(v4);
    v6=ROL(v5, 3);
    arr0[0]=8;
    arr0[1]=v6;
    return (arr0); }
```

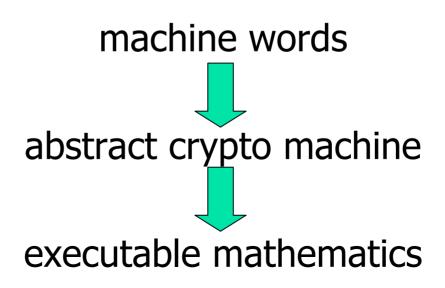
Sample Key Expansion Fragment

```
keyX key = ss @@ [ 0 .. n ]
 where {
    initS, initL : [1][36];
    initS = [0];
    initL = split (join key);
    ss = [|(s + a + b)| <<< 3 || s <- initS # ss
                              || a <- [1] # ss
                              || b <- [0] # ls |];
    ls = [| (l + a + b) <<< (a + b)
                              || 1 <- initL # 1s
                              || a <- ss
                              || b <- [0] # ls |];
```

```
extern uint32** keyX36(uint32*);
        uint32** keyX36 (uint32* key keyX36)
            static uint32* arr48[2];
        {
            static uint32 vec49[2]={8UL, 0UL};
            . . .
            copyOuter(2, v1, splitMatrix(1, 36, v0, arr38));
            copyOuter(2, v3,
              plusMatrix(0, 1, arrShape40, v1, vec39, arr41));
            copyOuter(2, v4, rolMatrix(36, v3, vec42, arr43));
            copvOuter(2, v5,
              plusMatrix(0, 1, arrShape45, vec44, v4, arr46));
            copyOuter(2, v6, rolMatrix(36, v5, 3, arr47));
            arr48[0]=vec49;
            arr48[1]=v6;
            return (arr48); }
© 2001, Galois Connections Inc.
```

The Future of Cryptol

- Crypto was in the mud, and now we've at least got it on dry land.
- Now we're headed towards higher ground:



Future Directions

- User-defined operators
- Extended matrix comprehensions
- Support for more arithmetics:
 - Flexible Precision arithmetic
 - Polynomial arithmetic
 - Arbitrary modulus arithmetic
- Support for 1-based and other indexing
- Flexible endian-ness

Flexible Precision Arithmetic

- Free ourselves from the bonds of power-oftwo modulus arithmetic
- Not arbitrary precision arithmetic
- New operators:

Polynomial Arithmetic

- $0x1a3 \equiv x^8 + x^7 + x^5 + x^1 + 1$
- New operators:

padd : {a b} ([a], [b]) -> [max(a, b)]
pmult : {a b} ([a],[b]) -> [a+b-1]
pdiv : {a b} ([a],[b]) -> [1+a-b]
pmod : {a b} ([a],[1+b]) -> [b]

Arbitrary Modulus Arithmetic

- New operators:
 - +% : (Mod n, a == width (n-1)) => ([a], [a]) -> [a]
 - *% : (Mod n, a == width (n-1)) => ([a], [a]) -> [a]

New binding form: (x + f y) withModulus 17

. . .

Future Directions

- Enhanced tracing/debugging
 - dump out internal registers from a run
 - format as LaTeX, HTML, ...
- Interface to C
- Interface to HCDSA
- Generate optimized, low-level code
 - FPGA
 - commercial crypto chip (e.g. AIM)

www.cryptol.net