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Threats to cryptographic systemsThreats to cryptographic systems
• Failure in algorithm design

– Eg: SHA-1 not cryptographically secure

• Failure in algorithm implementation
– Examples in commercial sector?

• Failure in algorithm use
– Eg: Microsoft's use of RC4 in Office Documents

• Side-channel attacks
– Eg: SPA, DPA, timing, error messages, glitch

• Failure in surrounding glue and protocol
– Eg: ASN.1 parsing, buffer overflow, 

non-zeroed keys/plaintext

• Failure due to outdated or no crypto at all
– Cost of device devel. and certification very high
– Very long delay from specification to deployment 

rigorousrare

ad-hoccommon



Cryptol Cryptol directionsdirections
Reduce Development andReduce Development and
Certification CostCertification Cost

ExpandExpand
DomainDomain

MoreMore
TargetsTargets

Cryptol

•• Concise SpecificationConcise Specification

•• Stepping stone between spec andStepping stone between spec and implimpl

•• Automatic verification by model checkingAutomatic verification by model checking

•• Automatic verification by verifying compilerAutomatic verification by verifying compiler

•• Verified compiler?Verified compiler?

•• InterpreterInterpreter

•• C backendC backend

•• Embedded processorsEmbedded processors

•• Programmable hardwareProgrammable hardware

•• Symmetric block/stream ciphersSymmetric block/stream ciphers

•• Binary fieldsBinary fields

•• Public key ciphersPublic key ciphers
(Prime fields and Elliptic groups)(Prime fields and Elliptic groups)

•• WaveformsWaveforms

•• Security protocols?Security protocols?•• Mobile crypto code?Mobile crypto code?

Focus for this talk



Verification spectrumVerification spectrum
AssuranceAutomationProblem 

CoverageInfrastructure

HighFullSomeLargeVerifying 
compiler

HighNoneSomeSomeProof checking

HighFullSomeHugeVerified 
compiler

Med-HighFullLimitedSomeModel 
checking

MedNoneFullNoneCode-to-spec 
reviews

LowSomeFullMinimalTesting

Topic 1: Increasing the precision of testing and ease of code-to-spec using Cryptol

Topic 2: Improving coverage for SAT-based verification of C/Cryptol against Cryptol

Topic 3: Improved approach to assertional verification of programs



A flavor of A flavor of CryptolCryptol
• Basics: numbers, vectors, tuples, rich set of primitives
• Key ingredient: recurrence relations

– Block ciphers must "mix" key and block bits
– Typically this requires repeated applications of substitutions and 

other transformations

• "Repeated" in hardware ⇒ latches and feedback
• "Repeated" in C ⇒ arrays and loops
• "Repeated" in Cryptol ⇒ streams 

Word = 32;

counter : [inf][Word];

counter = [0] # [| x + 1 || x <- counter |];

main = counter @ 3

Initial value "infinite" = stream Element type Next value = previous value + 1

Fourth element?
(index 0 = first)



EgEg: Fibonacci numbers: Fibonacci numbers

0 1

init

shift

+-1-2

+ counter

word fib(int n) {

word h[2];

h[0] = 1; h[1] = 1;

for (i = 2; i <= n; i++)

h[i % 2] = h[(i - 1)%2]

+ h[(i - 2)%2];

return h[n % 2];

}

fib : Word -> Word;

fib n = fibs @ n where {

fibs : [inf][Word];

fibs = [1 1] # [| x + y || x <- drop(1, fibs)

|| y <- fibs |];

};



Cryptol Cryptol as an aid to as an aid to 
implementation and implementation and 
certificationcertification



From specification to implementationFrom specification to implementation
• On conventional µP, conceptual gap from specification to 

implementation is small enough to be bridged "on-the-fly" 
by the programmer

• On specialized hardware, gap can be very much wider
– Parallelization on VLIW architectures
– Deep pipelining
– Monolithic operators with many configuration parameters

