
Cryptol: A Domain Specific Language
for Cryptography

www.cryptol.net

purely functional
GALOISCONNECTIONS

© 2001, Galois Connections Inc.

Cryptol Goals

� Specification correspondence
“Cryptol programs should be able to look like their

specifications”

� Freedom from data entry
“There shall be no barrier to the programmer

specifying a lookup table via a calculation”

� Abstraction Conduction
“Cryptol should provide a path towards higher-level

specifications of Cryptographic algorithms”

© 2001, Galois Connections Inc.

Crypto-algorithm domain analysis

� Spoke with crypto-algorithm designers
� What are the important elements of algorithm

specification?

� Studied five AES finalists and DES
� What do these algorithms have in common?
� What differences occur between them?

� Embody the domain analysis within a language
� Obtain feedback from crypto specialists

© 2001, Galois Connections Inc.

Relevant Concepts and
Abstractions

� Block ciphers
� Vectors and matrices
� Permutations
� Lookup tables
� Various Finite Element arithmetics
� Multiple views of data
� Iteration and recurrence

© 2001, Galois Connections Inc.

Block Ciphers

� Interface
encrypt : (Xkey,PT) -> CT
decrypt : (Xkey,CT) -> PT
keySchedule : Key -> Xkey

� Chained together to operate on streams
� Simple standard stream modes:

� Electronic Code Book (ECB)
� Cipher Block Chaining (CBC)

© 2001, Galois Connections Inc.

Bit Vectors

� Sizes ranging from 4 bits to 128 bits (8 and
32 most common)

� All the usual boolean ops
� Exclusive-or prevalent

� Simple modulo arithmetic (+, -, *, /)
� Permutations

� Mostly just rotations of bit vectors
� More general permutation used in DES

© 2001, Galois Connections Inc.

Bit Vector Operations in RC6

© 2001, Galois Connections Inc.

Lookup Tables

© 2001, Galois Connections Inc.

Lookup Tables

� AKA S-boxes
� n-bit by m-bit lookup tables

� Both fixed and data-dependent (TwoFish)
� Fixed S-boxes are often calculated

� Intent is to capture notion of pre-computed
values

© 2001, Galois Connections Inc.

Generating SBoxes

© 2001, Galois Connections Inc.

Matrices

© 2001, Galois Connections Inc.

Multiple views

© 2001, Galois Connections Inc.

Multiple views

© 2001, Galois Connections Inc.

Matrix Arithmetic

� Matrix/vector multiplication arises on paper

� But rarely makes it into the reference code at
that level of abstraction

© 2001, Galois Connections Inc.

Other Arithmetic

� Polynomials
� often with bit coefficients
� different interp of a bit vector

� Galois Fields (TwoFish, Rijndael)

© 2001, Galois Connections Inc.

Bounded Iteration

� Crypto tends to avoid interesting control
� For loops

� Over fixed counts

© 2001, Galois Connections Inc.

Feistel Network (TwoFish)

© 2001, Galois Connections Inc.

Recurrence

� Found in key expansion

© 2001, Galois Connections Inc.

Parameters

� Most algorithms operate on a range of sizes
� Key
� Block

� Sizes may be constrained
� Number of iterations may depend on size

© 2001, Galois Connections Inc.

From Domain Analysis
to a Language

Cryptol

Domain-specific
language for

cryptoalgorithms

© 2001, Galois Connections Inc.

Data in Cryptol

� The smallest elements: Bits
� Everything else is a homogeneous matrix

[False True False True False False True]

0x4A

[0x3F 0x02 0x41 0xD8]

[[1 2 3 4] [5 6 7 8]]

[1 .. 10]

7 single bits

7 (or more) bits
4 elements, each
8 (or more) bits

2 elements, each
having 4 elements,

each 4 (or more) bits

10 elements, each
of 4 (or more) bits

© 2001, Galois Connections Inc.

Numbers

� Numbers are matrices of bits
� Decimal, octal (0o), hex (0x), binary (0b)
� Compile-time switch chooses between

Little endian:
0xC5 ==
[True False True False False False True True]

Big endian:
0xC5 ==
[True True False False False True False True]

© 2001, Galois Connections Inc.

Standard Operations

� Arithmetic operators
� Result is modulo the word

size of the arguments
� + - * / % **

� Boolean operators
� From bits, to arbitrarily

nested matrices of the same
shape

� & | ^ ~

� Comparison operators
� Equality, order
� == != < <= > >=

� returns a Bit

� Conditional operator
� Expression-level if-then-else
� Like C’s a?b:c

© 2001, Galois Connections Inc.

Matrices

� Matrix operators
� Concatenation, indexing, size
� # @ @@ width

[1..5] # [3 6 8] = [1 2 3 4 5 3 6 8]

� Zero-based indexing from the left
[50 .. 99] @ 10 = 60

© 2001, Galois Connections Inc.

