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Cryptol Goals

� Specification correspondence
“Cryptol programs should be able to look like their

specifications”

� Freedom from data entry
“There shall be no barrier to the programmer

specifying a lookup table via a calculation”

� Abstraction Conduction
“Cryptol should provide a path towards higher-level

specifications of Cryptographic algorithms”
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Crypto-algorithm domain analysis

� Spoke with crypto-algorithm designers
� What are the important elements of algorithm

specification?

� Studied five AES finalists and DES
� What do these algorithms have in common?
� What differences occur between them?

� Embody the domain analysis within a language
� Obtain feedback from crypto specialists
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Relevant Concepts and
Abstractions

� Block ciphers
� Vectors and matrices
� Permutations
� Lookup tables
� Various Finite Element arithmetics
� Multiple views of data
� Iteration and recurrence
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Block Ciphers

� Interface
encrypt : (Xkey,PT) -> CT
decrypt : (Xkey,CT) -> PT
keySchedule : Key -> Xkey

� Chained together to operate on streams
� Simple standard stream modes:

� Electronic Code Book (ECB)
� Cipher Block Chaining (CBC)
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Bit Vectors

� Sizes ranging from 4 bits to 128 bits (8 and
32 most common)

� All the usual boolean ops
� Exclusive-or prevalent

� Simple modulo arithmetic (+, -, *, /)
� Permutations

� Mostly just rotations of bit vectors
� More general permutation used in DES
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Bit Vector Operations in RC6
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Lookup Tables
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Lookup Tables

� AKA S-boxes
� n-bit by m-bit lookup tables

� Both fixed and data-dependent (TwoFish)
� Fixed S-boxes are often calculated

� Intent is to capture notion of pre-computed
values
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Generating SBoxes
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Matrices
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Multiple views
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Multiple views
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Matrix Arithmetic

� Matrix/vector multiplication arises on paper

� But rarely makes it into the reference code at
that level of abstraction
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Other Arithmetic

� Polynomials
� often with bit coefficients
� different interp of a bit vector

� Galois Fields (TwoFish, Rijndael)
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Bounded Iteration

� Crypto tends to avoid interesting control
� For loops

� Over fixed counts
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Feistel Network (TwoFish)
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Recurrence

� Found in key expansion
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Parameters

� Most algorithms operate on a range of sizes
� Key
� Block

� Sizes may be constrained
� Number of iterations may depend on size
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From Domain Analysis
to a Language

Cryptol

Domain-specific
language for

cryptoalgorithms
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Data in Cryptol

� The smallest elements: Bits
� Everything else is a homogeneous matrix

[False True False True False False True]

0x4A

[0x3F 0x02 0x41 0xD8]

[[1 2 3 4] [5 6 7 8]]

[1 .. 10]

7 single bits

7 (or more) bits
4 elements, each
8 (or more) bits

2 elements, each
having 4 elements,

each 4 (or more) bits

10 elements, each
of 4 (or more) bits
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Numbers

� Numbers are matrices of bits
� Decimal, octal (0o), hex (0x), binary (0b)
� Compile-time switch chooses between

Little endian:
0xC5 ==
[True False True False False False True True]

Big endian:
0xC5 ==
[True True False False False True False True]
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Standard Operations

� Arithmetic operators
� Result is modulo the word

size of the arguments
� + - * / % **

� Boolean operators
� From bits, to arbitrarily

nested matrices of the same
shape

� & | ^ ~

� Comparison operators
� Equality, order
� == != < <= > >=

� returns a Bit

� Conditional operator
� Expression-level if-then-else
� Like C’s a?b:c
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Matrices

� Matrix operators
� Concatenation, indexing, size
� # @ @@ width

[1..5] # [3 6 8]  =  [1 2 3 4 5 3 6 8]

� Zero-based indexing from the left
[50 .. 99] @ 10  =  60
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Shifts and Rotations
� Shifts <<    >>
� Rotations <<<   >>>
� Operate over top-level of a matrix

[0 1 2 3] << 2
[2 3 0 0]

� For words, corresponds to usual notion
0xF381 >>> 4

0x1F38
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Splitting and Joining matrices

0x99FAC6F975BABB3E

split

[0x99 0xFA 0xC6 0xF9 0x75 0xBA 0xBB 0x3E]

0x99FAC6F975BABB3E

join
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splitBy
� how shall we: split [0 1 2 3 4 5]?

  xs = [0 1 2 3 4 5]

    [0 1]   [2 3]   [4 5]

splitBy(3, xs)
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groupBy
� how shall we: split [0 1 2 3 4 5]?

  xs = [0 1 2 3 4 5]

    [0 1]   [2 3]   [4 5]

groupBy(2, xs)
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Matrix Comprehensions

� Borrowed the comprehension notion from set
theory
� { a+b | a � A, b � B}
� Adapted to matrices (i.e. sequences)

� Applying an operation to each element

[| 2*x + 3  ||  x <- [1 2 3 4] |]
  =  [5 7 9 11]
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Traversals