• Cryptol can be a stepping-stone between specification and 
implementation
– Can use the Cryptol interpreter to produce test vectors
– Can embed Cryptol program fragments within comments to 

capture intended semantics of complex instructions



Cryptol Cryptol in the development processin the development process
❶ Validate using 

published test 
vectors

❷ Verify by testing
❸ Verify by testing
❹ Verify by testing and 

code-to-spec review

Conventional
Specification

(Pseudo-code/Mathematics)
Eg: NIST/NSA spec, paper

❶
(Cryptol)
Test understanding of
specification

"Golden"
Specification

Implementation

Implementation
Model

(Eg: Microcode)

❸ ❷
(Cryptol)
Capture intended semantics
of code fragments

Fragment
Models❹

(Cryptol)
Capture structure of
implementation

Certification
ProcessWith acknowledgment to

Alan Newman of General Dynamics



StatusStatus
• General Dynamics has multiple crypto devices under 

certification for which Cryptol programs form part of the 
supporting documentation

• We could go much further:
– Support Cryptol assertions within microcode/assembly/C programs
– Support automatic test case generation based on Cryptol 

fragments
– Support reasoning about equivalence of Cryptol programs
– Support reasoning about equivalence of implementation and

Cryptol programs



Equivalence verification Equivalence verification 
by SATby SAT--solvingsolving



Symbolic simulationSymbolic simulation
• A symbolic simulator computes each output bit of a 

program as boolean expressions in terms of symbolic 
variables representing each input bit

• Cryptol symbolic simulator is easy to implement
• C symbolic simulator not so easy!

– Luckily cilly (developed by George Necula et al) can translate C 
to CIL, an intermediate language simpler than C

– We may then compile CIL to a simple stack machine
– We then model every bit of the stack and heap symbolically
– Each machine transition induces a relation between states 
– Machine will print its output as a series of bits

• A boolean expression may be represented as a directed 
acyclic graph of AND nodes (with possibly inverted inputs)

main = encrypt (var "key", var "pt")



Verification approachVerification approach

C Cryptol
RTSCryptol cryptol

DCNF

Cryptol symbolic 
simulator

gcc cilly

CIL

CIL symbolic 
simulatorDCNF

eqsatz
SAT solver

success or fail

C RTS

Merging

Hints

DCNF Evaluator

Random
Valuations

Executable

≈?

CNF



Equivalence checkingEquivalence checking
• For each output bit, we now have two DCNF graphs in 

terms of a common set of symbolic variables
• We now need to show

– For every valuation of symbolic variables, output values of two 
DCNF graphs are equal

• eqsatz (by Chu Min Li) is SAT solver using the Davis-
Putnam procedure with built-in support for equality
– Given a CNF, it answers whether the formula is a tautology

• Now we must encode the above problem as one CNF



Equivalence checking problemEquivalence checking problem

o3 o'3

i0 i1 i2 i3 i0 i1 i2

equal?

i3

DCNF directly from Cryptol DCNF from mini-C from C from Cryptol



Equivalence checking after mergingEquivalence checking after merging

i0 i3i1 i2

o o'
o=?o'



Equivalence checking with hintsEquivalence checking with hints
• However, even small cryptographic algorithms are too 

complicated to be directly verified this way by eqsatz
– We need to merge more aggressively

• Remarkably, simply "hash-consing" during the "bottom-up" 
construction of the merged CNF does quite a good job

• We could also give the SAT solver "hints" as to which 
interior CNF nodes are probably equivalent
– If hint is unsound, equivalence will fail
– If hint is sound, equivalence holds even without hint

• One approach: use concrete simulation on random inputs 
to eliminate nodes which are definitely not equal
– Run multiple times to eliminate more nodes
– Remainder are likely to be equal for all inputs
– Effective because cryptographic algorithms are very good at 

dispersing input bits to interior nodes! 



