GALOISCONNECTIONS

purely functional

., SR

Cryptol: A Domain Specific Language
for Cryptography

www.cryptol.net



i Cryptol Goals

= Specification correspondence

"Cryptol programs should be able to look like their
specifications”

= Freedom from data entry

"There shall be no barrier to the programmer
specifying a lookup table via a calculation”

s Abstraction Conduction

"Cryptol should provide a path towards higher-level
specifications of Cryptographic algorithms”

© 2001, Galois Connections Inc.



‘_L Crypto-algorithm domain analysis

= Spoke with crypto-algorithm designers

=« What are the important elements of algorithm
specification?

s Studied five AES finalists and DES

=« What do these algorithms have in common?
« What differences occur between them?

= Embody the domain analysis within a language
= Obtain feedback from crypto specialists

© 2001, Galois Connections Inc.



Relevant Concepts and
Abstractions

= Block ciphers

= Vectors and matrices

= Permutations

= Lookup tables

= Various Finite Element arithmetics
= Multiple views of data

= [teration and recurrence

© 2001, Galois Connections Inc.



i Block Ciphers

= Interface
encrypt : (Xkey,PT) -> CT
decrypt : (Xkey,CT) -> PT
keySchedule : Key -> Xkey

= Chained together to operate on streams

= Simple standard stream modes:
« Electronic Code Book (ECB)
=« Cipher Block Chaining (CBC)

© 2001, Galois Connections Inc.



i Bit Vectors

= Sizes ranging from 4 bits to 128 bits (8 and
32 most common)

= All the usual boolean ops

= Exclusive-or prevalent
= Simple modulo arithmetic (+, -, *, /)
= Permutations

= Mostly just rotations of bit vectors
= More general permutation used in DES

© 2001, Galois Connections Inc.



i Bit Vector Operations in RC6

a+b  integer addition modulo 2"

a—=b0  integer subtraction modulo 2%

ah  bitwise exclusive-or of w-bit words

axb  integer multiplication modulo 2%

a-< b rotate the w-bit word a to the left by the amount
given by the least significant lgw bits of b

a=b rotate the w-bit word a to the right by the amount
given by the least significant lgw bits of &

© 2001, Galois Connections Inc.



* Lookup Tables

© 2001, Galo

WORD Shox|

0x09d0c479,
Oxc9edaldd,
OxQfLlf25es,
OxffZidela,
DxB3631fE3,
Ox210abflE,
Dx&Z2aaETchE,
Ox56fha9kb53,
Oxael3ieT4a9,
O0x04046793,
DxclI90chel,
Uxchfasdoi,
Ox6laTdyal,
Ox38dez279f%,
DxE54dh3elb,
Ox3idlielae,
DxbhdedlakE,
Dx0f3hEd2e,
DxEebhileld,
O0x901d47d4%9k,
Dxehitisla,
OxldaacOiO,

OxzZBcEffeld,
OxT9T7dcc93,
Ox5L603T2E,
OxblcfEelZ3,
OQx259702058,
OxcbY9E0aZo,
OxTedddlikh,
OxEhZelf5c,
Dxebilaaelbd,
OxzZ3dbk5cle,
Ox07dfbE446,
Oxdfd=1d45,
Oxdlfd5763,
OxQ2682215,
Ox05hh%bkd3,
Oxf257fd62,
OxThoceddcE,
O0xQ0a050d4E,
OxT75feiiTE,
Oxfdodoeil,
Ou3afid5£0,
Oxl5ETedss,

OxEdaabci s,
DxBEAOEEZ e,
Dxcb9hclfl,
DxfldafdzeZ,
OxToafeTE4d,
Ox2BfdeBia,
Ox3Zalldld,
OxbheBE55tae,
Dx893365104,
Oxdocaelds,
OxtehBEEElq,
oxeafcEcali,
Oxddaa96c 3,
OxEf3Tocds,
OxTdodbded,
Ox3cdfld7l,
Dx9654f93e,
Oxfchdela s,
Ox2fodEZ%a,
Ox1090acef,
Dx62d4lfcdd,
Oxiafdidie,