Shifts and Rotations
� Shifts << >>
� Rotations <<< >>>
� Operate over top-level of a matrix

[0 1 2 3] << 2
[2 3 0 0]

� For words, corresponds to usual notion
0xF381 >>> 4

0x1F38

© 2001, Galois Connections Inc.

Splitting and Joining matrices

0x99FAC6F975BABB3E

split

[0x99 0xFA 0xC6 0xF9 0x75 0xBA 0xBB 0x3E]

0x99FAC6F975BABB3E

join

© 2001, Galois Connections Inc.

splitBy
� how shall we: split [0 1 2 3 4 5]?

 xs = [0 1 2 3 4 5]

 [0 1] [2 3] [4 5]

splitBy(3, xs)

© 2001, Galois Connections Inc.

groupBy
� how shall we: split [0 1 2 3 4 5]?

 xs = [0 1 2 3 4 5]

 [0 1] [2 3] [4 5]

groupBy(2, xs)

© 2001, Galois Connections Inc.

Matrix Comprehensions

� Borrowed the comprehension notion from set
theory
� { a+b | a � A, b � B}
� Adapted to matrices (i.e. sequences)

� Applying an operation to each element

[| 2*x + 3 || x <- [1 2 3 4] |]
 = [5 7 9 11]

© 2001, Galois Connections Inc.

Traversals

� Cartesian traversal

[| [x y] || x <- [0..2], y <- [3..4] |]
 = [[0 3] [0 4] [1 3] [1 4] [2 3] [2 4]]

� Parallel traversal

[| x + y || x <- [1..3]
 || y <- [3..7] |]
 = [4 6 8]

© 2001, Galois Connections Inc.

Row traversals

[| row >>> i || row <- state || i <- shifts |]

© 2001, Galois Connections Inc.

Column traversals

transpose [| ptimes (col, cx) || col <- transpose state |]

© 2001, Galois Connections Inc.

Nested traversals

[| [| sbox a || a <- row |] || row <- state |]

© 2001, Galois Connections Inc.

Cryptol Types

� Capture the size and dimensions of matrices
� Written as a sequence of bracketed

dimensions outermost to innermost:
213

has type: [8]Bit

[[0 1] [2 3] [4 5] [6 7]]

 has type: [4][2][8]Bit

© 2001, Galois Connections Inc.

Cryptol Types

� Capture the size and dimensions of matrices
� Written as a sequence of bracketed

dimensions outermost to innermost:
213

has type: [8]Bit

[[0 1] [2 3] [4 5] [6 7]]

 has type: [4][2][8]Bit

© 2001, Galois Connections Inc.

Cryptol Types

� “The State can be pictured as a rectangular array
of bytes. This array has four rows, the number of
columns is denoted by Nb and is equal to the
block length divided by 32.”

� state : [4][Nb][8];

© 2001, Galois Connections Inc.

Cryptol Types
� “The input and output used by Rijndael at its external

interface are considered to be one-dimensional arrays of 8-
bit bytes numbered upwards from 0 to the 4*Nb-1. The
Cipher Key is considered to be a one-dimensional array of
8-bit bytes numbered upwards from 0 to the 4*Nk-1.”

� input : [4 * Nb][8];
� key : [4 * Nk][8];

© 2001, Galois Connections Inc.

add32 (0xB4, 0x3A)

Size Polymorphism

How many
bits am I?

Aha!
Must be
32 bits

 0x3A

© 2001, Galois Connections Inc.

Size Polymorphism

x = 0x3A

How many
bits am I?

At least 6
bits ...

x : {a} (a >= 6) => [a]

© 2001, Galois Connections Inc.

Shape Polymorphism

swab [a b c d] = [d c b a]

What types do
I handle?

Four of
something

...

Four of
something
to four of
the same
thing...

swab : {a} [4]a -> [4]a

© 2001, Galois Connections Inc.

Syntax of Types
P ::= {a1 .. ai} (P1, ..., Pj) =>
 (T1, ..., Tk) -> T

T ::= a S ::= a
 | Bit | Nat
 | [S]T | f (T1, ..., Tn)
 | T1 (+) T2
 | inf
 f ::= width, lg2, min, max
(+) ::= +, -, *, /, %, **

© 2001, Galois Connections Inc.

 Type Inference

� Literals
17

� Variables
X = 7;
X : {a} (a >= 3) [a];

... blatz X ^ frobulate X

$23 >= (3) [$23]
($98 >= 3) => [$98]

($46 >= 5) => [$46]

© 2001, Galois Connections Inc.

Definitions are Polymorphic
X = 7;
X : {a} (a >= 3) [a];

blatz : [8] -> [16];
frobulate : [4] -> [32];

... blatz X ^ frobulate X ...