Equivalence checking with hintsEquivalence checking with hints

i0 i1 i3

equality hint

i2

o o'
o=?o'



StatusStatus
• Currently verified 32-round TEA in around 3.5 minutes 

with hash-consed merging, but without hints



Equivalence verification Equivalence verification 
by theorem provingby theorem proving



SHADEContextContext
• The SHADE project (joint work with Rockwell Collins) is 

building a verifying compiler from µCryptol to the AAMP7 
microprocessor
– µCryptol is a variation of the Cryptol language intended to support 

embedded applications
– The Rockwell Collins AAMP7 is an embedded µP supporting very 

high-assurance process partitioning

• "Verifying" means that, for a given µCryptol program, the 
complier emits:
– An AAMP7 binary image
– A proof script which demonstrates behavioral equivalence of the 

µCryptol program with the final AAMP7 program



How to verify equivalent behavior?How to verify equivalent behavior?
• We must know the intended meaning of every µCryptol 

program:
– Galois have developed the semantics of µCryptol, written in 

conventionally accepted mathematical notation
– The semantics will be validated against a conventional 

interpretation of µCryptol:
• Semantics of each feature inspected to see if it corresponds 

with expectations
– Eg: reverse (reverse [0,1,2]) == [0,1,2]

• Common cryptographic algorithms will be implemented in 
µCryptol, and tested against published test vectors

– Using the semantics, not the compiler!



How to verify equivalent behavior?How to verify equivalent behavior?
• We must know the intended meaning of every AAMP7 

program:
– Rockwell Collins have developed a simulator for AAMP7 binaries
– The simulator will be validated against the actual AAMP7 hardware

• By inspection of each opcode transition
• By test vectors run in parallel on simulator and hardware

• We must decide what behavior we are interested in:
– Input/output correspondence
– Termination



Verification approachVerification approach
• The µCryptol compiler uses a stack-machine based 

abstract machine ("CrAM") language as an intermediate 
form

• We exploit this to break the verification problem into two 
halves:
– Using Isabelle/HOL: Verify CrAM program implements µCryptol 

program using assertional reasoning
– Using ACL2: Verify AAMP7 programs implements CrAM program 

using state-machine refinement



Verification approachVerification approach

Isabelle Term ≈ Isabelle Term

≈

µCryptol AAMP7

ACL2 Term

CrAM

ACL2 Term ≈

Compiler Compiler

CrAM semantics
o

Deep embedding
into ACL2

AAMP7 semantics
o

Deep embedding
into ACL2

µCryptol semantics
o

Deep embedding
into Isabelle

Isabelle
proof
script

ACL2 lemmas

Refinement proof

Axiomatization of ACL2
in Isabelle

Assertional program verification



CrAM CrAM verification problemverification problem
• We wish to verify that

if the initial CrAM state corresponds to 
symbolic inputs of µCryptol program

then each final CrAM state corresponds to 
expected output of µCryptol program

and every execution trace reaches a final 
state

initial

final final



State invariantsState invariants
• We tie states to inputs and expected 

outputs by adding invariants
– Invariant on initial state ties operand 

stack to symbolic values for program 
inputs

– Invariant on final states tie operand 
stack to (the meaning of) µCryptol 
expression describing output in terms of 
symbolic inputs

• What about all the interior states?
– At first blush, need to find invariant for 

every state, perhaps using a verification 
condition generator

• Luckily, J Moore presented a 
beautiful short-cut at HCSS 2004

final

≈ i0

≈ i1

≈ i4

≈ i3

≈ i5

≈ i6

initial

≈ i2

final



State invariants: Insight 1State invariants: Insight 1
• We only need invariants on cutpoint 

states
– Ie those which are either initial, final, or 

break a loop

• Once we have a small-step semantics 
for the machine, we may use it to 
propagate invariants from cutpoint 
states to all other states

final

≈ i0

≈ i6

≈ i4

≈ i1

≈ i5

initial

≈ i2

≈ i3

final



State invariants: Insight 2State invariants: Insight 2
• The µCryptol compiler already 

knows these invariants
– Frame and non-interference axioms
– Input/output correspondence with 

source term
– Stack, locals and heap locations of all 

relevant source variables
– Purpose and indexes for all loops

• Remember: we are not 
demonstrating correctness w.r.t. an 
absolute property, but equivalence 
with an existing program