Dx9dad7ZE7,
Ox2adb5T705,
OxddTffled,
OxielEledZ,
Ox3a7To314d4,
Oxiaolallc,
OxYcBefdBE6,
ODxdz2250kL0d,
Dx899404a66,
Ox2fezBE134,
Ox2d0dccda,
Oxdbllz9dea,
Ox3bechabE,
OxO92cz3iTe,
OxalZel 2o,
Dx30azel09,
DxeP9Ecloca,
Dxe3bf92E8E,
OxfolbkiZlae,
DxeQeT0dds,
Oxd4eldaiali,
Oxdzfz9e0l,

Ox7dff9bes,
OxlcalbatZ,
Oxaehfohfd,
OxBEhfbhiebé,
OxdfE46450,
Oxd340a664d,
OxBEO0foel3l,
Ox2894a7T21,
OxTEaTEdde,
OxSazz23942,
Oxadccaeshs,
Oxb0ddae20,
Oxababald,
Oxbfcheb93,
OxfaebzTeb,
Ox6BEebfh51,
OxzZdickhied,
OxcOT95504d,
Ox95helekhiEd,
OxdabzZe&d2,
OuThef3T29,
Ox29a9dlfe,

OxddzZzeE36l,
Qreibhd279d,
OxOdTZ2eedt,
OxTfdbfEac,
Oxbocedcifo,
OxTeaBZlcd,
OxabefOdad,
Oxez2lfhas3,
OxbaYbasdl,
OxlE63cdsh,
Qx3T9E670d,
Ox0f5407fh,
Oxbbeccdz20l,
Ox328E9die,
Ox3talc3ii0,
Ox9%c6llkadd,
OxZh062ZB97T,
OxO591laeel,
Ox6699458k,
Orxododd3ies,
OxBEhfldled,
OxefblOchi,



i Lookup Tables

s AKA S-boxes
= N-bit by m-bit lookup tables

= Both fixed and data-dependent (TwoFish)
= Fixed S-boxes are often calculated

= Intent is to capture notion of pre-computed
values

© 2001, Galois Connections Inc.



i Generating SBoxes

In the design of the 5-box 5, we generated the entries of 5 in a “psendorandom fashion™ and tested
that the resulting S-box has good differential and linear properties. The “pseudorandom™ S-boxes
were generated by setting for< = 0...102, 7= 0...4, S[5i+7] = SHA-1{5¢ | c1 | €2 |¢3); (where
SHA-1{+); is the 7'th word in the output of SHA-1). Here we view 1 as a 32-bit unsigned integer,
and 1, 2, €3 are some fixed constants. In our implementation we set ¢l = 0xb7el5162 ¢2 =
0x243f6a88 (which are the binary expansions of the fractional parts in e, w, respectively) and
we varied <3 until we found an S-box with good properties. We view SHA-1 as an operation on
byte-streams, and use little-endian convention to translate between words and bytes.

© 2001, Galois Connections Inc.



‘-L Matrices

dyo | 801|802 |83 |94 |95 Koo | Ko1 | Koo | Kos
dig|844|812|813|844|915 Kio | Kia| Kio | Kig
dy0 |8y | 82 |923|824 |95 Koo | Koi | Koo | Kas
Q30| 834 (832|833 |834 |35 Ko | Ka | Kso | Kss

Figure 1: Example of State (with Nb = 6) and Cipher Key (with Nk = 4) layout.

© 2001, Galois Connections Inc.



i Multiple views

m n 0 p no shift > m n 0
J k / cychc Shitt by G1 (1)

d e f cyclic shift by C2 (2)

w X ¥ Z cyclic shift by C3 i3]

Figure 3: ShiftRow operates on the rows of the State.

© 2001, Galois Connections Inc.



Figure 4: MixColumn operates on the columns of the State.

© 2001, Galois Connections Inc.

dp0 | @01 y3 | 04| %05 ® ( ) byo | Po bos|Doa|bos
ClX
a S b. .
N B R 1 ‘yﬂ_ a5 -5‘1‘5—.2.1._1‘ 1j |Ps3] 044 b1,5
dy0 | 92,1 a, dy3 1924|925 b, o b2 sz b,3|b,4|b2s
30| 9.4 33|94 |95 byo| b3 byy| b3y bss
a, . b3J




Matrix Arithmetic

= Matrix/vector multiplication arises on paper

z; = |X/2%| mod2® i=0,...,3
i, = .'?I'[.’]'.T.,:] P = “, c e e 3
20 : Ny : Ho
<1 _ L : 1
2%y . MDS s
Z3 T Y3
3
— Z A ZHI

= But rarely makes it into the reference code at
that level of abstraction

© 2001, Galois Connections Inc.