� Cartesian traversal

[| [x y]  ||  x <- [0..2], y <- [3..4] |]
   =  [[0 3] [0 4] [1 3] [1 4] [2 3] [2 4]]

� Parallel traversal

[| x + y  ||  x <- [1..3]
          ||  y <- [3..7] |]
  =  [4 6 8]
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Row traversals

[| row >>> i || row <- state || i <- shifts |]
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Column traversals

transpose [| ptimes (col, cx) || col <- transpose state |]
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Nested traversals

[| [| sbox a || a <- row |] || row <- state |]
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Cryptol Types

� Capture the size and dimensions of matrices
� Written as a sequence of bracketed

dimensions outermost to innermost:
213

has type: [8]Bit

[ [ 0 1 ] [ 2 3 ] [ 4 5 ] [ 6 7 ] ]

               has type: [4][2][8]Bit
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Cryptol Types

� Capture the size and dimensions of matrices
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               has type: [4][2][8]Bit
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Cryptol Types

� “The State can be pictured as a rectangular array
of bytes. This array has four rows, the number of
columns is denoted by Nb and is equal to the
block length divided by 32.”

� state : [4][Nb][8];
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Cryptol Types
� “The input and output used by Rijndael at its external

interface are considered to be one-dimensional arrays of 8-
bit bytes numbered upwards from 0 to the 4*Nb-1. The
Cipher Key is considered to be a one-dimensional array of
8-bit bytes numbered upwards from 0 to the 4*Nk-1.”

� input : [4 * Nb][8];
� key   : [4 * Nk][8];
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add32 (0xB4, 0x3A)

Size Polymorphism

How many
bits am I?

Aha!
Must be
32 bits

             0x3A 
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Size Polymorphism

x = 0x3A

How many
bits am I?

At least 6
bits ...

x : {a} (a >= 6) => [a]
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Shape Polymorphism

swab [a b c d] = [d c b a]

What types do
I handle?

Four of
something

...

Four of
something
to four of
the same
thing...

swab : {a} [4]a -> [4]a
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Syntax of Types
P ::= {a1 .. ai} (P1, ..., Pj) =>
      (T1, ..., Tk) -> T

T ::= a           S ::= a
    | Bit             | Nat
    | [S]T            | f (T1, ..., Tn)
                      | T1 (+) T2
                      | inf
 f  ::= width, lg2, min, max
(+) ::= +, -, *, /, %, **
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 Type Inference

� Literals
17

� Variables
X = 7;
X : {a} (a >= 3) [a];

... blatz X  ^ frobulate X ....

$23 >= (3) [$23]
($98 >= 3) => [$98]

($46 >= 5) => [$46]
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Definitions are Polymorphic
X = 7;
X : {a} (a >= 3) [a];

blatz     : [8] -> [16];
frobulate : [4] -> [32];

... blatz X  ^  frobulate X    ...
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Parameters are not!
blatz     : [8] -> [16];
frobulate : [4] -> [32];

cryptofun X =

... blatz X  ^  frobulate X    ...

Error!  8 != 4

Type-based
coercions are

static, not
dynamic
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Type Inference

� Matrices
[1 23 45 x]

($17 >= 1) => [$17]
($18 >= 5) => [$18]
($19 >= 6) => [$19]

() => $20

[4]$21

($17 >= 1,
$18 >= 5,
$19 >= 6,

[$17] == $21,
[$18] == $21,
[$19] == $21,
$20 == $21)
=> [4]$21
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Type Constraints

� Constraints are dealt with in one of 4 ways:
� Become part of a type in a binding

x = 13;

� Resolved
y : [6];
z = 13 + y;

� Unresolvable
q : [7];
w = q + y;

x : {a} (a >= 4) => [a]

a must be 6!

6 is not equal to 7!

a >= 4
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Unresolved Constraints

� Failure to match a signature
x : {a} [a];
x = 13;

� Ambiguous
xs : [100][16];
z = xs @ 4;
zs = xs @@ [1 .. ];

The signature is
more general

than the inferred
type!

a >= 4

a >= 3

z : [16];
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Defaulting

� Ambiguous constraints are subject to
defaulting
a >= 4  becomes  a == 4

� Defaulting is not always desirable
1 + 1 = ...
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User Feedback – the Positives
� arbitrary bit widths
� ease of rearranging

data
� streams
� interactive development
� declarative nature
� ease of extracting

substructures

� no need to worry about
space allocation

� bulk operations
� feedback from types
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User Feedback – the Negatives
� no emacs mode
� interference from types
� no control over

defaulting
� not enough higher-level

abstractions
� no facility to format

data

� want better debugging
support

� type errors can be
difficult to understand

� want more control over
endianness
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The Endian Problem

� Cryptol made the following design choices:
� matrices indexed from the left
   [ x0 x1 x2 x3 x4 x5 x6 x7 ]

� literals indexed from the right
   x7 x6 x5 x4 x3 x2 x1 x0

� e.g.: 0b10100110 ==
    [False True True False
     False True False True]

consistent
with streams

consistent with
little endian
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The Endian Problem