• Hence we do not have to deal with 
inferring or supplying complicated 
loop invariantsfinal final

≈ i0

≈ i3 ≈ i6

≈ i4

Compilerinitial



State invariants: Insight 3State invariants: Insight 3
• To show termination, we associate a 

well-founded measure value to each 
state, and show
– Each state transition strictly decreases 

the measure

• Compiler also knows these measures
– They may be derived from the control 

structure of the µCryptol source program

final final

m0

m6

m4

Compilerinitial

m3



StatusStatus
• See:

– A Symbolic Simulation Approach to Assertional Program 
Verification
John Matthews, J S. Moore, Sandip Ray and Daron Vroon.
(Submitted for publication)

– Partial Clock Functions in ACL2
John Matthews and Daron Vroon.
Appeared in the Fifth International Workshop on the ACL2 
Theorem Prover and Its Applications (ACL2-2004), Austin, Texas, 
Nov 2004.

• Compiler currently generating AAMP7 binaries, which may 
be executed on both real hardware and ACL2 model

• Currently developing µCryptol semantics in Isabelle



Other ongoing workOther ongoing work
• Cryptol Embedded

– Refined language and type system to support static memory 
allocation for embedded devices

• Cryptol to FPGA
– Compile Cryptol directly to VHDL, which may be realized on an 

FPGA using existing toolchain

• Public Key Algorithms
– Additional primitives to support prime field and elliptic curve 

arithmetic with run-time field/group parameters

• Waveforms
– Extend Cryptol's applicability to describing the "waveform" or 

"glue" code which surrounds cryptographic algorithms in actual 
devices 



Cryptol Cryptol FPGA: Cost FPGA: Cost vsvs ThroughputThroughput

The aim of the FPGA 
project is to make crypto 

implementation on an 
FPGA as similar to 

conventional processors 
as possible 

FPGA via Cryptol

µP FPGA ASIC

Cost

10MB/s 100MB/s 1GB/s 10GB/s 100GB/s
Throughput



Typical cryptographic device layeringTypical cryptographic device layering

• The entire device must be certified
• The actual cryptographic core is a 

small fraction of overall code
• A great deal of tedious and error-prone 

engineering must go into the lower 
level "waveform" layers:
– padding and packet boundaries
– cryptographic modes, initialization, keying
– error detection and correction
– packet parsing and encoding
– packet protocol: start, data, end, ack, 

timeout, resend
– parsing and encoding highly structured data 

(eg certificate in ASN.1) 

Data Link

Physical

Packets

Data Protocol

Crypto Core

Security Protocol

Application

Key Management



Tackling the waveform problemTackling the waveform problem
• Much lower-layer code is bit-twiddling

– With use of error-correction primitives

• Bit-twiddling is Cryptol's bread and butter
• Possible approach

– Allow packet layout to be declared as a new Cryptol type
– Allow packet protocols to be declared
– Allow packet recognition to be declared
– Compile all of above down to vanilla Cryptol

• Generated code may be subject to verification by same 
methods we have already discussed



Cryptol Cryptol team and partnersteam and partners
• Core

– Jeff Lewis, Sigbjorn Finne

• Cryptol development methodology
– General Dynamics

• FPGA
– Andy Gill, Fergus Henderson
– Xilinx

• SHADE
– John Matthews, Mark Shields
– Rockwell Collins

• SAT Verifier
– Thomas Nordin

• Public Key
– Thomas Nordin, Frank Taylor



Questions?Questions?