‘-L Other Arithmetic

= Polynomials
= often with bit coefficients
=« different interp of a bit vector

A byte b, consisting of bits by bs bs by bs b: by by, is considered as a polynomial with coefficient
in {0,1}:

B + b v b X+ b X b X+ by X+ by x+ by

= Galois Fields (TwoFish, Rijndael)

© 2001, Galois Connections Inc.



‘L Bounded Iteration

= Crypto tends to avoid interesting control

= For loops
= Over fixed counts

fori=1tordo
{
t=(Bx (2B +1)) < lgw
w=(Dx 2D +1)) <& lgw
A=((ASt) u)+ .52]
C=((Cou)<t)+ 5[2i +1]
(4,B,C,D) = (B,C, D, A)

© 2001, Galois Connections Inc.



‘L Feistel Network (TwoFish)

"""""""""""""

© 2001, Galois Connections Inc.

=)

i
Pl I :
D T’HE —sr—
1 | | H
1! H

________________________

1
ALK +—

........



‘L Recurrence

= Found in key expansion

v =3 X max{c, 2r + 4}
for s=1 to v do

1
A=Sli]=(Sli]+ A+ B)« 3
B=L[jl=(L[j]+ A+ B)«< (A + B)
¢ = (¢ + 1) mod (2r + 4)
j=((+1)modec

}

© 2001, Galois Connections Inc.



Parameters

= Most algorithms operate on a range of sizes

= Key
= Block

= Sizes may be constrained

= Number of iterations may depend on size

Like RCA. ROG is a Mlly parameterized family of enceyption alsorithms. A ver-
son of RCG 1s more accurately specified as RCGw/r/b where the word size is
w bits, encryption consists of a nomnegative number of rounds r, and & denotes
the length of the encryption key in byvtes, Since the AES subnission is targeted
at wr =32 and r = 20, we shall use ROG as shorthand to refer to such versions.
When any other value of w or r is intended in the text, the parameter values
will be specified as ROG-w v Of particular relevance to the AES effort will b=
the versions of ROG with 16-, 24-, and 32-byte keys.

© 2001, Galois Connections Inc.



From Domain Analysis

* to a Language

© 2001, Galois Connections Inc.



:H Data in Cryptol

/ single bits

= The smallest elements: Bits
= Everything else is a homogene atrix

Tr
4 elements, each
8 (or more) bits

[False True False True False Fal

oxaa ——— 7/ (or more) bits

[0x3F 0x02 0x41 0xD8] ‘ 2 elements, each

having 4 elements,

[[1 23 4] [5678]] __each 4 (or more) bits

[1 .. 10] 10 elements, each
© 2001, Galois Connections Inc. Of 4 (Or more) bItS




Numbers

= Numbers are matrices of bits
= Decimal, octal (00), hex (0x), binary (0b)

= Compile-time switch chooses between

Little endian:
0xC5 ==
[True False True False False False True True]

Big endian:
0xC5 ==
[True True False False False True False True]

© 2001, Galois Connections Inc.



Standard Operations

= Arithmetic operators = Comparison operators
= Result is modulo the word = Equality, order
size of the arguments s == l= < <= > >=
=+ - X/ % kx = returns a Bit
= Boolean operators = Conditional operator
= From bits, t(? arbitrarily = Expression-level if-then-else
nested matrices of the same e C's 27b
shape = Like C's a”2b:c
m & | A~

© 2001, Galois Connections Inc.



‘_L Matrices

= Matrix operators

=« Concatenation, indexing, size
= # @ Q@R width

[1..5] # [3 6 8] = [12 3 45 3 6 8]

= Zero-based indexing from the left
[50 .. 99] @ 10 = 60

© 2001, Galois Connections Inc.



‘-L Shifts and Rotations

= Shifts << >>
= Rotations <<< >>>
= Operate over top-level of a matrix
[0 1 2 3] << 2
(2 3 0 0]
= For words, corresponds to usual notion
OxF381 >>> 4
Ox1F38

© 2001, Galois Connections Inc.