© 2001, Galois Connections Inc.

Parameters are not!
blatz : [8] -> [16];
frobulate : [4] -> [32];

cryptofun X =

... blatz X ^ frobulate X ...

Error! 8 != 4

Type-based
coercions are

static, not
dynamic

© 2001, Galois Connections Inc.

Type Inference

� Matrices
[1 23 45 x]

($17 >= 1) => [$17]
($18 >= 5) => [$18]
($19 >= 6) => [$19]

() => $20

[4]$21

($17 >= 1,
$18 >= 5,
$19 >= 6,

[$17] == $21,
[$18] == $21,
[$19] == $21,
$20 == $21)
=> [4]$21

© 2001, Galois Connections Inc.

Type Constraints

� Constraints are dealt with in one of 4 ways:
� Become part of a type in a binding

x = 13;

� Resolved
y : [6];
z = 13 + y;

� Unresolvable
q : [7];
w = q + y;

x : {a} (a >= 4) => [a]

a must be 6!

6 is not equal to 7!

a >= 4

© 2001, Galois Connections Inc.

Unresolved Constraints

� Failure to match a signature
x : {a} [a];
x = 13;

� Ambiguous
xs : [100][16];
z = xs @ 4;
zs = xs @@ [1 ..];

The signature is
more general

than the inferred
type!

a >= 4

a >= 3

z : [16];

© 2001, Galois Connections Inc.

Defaulting

� Ambiguous constraints are subject to
defaulting
a >= 4 becomes a == 4

� Defaulting is not always desirable
1 + 1 = ...

© 2001, Galois Connections Inc.

User Feedback – the Positives
� arbitrary bit widths
� ease of rearranging

data
� streams
� interactive development
� declarative nature
� ease of extracting

substructures

� no need to worry about
space allocation

� bulk operations
� feedback from types

© 2001, Galois Connections Inc.

User Feedback – the Negatives
� no emacs mode
� interference from types
� no control over

defaulting
� not enough higher-level

abstractions
� no facility to format

data

� want better debugging
support

� type errors can be
difficult to understand

� want more control over
endianness

© 2001, Galois Connections Inc.

The Endian Problem

� Cryptol made the following design choices:
� matrices indexed from the left
 [x0 x1 x2 x3 x4 x5 x6 x7]

� literals indexed from the right
 x7 x6 x5 x4 x3 x2 x1 x0

� e.g.: 0b10100110 ==
 [False True True False
 False True False True]

consistent
with streams

consistent with
little endian

© 2001, Galois Connections Inc.

The Endian Problem

� But there are consequences:
� the swap: 0xab # 0xcd == 0xcdab
 split 0xcdab == [0xab 0xcd]

� in a left shift, whose “left” is it anyway?
0b0111 << 1
 == 0b1110

[True True True False] << 1
 == [True True False False]
 == 0b0011

© 2001, Galois Connections Inc.

The Endian Problem

� Could chose differently:
� matrices still indexed from the left
� literals also indexed from the left

� Avoids swap and shift problems
� But less natural for encodings of numbers
� any fixed choice will lose:

specifications feel free to use different
conventions, thus we set up a road block to
specification correspondence

© 2001, Galois Connections Inc.

Endianess

� Design space:
� (syntactic) Bit 0 on the left or on the right
� (semantic) Bit 0 least or most significant

0001

1000

1000

0001

LSBMSB

right

left

© 2001, Galois Connections Inc.

© 2001, Galois Connections Inc.

The Endian Problem:
Exploring the Solution Space

� Use a declarative approach
� associate endianness with the type

� Use an operator-based approach
� Special versions of operators:

� splitBE, splitLE, joinBE, joinLE
� what to do about #, @?

© 2001, Galois Connections Inc.

Sample Key Expansion Fragment
keyX key = ss @@ [0 .. n]
 where {
 initS, initL : [1][32];
 initS = [0];
 initL = split (join key);
 ss = [|(s + a + b) <<< 3 || s <- initS # ss

 || a <- [1] # ss
 || b <- [0] # ls |];

 ls = [| (l + a + b) <<< (a + b)
 || l <- initL # ls

 || a <- ss
 || b <- [0] # ls |];

 };

© 2001, Galois Connections Inc.

Generated C code
extern uint32* keyX32(uint32*);
uint32* keyX32 (uint32* key_keyX32)
{ static uint32 arr0[2];
 uint32 v6, v5, v4, v3, v0;
 v0=joinWord(4, 8, key_keyX32);
 v3=(v0)+(8);
 v4=ROL(v3, 8);
 v5=(16)+(v4);
 v6=ROL(v5, 3);
 arr0[0]=8;
 arr0[1]=v6;
 return (arr0); }

© 2001, Galois Connections Inc.