Additional MaterialAdditional Material



A flavor of A flavor of CryptolCryptol



Cryptol Cryptol values and operatorsvalues and operators
• Values:

– Bits: True, False : Bit

– Vectors of bits: [True False True], 5 : [3]

– Tuples of any type: (3 True [True]) : ([2], Bit, [1])

– Vectors of any type: [(3, 2) (2, 1)] : (B^2, B^2)^2

• Built in operators:
– Modular arithmetic: (3:[3]) +7 == 2

– Comparison: 7 < 8 == True

– Logical: 7 < 8 && (3:[3]) == 1+2 == True

– Bitwise logical: 6 || 1 == 7

– Shift and rotate: [7 9 11] <<< 2 == [11 7 9]

– Indexing: [7 9 11]@0 == 7

– Polynomials: pmult 3 4 == 12



Cryptol Cryptol values and operatorsvalues and operators
• More advanced operations on vectors:

– Append: [1 2] # [3 4] == [1 2 3 4]

– Reverse: reverse [(1, 2) (3, 4)] == [(3,4) (1,2)]

– Join: join [[1 2] [3 4]] == [1 2 3 4] 

– Split: split [1 2 3 4 5 6] : [2][3][8]
== [[1 2 3] [4 5 6]]

– Drop: drop [1 2 3 4] : [3][8] == [2 3 4]

– Take: take [1 2 3 4] : [3][8] == [1 2 3]

– Transpose: transpose [[1 2] [3 4]] == [[1 3] [2 4]]

• Note that:
– The type checker knows the width of every vector at compile time

• Type checker performs arithmetic at compile time
– All the vector operators work on vectors of anything

• We say they are "polymorphic" on their element type and width



Cryptol Cryptol constructsconstructs
• Enumerations (shorthand for sequences of numbers):

[3, 5 .. 11] == [3 5 7 9 11]

• Local definitions:
x + y where { x = 7; y = 8; }

• Functions:
f : [8] -> [8];
f x = g (x + 1) * 3
where { g : [8] -> [8]; g y = y + x; }

• Branching:
if x > 3 then x - 1 else x + 1

• Comprehensions ("calculate for each element of..."):
[| x + 1 || x <- [0{8}..3]] == [1 2 3 4]

[| x + y || x <- [0 1], y <- [2 3]] == [2 3 3 4]

[| x + y || x <- [0 1] || y <- [2 3]] == [2 4]



EgEg: RC6 Key Expansion : RC6 Key Expansion -- HardwareHardware

v0 v1 vNk-1

+-1-2-3-Nk

-1-2-3-C

-Nk+1 -Nk+2

-C+1 -C+2

0

0

init

init

<<<

3

+<<<

+

vi = 0xb7e15163 +

i * 0x9e3779b9 

init

shift

shift

+ counter
+ barrel-shift

output

key
zero padding

init



EgEg: RC6 Key Expansion : RC6 Key Expansion -- CC

#define A ...
#define Nk 44
#define C (max(1, (A + 3) / 4))
#define V (3 * max(C, Nk))

void rc6exp(byte key[A], byte s[Nk]) { 
word l[C]; int i, j, s; word a, b;
l[C - 1] = 0; memcpy(l, key, A);
l[0] = 0xb7e15163;
for (i = 1; i < Nk; i++)

s[i] = s[i - 1] + 0x9e3779b9;
a = b = 0; i = j = 0;
for (s = 0; s < V; s++) {

a = s[i] = (s[i] + a + b) <<< 3;
b = l[j] = (l[j] + a + b) <<< (a + b);
i = (i + 1) % Nk;
j = (j + 1) % C;

}
}



EgEg: RC6 Key Expansion : RC6 Key Expansion -- CryptolCryptol

A = ...;
Nk = 44;
C = max(1, (A + 3) / 4);
V = 3 * max(C, Nk);

rc6exp : [A][Byte] -> [Nk][Word];
rc6exp key = segment(V-Nk, s) >>> (V - 3 * Nk)
where {                 

consts : [inf][Word];
consts = [0xb7e15163] # [| x + 0x9e3779b9 || x <- consts |];
inits : [Nk][Word];
inits = segment(0, consts); 
initl : [C][Word];
initl = split (join ((key # zero) : [4*C][Byte])));
s : [inf][Word];
s = [| (x+a+b) <<< 3 

|| x <- inits # s || a <- [0] # s || b <- [0] # l |];
l : [inf][Word];
l = [| (x+a+b) <<< (a+b)

|| x <- initl # l || a <- s || b <- [0] # l |]; };