� But there are consequences:
� the swap: 0xab # 0xcd  == 0xcdab
        split 0xcdab == [0xab 0xcd]

� in a left shift, whose “left” is it anyway?
0b0111 << 1
    == 0b1110

[True True True False] << 1
    == [True True False False]
    == 0b0011
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The Endian Problem

� Could chose differently:
� matrices still indexed from the left
� literals also indexed from the left

� Avoids swap and shift problems
� But less natural for encodings of numbers
� any fixed choice will lose:

specifications feel free to use different
conventions, thus we set up a road block to
specification correspondence
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Endianess

� Design space:
� (syntactic) Bit 0 on the left or on the right
� (semantic) Bit 0 least or most significant

0001

1000

1000

0001

LSBMSB

right

left
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The Endian Problem:
Exploring the Solution Space

� Use a declarative approach
� associate endianness with the type

� Use an operator-based approach
� Special versions of operators:

� splitBE, splitLE, joinBE, joinLE
� what to do about #, @?
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Sample Key Expansion Fragment
keyX key = ss @@ [ 0 .. n ]
  where {
    initS, initL : [1][32];
    initS = [0];
    initL = split (join key);
    ss = [|(s + a + b) <<< 3 || s <- initS # ss

           || a <- [1] # ss
           || b <- [0] # ls |];

    ls = [| (l + a + b) <<< (a + b)
                             || l <- initL # ls

           || a <- ss
           || b <- [0] # ls |];

  };
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Generated C code
extern uint32* keyX32(uint32*);
uint32* keyX32 (uint32* key_keyX32)
{   static uint32 arr0[2];
    uint32 v6, v5, v4, v3, v0;
    v0=joinWord(4, 8, key_keyX32);
    v3=(v0)+(8);
    v4=ROL(v3, 8);
    v5=(16)+(v4);
    v6=ROL(v5, 3);
    arr0[0]=8;
    arr0[1]=v6;
    return (arr0); }
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Sample Key Expansion Fragment
keyX key = ss @@ [ 0 .. n ]
  where {
    initS, initL : [1][36];
    initS = [0];
    initL = split (join key);
    ss = [|(s + a + b) <<< 3 || s <- initS # ss

           || a <- [1] # ss
           || b <- [0] # ls |];

    ls = [| (l + a + b) <<< (a + b)
                             || l <- initL # ls

           || a <- ss
           || b <- [0] # ls |];

  };
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extern uint32** keyX36(uint32*);
uint32** keyX36 (uint32* key_keyX36)
{   static uint32* arr48[2];
    static uint32 vec49[2]={8UL, 0UL};
    ...
    copyOuter(2, v1, splitMatrix(1, 36, v0, arr38));
    copyOuter(2, v3,
      plusMatrix(0, 1, arrShape40, v1, vec39, arr41));
    copyOuter(2, v4, rolMatrix(36, v3, vec42, arr43));
    copyOuter(2, v5,
      plusMatrix(0, 1, arrShape45, vec44, v4, arr46));
    copyOuter(2, v6, rolMatrix(36, v5, 3, arr47));
    arr48[0]=vec49;
    arr48[1]=v6;
    return (arr48); }
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The Future of Cryptol

� Crypto was in the mud, and now we’ve at
least got it on dry land.

� Now we’re headed towards higher ground:

machine words

abstract crypto machine

executable mathematics
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Future Directions

� User-defined operators
� Extended matrix comprehensions
� Support for more arithmetics:

� Flexible Precision arithmetic
� Polynomial arithmetic
� Arbitrary modulus arithmetic

� Support for 1-based and other indexing
� Flexible endian-ness
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Flexible Precision Arithmetic

� Free ourselves from the bonds of power-of-
two modulus arithmetic

� Not arbitrary precision arithmetic
� New operators:

+’ : ([a], [b]) -> [max(a, b) + 1]
*’ : ([a], [b]) -> [a + b]
%’ : ([a], [b]) -> [b]
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Polynomial Arithmetic
� 0x1a3  �  x8+ x7+ x5+ x1+1
� New operators:

padd : {a b} ([a], [b]) -> [max(a, b)]
pmult : {a b} ([a],[b]) -> [a+b-1]
pdiv :  {a b} ([a],[b]) -> [1+a-b]
pmod :  {a b} ([a],[1+b]) -> [b]
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Arbitrary Modulus Arithmetic

� New operators:
+% : (Mod n, a == width (n-1)) =>
     ([a], [a]) -> [a]
*% : (Mod n, a == width (n-1)) =>
     ([a], [a]) -> [a]
...

� New binding form:
(x + f y) withModulus 17
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Future Directions

� Enhanced tracing/debugging
� dump out internal registers from a run
� format as LaTeX, HTML, ...

� Interface to C
� Interface to HCDSA
� Generate optimized, low-level code

� FPGA
� commercial crypto chip (e.g. AIM)



The End
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