
Cryptol Cryptol Verification Verification
TechnologyTechnology
1 Mar 20051 Mar 2005

Mark Shields
Galois Connections
mbs@galois.com

mailto:mbs@galois.com
mailto:mbs@galois.com

Threats to cryptographic systemsThreats to cryptographic systems
• Failure in algorithm design

– Eg: SHA-1 not cryptographically secure

• Failure in algorithm implementation
– Examples in commercial sector?

• Failure in algorithm use
– Eg: Microsoft's use of RC4 in Office Documents

• Side-channel attacks
– Eg: SPA, DPA, timing, error messages, glitch

• Failure in surrounding glue and protocol
– Eg: ASN.1 parsing, buffer overflow,

non-zeroed keys/plaintext

• Failure due to outdated or no crypto at all
– Cost of device devel. and certification very high
– Very long delay from specification to deployment

rigorousrare

ad-hoccommon

Cryptol Cryptol directionsdirections
Reduce Development andReduce Development and
Certification CostCertification Cost

ExpandExpand
DomainDomain

MoreMore
TargetsTargets

Cryptol

•• Concise SpecificationConcise Specification

•• Stepping stone between spec andStepping stone between spec and implimpl

•• Automatic verification by model checkingAutomatic verification by model checking

•• Automatic verification by verifying compilerAutomatic verification by verifying compiler

•• Verified compiler?Verified compiler?

•• InterpreterInterpreter

•• C backendC backend

•• Embedded processorsEmbedded processors

•• Programmable hardwareProgrammable hardware

•• Symmetric block/stream ciphersSymmetric block/stream ciphers

•• Binary fieldsBinary fields

•• Public key ciphersPublic key ciphers
(Prime fields and Elliptic groups)(Prime fields and Elliptic groups)

•• WaveformsWaveforms

•• Security protocols?Security protocols?•• Mobile crypto code?Mobile crypto code?

Focus for this talk

Verification spectrumVerification spectrum
AssuranceAutomationProblem

CoverageInfrastructure

HighFullSomeLargeVerifying
compiler

HighNoneSomeSomeProof checking

HighFullSomeHugeVerified
compiler

Med-HighFullLimitedSomeModel
checking

MedNoneFullNoneCode-to-spec
reviews

LowSomeFullMinimalTesting

Topic 1: Increasing the precision of testing and ease of code-to-spec using Cryptol

Topic 2: Improving coverage for SAT-based verification of C/Cryptol against Cryptol

Topic 3: Improved approach to assertional verification of programs

A flavor of A flavor of CryptolCryptol
• Basics: numbers, vectors, tuples, rich set of primitives
• Key ingredient: recurrence relations

– Block ciphers must "mix" key and block bits
– Typically this requires repeated applications of substitutions and

other transformations

• "Repeated" in hardware ⇒ latches and feedback
• "Repeated" in C ⇒ arrays and loops
• "Repeated" in Cryptol ⇒ streams

Word = 32;

counter : [inf][Word];

counter = [0] # [| x + 1 || x <- counter |];

main = counter @ 3

Initial value "infinite" = stream Element type Next value = previous value + 1

Fourth element?
(index 0 = first)

EgEg: Fibonacci numbers: Fibonacci numbers

0 1

init

shift

+-1-2

+ counter

word fib(int n) {

word h[2];

h[0] = 1; h[1] = 1;

for (i = 2; i <= n; i++)

h[i % 2] = h[(i - 1)%2]

+ h[(i - 2)%2];

return h[n % 2];

}

fib : Word -> Word;

fib n = fibs @ n where {

fibs : [inf][Word];

fibs = [1 1] # [| x + y || x <- drop(1, fibs)

|| y <- fibs |];

};

Cryptol Cryptol as an aid to as an aid to
implementation and implementation and
certificationcertification

From specification to implementationFrom specification to implementation
• On conventional µP, conceptual gap from specification to

implementation is small enough to be bridged "on-the-fly"
by the programmer

• On specialized hardware, gap can be very much wider
– Parallelization on VLIW architectures
– Deep pipelining
– Monolithic operators with many configuration parameters

• Cryptol can be a stepping-stone between specification and
implementation
– Can use the Cryptol interpreter to produce test vectors
– Can embed Cryptol program fragments within comments to

capture intended semantics of complex instructions

Cryptol Cryptol in the development processin the development process
❶ Validate using

published test
vectors

❷ Verify by testing
❸ Verify by testing
❹ Verify by testing and

code-to-spec review

Conventional
Specification

(Pseudo-code/Mathematics)
Eg: NIST/NSA spec, paper

❶
(Cryptol)
Test understanding of
specification

"Golden"
Specification

Implementation

Implementation
Model

(Eg: Microcode)

❸ ❷
(Cryptol)
Capture intended semantics
of code fragments

Fragment
Models❹

(Cryptol)
Capture structure of
implementation

Certification
ProcessWith acknowledgment to

Alan Newman of General Dynamics

StatusStatus
• General Dynamics has multiple crypto devices under

certification for which Cryptol programs form part of the
supporting documentation

• We could go much further:
– Support Cryptol assertions within microcode/assembly/C programs
– Support automatic test case generation based on Cryptol

fragments
– Support reasoning about equivalence of Cryptol programs
– Support reasoning about equivalence of implementation and

Cryptol programs

Equivalence verification Equivalence verification
by SATby SAT--solvingsolving

Symbolic simulationSymbolic simulation
• A symbolic simulator computes each output bit of a

program as boolean expressions in terms of symbolic
variables representing each input bit

• Cryptol symbolic simulator is easy to implement
• C symbolic simulator not so easy!