µµCryptolCryptol



Cryptol Cryptol as an implementation languageas an implementation language
• Implementations have many concerns which may be 

conveniently ignored in a specification:
– Efficient and bounded use of memory
– Efficient use of available hardware primitives
– Timing and power analysis attacks
– Zeroing sensitive memory after use

• Many implementation details are device dependent
– Eg: Software only vs custom hardware targets

• So is it realistic to push these issues up into the language?
• Our strategy:

• Programmer may thus start with a reference 
implementation, and progressively refine it to an efficient 
implementation 

Support as many implementation refinements within Cryptol itself. 



Constraints on embedded devicesConstraints on embedded devices
• Dynamic allocation of memory generally frowned upon
• Memory at a premium
• Don't always have access to high quality C compiler
• Alas, these all work against the implementation of a 

declarative language such as Cryptol
– Existing backend targets C, and makes use of garbage collected 

heap allocated memory

• We have developed µCryptol, a sub-language of Cryptol 
intended for embedded devices
– Current target is the Rockwell Collins AAMP7 processor
– Complier goes directly from source to AAMP7 binary image
– Complier intended to be verifying: AAMP7 program may be shown 

input/output equivalent to µCryptol source program

• Biggest challenge is dealing with streams



Sequence flavorsSequence flavors
xs0 = [ x + 1 | x <- [0..3] ];
xs1 = [0..];
xs2 = take{5} ([0] # xs2);
xs3 = [0] # [ x + y | x <- xs3 | y <- [0..3] ];
xs4 = [0, 1] # [ x + y | x <- xs4 | y <- drops{1} xs4 ];

xs4xs2, xs3Dependent

xs1xs0Independent

InfiniteFiniteWidth

Elements

• Cryptol Classic 
distinguishes sequences 
according to width

• Semantics and compilation 
must distinguish according 
to element dependencies

• For simplicity, µCryptol 
allows only two 
combinations

• Easy to re-express others 
using just these two

"Vectors"

"Streams"



Vectors and streams in Vectors and streams in µµCryptolCryptol
• Vectors

– Types like B^8, (B, B^8)^4
– Must be non-recursive
– Must be finite, with statically known width
– May compute elements in any order

• Eg sequential for loop, parallel hardware, etc

• Streams
– Types like B^inf[32,4], B^5^inf[8,2]
– Must be recursive
– Must be infinite (unbounded) width
– Must compute elements in a particular order



Stream expressivenessStream expressiveness
• How expressive a language of streams do we need?
• Choices have huge impact on time and space efficiency

ys0 = [0, 1] ## [ x + y | x <- ys0 | y <- drops{1} ys0 ];
ys1 = (drops{4} ys1 ## [0..3]) ## ys1;
ys2 = [0] ## [ x + y | x <- ys2, y <- [0, 1] ];
ys3 = [0..3] ## [ (ys3 @ (3 - (x % 4))) + 1 | x <- ys3 ]; 
ys4 = [0] # [ x + y | x <- ys4 | y <- drops{1} ys4 ];

Non-sequential, cyclicS = E8ys1

OperationalDenotational

Not obviously sequential or cyclicS = N → E⊥ys3
Possibly undefined elementsS = N → E⊥ys4