‘L Splitting and Joining matrices

0x99FAC6F975BABB3E

J split

[0x99 OxFA 0xC6 0xF9 0x75 O0xBA O0xBB O0x3E]

J join

0x99FAC6F975BABB3E

© 2001, Galois Connections Inc.



‘L splitBy

= how shall we: split [0 1 2 3 4 5]7

xs = [01 2 3 4 5]

/NtBy(B, Xs)

[0 1] [2 3] [4 5]

© 2001, Galois Connections Inc.



‘L groupBy

= how shall we: split [0 1 2 3 4 5]7

xs = [01 2 3 4 5]

/NPBY (2, xs)

[0 1] [2 3] [4 5]

© 2001, Galois Connections Inc.



i Matrix Comprehensions

= Borrowed the comprehension notion from set
theory
« {a+b|acA becB}
=« Adapted to matrices (i.e. sequences)

= Applying an operation to each element

[| 2*x + 3 || x<- [1 2 3 4] |]
= [57 9 11]

© 2001, Galois Connections Inc.



Traversals

= Cartesian traversal

[l [xy]l Il =x<-10..2], y <- [3..4] |]
= [[0 3] [0 4] [1 3] [1 4] [2 3] [2 4]]

= Parallel traversal

[| x+vyv || x<- [1..3]

Iy <= [3..7] 1]
= [4 6 8]

© 2001, Galois Connections Inc.



i Row traversals

m ] 0 P no shift > m n a p

J k / Cyclic SRt by G1 (1) > j

d e f cyclic shift by C2 (2) > d e

w X y Z cyclic Shift :wIL"E (3) | | W X y

Figure 3: ShiftRow operates on the rows of the State.

[| row >>> 1 || row <- state || 1 <- shifts |]

© 2001, Galois Connections Inc.



i Column traversals

aDj b[]]
0| 90,1 y3 | Q04| %05 ® ( ) byo | bos bos|Doa|bos
ClX
a. . ——— b
o8| “1i ‘yﬁ_ 415 %-E‘Ut 1 P15 | Bra | Brs
dy0 | 92,1 a, dy3 1924|925 b, o] b2 sz b,3|b,4|b2s
30| 9.4 33|94 |95 byo| b3 byy| b3y bss
a, . bsj

Figure 4: MixColumn operates on the columns of the State.

transpose [| ptimes (col, cx) ||

© 2001, Galois Connections Inc.

col <- transpose state

]



i Nested traversals

S-box

Qoo | 9o | Foptlaaldy j_ﬂ}--"""
dig| @14 | a4, af- : { dy5

o
8y0 (831|822 823824925
834|834 | 835|833 (834|835

[

[

b b.. b . 1b b
_-_"""""2‘9-_. 0,1 0, 0,4 0,5
"'lq._--
10| b1 Nﬂ* ij Pia|Dis
2.0 If32,1 bz,z b2.3 b2.4 bz,s
3.0 b3,1 ba,z ba,z b:il,d b3,5

Figure 2: ByteSub acts on the individual bytes of the State.

sbox a

© 2001, Galois Connections Inc.

a <-

Yow

]

row <-

state

]




i Cryptol Types

= Capture the size and dimensions of matrices

= Written as a sequence of bracketed
dimensions outermost to innermost:

213
has type: [8]Bit

[ 01 ] [23]1 [45]1 1016711
has type: [4] [2] [8]Bit

© 2001, Galois Connections Inc.



i Cryptol Types

= Capture the size and dimensions of matrices

= Written as a sequence of bracketed
dimensions outermost to innermost:

213
has type: [8]

[ 01 ] [ 23] 1451116711
has type: [4][2] [8]

© 2001, Galois Connections Inc.



i Cryptol Types

s “The State can be pictured as a rectangular array
of bytes. This array has four rows, the number of
columns 1s denoted by Nb and 1s equal to the
block length divided by 32.”

m state : [4] [Nb][8];

© 2001, Galois Connections Inc.



i Cryptol Types

“The input and output used by Rijndael at its external
interface are considered to be one-dimensional arrays of 8-
bit bytes numbered upwards from O to the 4*Nb-1. The
Cipher Key 1s considered to be a one-dimensional array of
8-bit bytes numbered upwards from 0 to the 4*Nk-1.”