Sample Key Expansion Fragment
keyX key = ss @@ [0 .. n]
 where {
 initS, initL : [1][36];
 initS = [0];
 initL = split (join key);
 ss = [|(s + a + b) <<< 3 || s <- initS # ss

 || a <- [1] # ss
 || b <- [0] # ls |];

 ls = [| (l + a + b) <<< (a + b)
 || l <- initL # ls

 || a <- ss
 || b <- [0] # ls |];

 };

© 2001, Galois Connections Inc.

extern uint32** keyX36(uint32*);
uint32** keyX36 (uint32* key_keyX36)
{ static uint32* arr48[2];
 static uint32 vec49[2]={8UL, 0UL};
 ...
 copyOuter(2, v1, splitMatrix(1, 36, v0, arr38));
 copyOuter(2, v3,
 plusMatrix(0, 1, arrShape40, v1, vec39, arr41));
 copyOuter(2, v4, rolMatrix(36, v3, vec42, arr43));
 copyOuter(2, v5,
 plusMatrix(0, 1, arrShape45, vec44, v4, arr46));
 copyOuter(2, v6, rolMatrix(36, v5, 3, arr47));
 arr48[0]=vec49;
 arr48[1]=v6;
 return (arr48); }

© 2001, Galois Connections Inc.

The Future of Cryptol

� Crypto was in the mud, and now we’ve at
least got it on dry land.

� Now we’re headed towards higher ground:

machine words

abstract crypto machine

executable mathematics

© 2001, Galois Connections Inc.

Future Directions

� User-defined operators
� Extended matrix comprehensions
� Support for more arithmetics:

� Flexible Precision arithmetic
� Polynomial arithmetic
� Arbitrary modulus arithmetic

� Support for 1-based and other indexing
� Flexible endian-ness

© 2001, Galois Connections Inc.

Flexible Precision Arithmetic

� Free ourselves from the bonds of power-of-
two modulus arithmetic

� Not arbitrary precision arithmetic
� New operators:

+’ : ([a], [b]) -> [max(a, b) + 1]
*’ : ([a], [b]) -> [a + b]
%’ : ([a], [b]) -> [b]

© 2001, Galois Connections Inc.

Polynomial Arithmetic
� 0x1a3 � x8+ x7+ x5+ x1+1
� New operators:

padd : {a b} ([a], [b]) -> [max(a, b)]
pmult : {a b} ([a],[b]) -> [a+b-1]
pdiv : {a b} ([a],[b]) -> [1+a-b]
pmod : {a b} ([a],[1+b]) -> [b]

© 2001, Galois Connections Inc.

Arbitrary Modulus Arithmetic

� New operators:
+% : (Mod n, a == width (n-1)) =>
 ([a], [a]) -> [a]
*% : (Mod n, a == width (n-1)) =>
 ([a], [a]) -> [a]
...

� New binding form:
(x + f y) withModulus 17

© 2001, Galois Connections Inc.

Future Directions

� Enhanced tracing/debugging
� dump out internal registers from a run
� format as LaTeX, HTML, ...

� Interface to C
� Interface to HCDSA
� Generate optimized, low-level code

� FPGA
� commercial crypto chip (e.g. AIM)

The End

www.cryptol.net

	GALOISCONNECTIONS
	Cryptol Goals
	Crypto-algorithm domain analysis
	Relevant Concepts and Abstractions
	Block Ciphers
	Bit Vectors
	Bit Vector Operations in RC6
	Lookup Tables
	Lookup Tables
	Generating SBoxes
	Matrices
	Multiple views
	Multiple views
	Matrix Arithmetic
	Other Arithmetic
	Bounded Iteration
	Feistel Network (TwoFish)
	Recurrence
	Parameters
	From Domain Analysisto a Language
	Data in Cryptol
	Numbers
	Standard Operations
	Matrices
	Shifts and Rotations
	Splitting and Joining matrices
	splitBy
	groupBy
	Matrix Comprehensions
	Traversals
	Row traversals
	Column traversals
	Nested traversals
	Cryptol Types
	Cryptol Types
	Cryptol Types
	Cryptol Types
	Size Polymorphism
	Size Polymorphism
	Shape Polymorphism
	Syntax of Types
	Type Inference
	Definitions are Polymorphic
	Parameters are not!
	Type Inference
	Type Constraints
	Unresolved Constraints
	Defaulting
	User Feedback – the Positives
	User Feedback – the Negatives
	The Endian Problem
	The Endian Problem
	The Endian Problem
	Endianess
	
	The Endian Problem:Exploring the Solution Space
	Sample Key Expansion Fragment
	Generated C code
	Sample Key Expansion Fragment
	
	The Future of Cryptol
	Future Directions
	Flexible Precision Arithmetic
	Polynomial Arithmetic
	Arbitrary Modulus Arithmetic
	Future Directions
	The End