Sequential, unbounded historyS = να .E × αys2

Sequential, finite historyS = 1+E+E2 → Eys0 ✔ µCryptol

Cryptol
Classic



Compiling streams

# : forall a : Type, b : Nat, c : Nat .
(a^b, a^c) -> a^(b+c)

## : forall a : Type, b : Nat .
(a^b, a^inf) -> a^inf

@  : forall a : Type, b : Nat, c : Nat . 
(a^b, 2^c) -> a

@@ : forall a : Type, b : Nat .
(a^inf, 2^b) -> a

rec fibs : 2^8^inf;
fibs = [0, 1] ## 

[ x + y | x <- fibs 
| y <- drops{1} fibs ];

fib : 2^16 -> 2^8;
fib i = fibs @@ i;

rec fibs : 2^8^inf;
fibs = {i} . 
i < 2 -> [0, 1] @ i

| True -> fibs {i -2} + fibs {i -1};

fib : 2^16 -> 2^8;
fib i = fibs . i;

fibs : 2^16 -> 2^8^2;
fibs i {fibs'} = 

i < 2 -> [0, 1] @ i
| True -> fibs' @ (i-2 % 2) + 

fibs' @ (i-1 % 2);

fib : 2^16 -> 2^8;
fib i = (fibs i) @ (i % 2);

NOTE: Simplification of actual situation
fibs 12

Compiling streams
µCryptol

Basic type checking

Delay analysis

Reduction to 
indexed form

Simplification

Reduction to 
iterator form

Simplification

Translation to CrAM

CrAM



Type checking streamsType checking streams
• We implement delay analysis within the type system

– "External" stream types (as seen by the programmer)

– "Internal" stream types (as used by the type checker) 

where
τ stream element type
w width of stream indexes
h no. previous stream elements needed to compute next
m delay from stream definition to current term context
l recursive stream level 

• Stream primitives track delays by polymorphism

τ^inf[w,h]

τ^inf{w,m,l}

## : forall wl, wi, t, d, l .
t^wl, t^inf{wi, d + wl, l} -> t^inf{wi,d,l}



StatusStatus
• Type system implemented within the µCryptol compiler
• Work needed to integrate µCryptol and current Cryptol



PublicPublic--key Algorithmskey Algorithms



Symmetric Symmetric vsvs PublicPublic
• Symmetric-key algorithms typically work in:

– Z2n Arithmetic on naturals modulo 2n

(where n is known at compile-time)
– F2n Binary field (polynomials over F2) (eg AES)

(where n is known at compile-time)
– Vectors and tuples over the above
– Recursive streams over the above

• Public-key algorithms typically work in:
– Fp Prime field on prime p (eg RSA)

(where p may only be known at run-time)
– E(p,a,b,P,n,h) Group of points on elliptic curve over Fp (eg ECC)

defined by y2 = x3 + ax + b with base point
P of order prime n, and group order nh
(where above may only be known at run-time)



Key design decisionsKey design decisions
• Cryptol already has built-in support Z2n and F2n

• Extending to Fp and E(...) presents many challenges:
– How to handle the run-time field or elliptic curve parameters?

⇒ Specially named variable

– Is an element of (eg) F29 incompatible with an element of F31?
⇒ No, the programmer must keep them separate

– Is an element of (eg) F31 incompatible with an element of Z25?
⇒ No, the programmer may switch between these two views

– Should the new operators be implemented as built-in primitives, or 
supplied as a library?
⇒ For prime fields, implemented within interpreter using GMP
⇒ For elliptic groups, implemented as a Cryptol library



PublicPublic--key inkey in CryptolCryptol
• The type system remains unchanged. Eg:

– An element of F31 is represented by a 5 or greater bit word

• New operators expect a specially named variable to bind 
the necessary run-time parameters. Eg:
– Move a 6-bit word into F31

– Perform arithmetic in F31

– Perform arithmetic on a pre-defined curve f13

Cryptol> @% 33 where modulus = 31

Cryptol> 3 *% 17 +% 9 

2

**% 2 where modulus = 31
8

Cryptol> @&(1,4,1) +& @&(1,4,1) where ellipticcurve = f13
(11, 9, 1)



StatusStatus
• Current implementation:

– 3 point multiplies (on a NIST curve) per second

• Future work:
– Support in multiple backends (currently just interpreter)