= input : [4 * Nb][8]:;
» key : [4 * Nk]([8];

© 2001, Galois Connections Inc.



& Size Polymorphism

add32 (0xB4, O0x33)

© 2001, Galois Connections Inc.



Size Polymorphism

At least 6
bits ...

PN O
PN -

@ O

x = 0x3A

© 2001, Galois Connections Inc.




Four of
something
to four of
the same

* Shape Polymorphism

O
swab [a b c d] = [d ¢ b a]

© 2001, Galois Connections Inc.



i Syntax of Types

P ::={al .. ai} (pP1, ..., Pj) =>
(Tl1, ..., Tk) -> T

T ::= a S ::= a
| Bit Nat
| [S]T £f (Tl1, ..., Tn)
Tl (+) T2
inf

f ::= width, 1lg2, min, max
(+) =+, -, */ /I %r **

© 2001, Galois Connections Inc.



‘L Type Inference

= Literals
17

= Variables
X =17;
X : {a} (a >= 3) [a]l;

. blagégx ~ frobulate X ....

[ —

..
($98 >= 3) => [$98]

© 2001, Galois Connections Inc.



‘L Definitions are Polymorphic

X =17;
X : {a} (a >= 3) [a]l;
blatz : [8] -> [16];

frobulate : [4] -> [32];

. blatz X * frobulate X

© 2001, Galois Connections Inc.



Parameters are not!

blatz : [8] -> [16];
frobulate : [4] -> [32];

Type-based
coercions are
static, not
dynamic
cryptofun X =

. blatz X * frobulate X

© 2001, Galois Connections Inc.



‘L Type Inference
= Matrices

[S—

[1 23 45 x]~
=
(17 >= 1,
- <)<:> $18 >= 5,
<::> $19 >= 6,
D [$17] == $21,
[$18] == $21,
[$19] == $21,
$20 == $21)

=> [$17]
($18 >= 5) => [$18]
($19 >= 6) => [$19]
$20

=> [4]$21

© 2001, Galois Connections Inc.



i Type Constraints

= Constraints are dealt with in one of 4 ways:
= Become part of a type in a binding

X = 13,’
x : {a} (a >= 4) => [a]
= Resolved ‘
= % [6]7 must be 6!
= a :
7 = 13 + y’.<:>©©

= Unresolvable
q: [7];

w = + ) = .
9 Y — > 6 is not equal to 7!

© 2001, Galois Connections Inc.



i Unresolved Constraints

= Failure to match a signature

{mapr e oo
S o . -
X

= 13;

The signature is
more general
than the inferred

type!

= Ambiguous

xs : [100][16];

z =xs Q@ 4; — <«
—Sgzs = xs @@ [1 .. 1;

z : [16];

© 2001, Galois Connections Inc.



i Defaulting

= Ambiguous constraints are subject to
defaulting
a > 4 becomes a ==

= Defaulting is not always desirable
1+1=...

© 2001, Galois Connections Inc.



i User Feedback — the Positives

= arbitrary bit widths = Nno need to worry about
= ease of rearranging space allocation

data = bulk operations
= streams = feedback from types

= interactive development
= declarative nature

= ease of extracting
substructures

© 2001, Galois Connections Inc.



i User Feedback — the Negatives

no emacs mode = want better debugging
interference from types support

no control over = type errors can be
defaulting difficult to understand
not enough higher-level = want more control over
abstractions endianness

no facility to format
data

© 2001, Galois Connections Inc.



* The Endian Problem

= Cryptol made the following design choices:
= Mmatrices indexed from the left
[ Xo X1 X2 X3 X4 X5 X6 X7 ] c0 @

=« literals indexed from the right

X7 X6 X5 X4 X3 X5 X1 Xy

= €.4d.. 0b10100110 ==
[False True True False
False True False True]

© 2001, Galois Connections Inc.



i The Endian Problem

= But there are consequences:

« the swap: Oxab # Oxcd == Oxcdab
split Oxcdab == [Oxab O0xcd]
= in a left shift, whose “left” is it anyway?
Ob0111 << 1
== 0b1110

[True True True False] << 1
== [True True False False]
== 0b0011

© 2001, Galois Connections Inc.



i The Endian Problem

= Could chose differently:
= matrices still indexed from the left
= literals also indexed from the left
= Avoids swap and shift problems
= But less natural for encodings of numbers

= any fixed choice will lose:
specifications feel free to use different
conventions, thus we set up a road block to
specification correspondence

© 2001, Galois Connections Inc.



i Endianess

= Design space:
= (syntactic) Bit 0 on the left or on the right
= (semantic) Bit 0 least or most significant

MSB LSB

right 1000 0001

left 0001 1000

© 2001, Galois Connections Inc.