Cryptol Cryptol to FPGAto FPGA



Technical approachTechnical approach

Cryptol to
SPIR

SPIR

VHDL

Optimizer

SPIR to
VHDL

Bitfile
generation

Annotated
netlist

FPGA
bitfile

Galois
FPGA

Compiler

FPGAFPGA

Cryptol Synthesis,
place and route



fib:fib: Intermediate representationIntermediate representation
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fib :: [inf][8];

fib = [1 1] # [| x + y 

|| x <- fib 

|| y <- drop(1,fib) |];
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fib:fib: Optimized representationOptimized representation
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fib :: [inf][8];

fib = [1 1] # [| x + y 

|| x <- fib 

|| y <- drop(1,fib) |];
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Pipelining TEA: starting pointPipelining TEA: starting point

code : ([2][32],[4][32]) -> [2][32];
code ([y z], [k0 k1 k2 k3]) = [(ys @ 32) (zs @ 32)]

where {
sums = [0x9e3779b9] # [| x + 0x9e3779b9 || x <- sums |];
ys = [y] # [| (y + ((z  << 4) + k0 ^ (z +sum) ^ (z  >> 5) + k1))

|| sum <- sums || y <- ys || z <- zs |];
zs = [z] # [| (z + ((y' << 4) + k2 ^ (y'+sum) ^ (y' >> 5) + k3))

|| sum <- sums || y' <- tail ys || z  <- zs |];
};

• What are the sequential dependencies?
– 32 outer rounds, each requires result of previous
– Expression in zs comprehension depends on value of ys at the 

same round
– sums could be precomputed



Pipelining TEA: outer roundsPipelining TEA: outer rounds
• Convert streams ys, zs and sums to a round function 
• Then unwind outer loop 32 times
round : ([32], [32], [32], [4][32]) -> ([32], [32], [32], [4][32]);

round (y, z, sum, [k0 k1 k2 k3]) = (nexty, nextz, nextsum, [k0 k1 k2 k3])

where {

nexty = y + ((z  << 4) + k0 ^ (z +sum) ^ (z >> 5) + k1);

nextz = z + ((nexty << 4) + k2 ^ (nexty+sum) ^ (nexty >> 5) + k3);

nextsum = sum + delta; };

pipeline32 : [inf]([32],[32],[32],[4][32]) -> [inf]([32],[32],[32],[4][32]);

pipeline32(vs0) = drop(32,vs32) where {

vs32 = [zero] # [| round x || x <- vs31 |];

vs31 = [zero] # [| round x || x <- vs30 |];

...

vs1  = [zero] # [| round x || x <- vs0 |]; };



Pipelining TEA: inner pipelinePipelining TEA: inner pipeline

• Pipeline round function into two parts:
roundA (y, z, sum, [k0 k1 k2 k3]) = (nexty, z, sum, [k0 k1 k2 k3])

where {
nexty = y + ((z  << 4) + k0 ^ (z +sum) ^ (z  >> 5) + k1); };

roundB (nexty, z, sum, [k0 k1 k2 k3]) = (nexty, nextz, nextsum, [k0 k1 k2 k3])
where {
nextz = z + ((nexty << 4) + k2 ^ (nexty+sum) ^ (nexty >> 5) + k3);
nextsum = sum + delta;

};

pipeline64 : [inf]([32],[32],[32],[4][32]) -> [inf]([32],[32],[32],[4][32]);
pipeline64(vs0) = drop(64,vs64)

where {
vs64 = [zero] # [| roundB x || x <- vs63 |];
vs63 = [zero] # [| roundA x || x <- vs62 |];
vs62 = [zero] # [| roundB x || x <- vs61 |];
vs61 = [zero] # [| roundA x || x <- vs60 |];
...
vs2  = [zero] # [| roundB x || x <- vs1 |];
vs1  = [zero] # [| roundA x || x <- vs0 |]; };



StatusStatus
• Have tested on Spartan 3 (Xilinx XC3S200, 200 Kgates) and 

Wildcard II (Xilinx XC2V3000, 3000 Kgates) evaluation 
hardware

• Pipelined DES performance comparable with hand-written 
VHDL using Xilinx VHDL synthesis toolchain 
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