23
a = E ﬂi . 232[:'

i=0
where each a; 18 a 32-bhit integer. If we write a and the a;'s as bit streams then a is just
the concatenation of all the a;’s. That is, let || denote concatenation. Then we write

a=(a || ax|...]| & || a).
The expression for a mod p turns out to be

a=Ft+28) 482483 +84+s85+85—d —da—dzy modp

Here the 2;'s and d;'s are 384-bit numbers defined by:

t :(311 ||ﬂlu | ag || ﬂa | a7 || ag [| a5 || a4 || ﬂ! | ag || ﬂ1 I ﬂﬂ )
sp=( 0 0o ol 01|as|asl|fa| 0 0 0| 0]
85 = (agg || ags || any || agp || @ye || as || ayr || @i || ays || @ya || @13 || @12 )
83 (ﬂzn || ag || aig || ayy || ag || aps || dy4 || apg || aya || aog || ana || ﬂm ]
$4 = (ayg || ﬂla | axz || ﬂlﬁ | ays || arg || @1z || @12 ] ﬂﬂn o ﬂm | o)
ss =( 0 || O 0 0 [[azs||a | an|[axl| 0| 0 [ 0| 0)
se =( 0| OO O 0 0 |[assl|asz[anl| 0 [ 0 | az)
dy = (ag || an || ax || aie || a1s || @17 || @us || a5 || a1a || €13 || @12 || ﬂz )
© 2001, dy=( 0 [ O[O 0 0f 0l 0| ay | azl|a 1||aau o)
ds=({ 0 OJJOJ O O O O] a|las| 0] 0] 0]



The Endian Problem:
‘L Exploring the Solution Space

= Use a declarative approach
= associate endianness with the type

= Use an operator-based approach
= Special versions of operators:
= SplitBE, splitLE, joinBE, joinLE
=« What to do about #, @7

© 2001, Galois Connections Inc.



‘L Sample Key Expansion Fragment

keyX key = ss @@ [ O .. n ]
where {
initS, initL : [1][32];

[0];

initL = split (join key)

ss = [|(s + a + b) << 3 || s <-
|| a <-
|| b <-

1s =[] (1 + a + b) <K (a + b)
] 1 <-
|| a <-
|| b <-

initsS

};

© 2001, Galois Connections Inc.

initS # ss
[1] # ss
[0] # 1s |];

initL # 1s
ss

[0] # 1s |];



i Generated C code

extern uint32* keyX32 (uint32%*) ;
uint32* keyX32 (uint32* key keyX32)
{ static uint32 arr0[2];

uint32 vé6, v5, v4, v3, vO;

v0=joinWord (4, 8, key keyX32);

v3=(v0)+(8) ;

v4=ROL (v3, 8);

v5=(16)+(v4) ;

v6=ROL (v5, 3);

arr0[0]=8;

arr0O[1l]=v6;

return (arr0),; }

© 2001, Galois Connections Inc.



‘L Sample Key Expansion Fragment

keyX key = ss @@ [ O .. n ]
where {
initS, initL : [1]([36];

[0];

initL = split (join key)

ss = [|(s + a + b) << 3 || s <-
|| a <-
|| b <-

1s =[] (1 + a + b) <K (a + b)
] 1 <-
|| a <-
|| b <-

initsS

};

© 2001, Galois Connections Inc.

initS # ss
[1] # ss
[0] # 1s |];

initL # 1s
ss

[0] # 1s |];



extern uint32** keyX36 (uint32%*) ;
uint32** keyX36 (uint32* key keyX36)
{ static uint32* arr4d8[2];

static uint32 vec49[2]={8UL, OUL};

copyOuter (2, vl1l, splitMatrix(l, 36, v0, arr38));
copyOuter (2, v3,

plusMatrix (0, 1, arrShaped40, vl1l, vec39, arr4l));
copyOuter (2, v4, rolMatrix (36, v3, vec4d42, arr4d3));
copyOuter (2, v5,

plusMatrix (0, 1, arrShaped5, vecéd44, v4, arrde));
copyOuter (2, v6, rolMatrix (36, v5, 3, arrd7));
arr48[0]=vecd9;
arrd8[1l]=v6;

_ return (arr48); }
© 2001, Galois Connections Inc.



i The Future of Cryptol

= Crypto was in the mud, and now we've at
least got it on dry land.

= Now we're headed towards higher ground:

machine words

-

abstract crﬁo machine

executable mathematics

© 2001, Galois Connections Inc.



i Future Directions

= User-defined operators
= Extended matrix comprehensions

= Support for more arithmetics:
= Flexible Precision arithmetic
= Polynomial arithmetic
= Arbitrary modulus arithmetic

= Support for 1-based and other indexing
= Flexible endian-ness

© 2001, Galois Connections Inc.



i Flexible Precision Arithmetic

= Free ourselves from the bonds of power-of-
two modulus arithmetic

= Not arbitrary precision arithmetic

= New operators:
+": ([a], [b]) -> [max(a, b) + 1]
* 1 ([a], [b]) -> [a + b]
%" : ([al, [b]) -> [b]

© 2001, Galois Connections Inc.



i Polynomial Arithmetic

s 0xla3 = X8+ X+ x°+ xi+1

= New operators:
padd : {a b} ([a], [b]) -> [max(a, b)]
pmult : {a b} ([a]l,[b]) -> [a+b-1]
pdiv : {a b} ([a]l,[b]) -> [l+a-b]
pmod : {a b} ([a],[1+b]) -> [b]

© 2001, Galois Connections Inc.



i Arbitrary Modulus Arithmetic

= New operators:

+% : (Mod n, a == width (n-1)) =>
([a], [a]l) -> [a]
*3 : (Mod n, a == width (n-1)) =>

([al, [a]) -> [a]

= New binding form:
(x + £ y) withModulus 17

© 2001, Galois Connections Inc.



i Future Directions

= Enhanced tracing/debugging

= dump out internal registers from a run
=« format as LaTeX, HTML, ...

s Interface to C
= Interface to HCDSA

= Generate optimized, low-level code
« FPGA
= commercial crypto chip (e.g. AIM)

© 2001, Galois Connections Inc.



The End

www.cryptol.net



	GALOISCONNECTIONS
	Cryptol Goals
	Crypto-algorithm domain analysis
	Relevant Concepts and Abstractions
	Block Ciphers
	Bit Vectors
	Bit Vector Operations in RC6
	Lookup Tables
	Lookup Tables
	Generating SBoxes
	Matrices
	Multiple views
	Multiple views
	Matrix Arithmetic
	Other Arithmetic
	Bounded Iteration
	Feistel Network (TwoFish)
	Recurrence
	Parameters
	From Domain Analysisto a Language
	Data in Cryptol
	Numbers
	Standard Operations
	Matrices
	Shifts and Rotations
	Splitting and Joining matrices
	splitBy
	groupBy
	Matrix Comprehensions
	Traversals
	Row traversals
	Column traversals
	Nested traversals
	Cryptol Types
	Cryptol Types
	Cryptol Types
	Cryptol Types
	Size Polymorphism
	Size Polymorphism
	Shape Polymorphism
	Syntax of Types
	Type Inference
	Definitions are Polymorphic
	Parameters are not!
	Type Inference
	Type Constraints
	Unresolved Constraints
	Defaulting
	User Feedback – the Positives
	User Feedback – the Negatives
	The Endian Problem
	The Endian Problem
	The Endian Problem
	Endianess
	
	The Endian Problem:Exploring the Solution Space
	Sample Key Expansion Fragment
	Generated C code
	Sample Key Expansion Fragment
	
	The Future of Cryptol
	Future Directions
	Flexible Precision Arithmetic
	Polynomial Arithmetic
	Arbitrary Modulus Arithmetic
	Future Directions
	The End