– Luckily cilly (developed by George Necula et al) can translate C
to CIL, an intermediate language simpler than C

– We may then compile CIL to a simple stack machine
– We then model every bit of the stack and heap symbolically
– Each machine transition induces a relation between states
– Machine will print its output as a series of bits

• A boolean expression may be represented as a directed
acyclic graph of AND nodes (with possibly inverted inputs)

main = encrypt (var "key", var "pt")

Verification approachVerification approach

C Cryptol
RTSCryptol cryptol

DCNF

Cryptol symbolic
simulator

gcc cilly

CIL

CIL symbolic
simulatorDCNF

eqsatz
SAT solver

success or fail

C RTS

Merging

Hints

DCNF Evaluator

Random
Valuations

Executable

≈?

CNF

Equivalence checkingEquivalence checking
• For each output bit, we now have two DCNF graphs in

terms of a common set of symbolic variables
• We now need to show

– For every valuation of symbolic variables, output values of two
DCNF graphs are equal

• eqsatz (by Chu Min Li) is SAT solver using the Davis-
Putnam procedure with built-in support for equality
– Given a CNF, it answers whether the formula is a tautology

• Now we must encode the above problem as one CNF

Equivalence checking problemEquivalence checking problem

o3 o'3

i0 i1 i2 i3 i0 i1 i2

equal?

i3

DCNF directly from Cryptol DCNF from mini-C from C from Cryptol

Equivalence checking after mergingEquivalence checking after merging

i0 i3i1 i2

o o'
o=?o'

Equivalence checking with hintsEquivalence checking with hints
• However, even small cryptographic algorithms are too

complicated to be directly verified this way by eqsatz
– We need to merge more aggressively

• Remarkably, simply "hash-consing" during the "bottom-up"
construction of the merged CNF does quite a good job

• We could also give the SAT solver "hints" as to which
interior CNF nodes are probably equivalent
– If hint is unsound, equivalence will fail
– If hint is sound, equivalence holds even without hint

• One approach: use concrete simulation on random inputs
to eliminate nodes which are definitely not equal
– Run multiple times to eliminate more nodes
– Remainder are likely to be equal for all inputs
– Effective because cryptographic algorithms are very good at

dispersing input bits to interior nodes!

Equivalence checking with hintsEquivalence checking with hints

i0 i1 i3

equality hint

i2

o o'
o=?o'

StatusStatus
• Currently verified 32-round TEA in around 3.5 minutes

with hash-consed merging, but without hints

Equivalence verification Equivalence verification
by theorem provingby theorem proving

SHADEContextContext
• The SHADE project (joint work with Rockwell Collins) is

building a verifying compiler from µCryptol to the AAMP7
microprocessor
– µCryptol is a variation of the Cryptol language intended to support

embedded applications
– The Rockwell Collins AAMP7 is an embedded µP supporting very

high-assurance process partitioning

• "Verifying" means that, for a given µCryptol program, the
complier emits:
– An AAMP7 binary image
– A proof script which demonstrates behavioral equivalence of the

µCryptol program with the final AAMP7 program

How to verify equivalent behavior?How to verify equivalent behavior?
• We must know the intended meaning of every µCryptol

program:
– Galois have developed the semantics of µCryptol, written in

conventionally accepted mathematical notation
– The semantics will be validated against a conventional

interpretation of µCryptol:
• Semantics of each feature inspected to see if it corresponds

with expectations
– Eg: reverse (reverse [0,1,2]) == [0,1,2]

• Common cryptographic algorithms will be implemented in
µCryptol, and tested against published test vectors

– Using the semantics, not the compiler!

How to verify equivalent behavior?How to verify equivalent behavior?
• We must know the intended meaning of every AAMP7

program:
– Rockwell Collins have developed a simulator for AAMP7 binaries
– The simulator will be validated against the actual AAMP7 hardware

• By inspection of each opcode transition
• By test vectors run in parallel on simulator and hardware

• We must decide what behavior we are interested in:
– Input/output correspondence
– Termination

Verification approachVerification approach
• The µCryptol compiler uses a stack-machine based

abstract machine ("CrAM") language as an intermediate
form

• We exploit this to break the verification problem into two
halves:
– Using Isabelle/HOL: Verify CrAM program implements µCryptol

program using assertional reasoning
– Using ACL2: Verify AAMP7 programs implements CrAM program

using state-machine refinement

Verification approachVerification approach

Isabelle Term ≈ Isabelle Term

≈

µCryptol AAMP7

ACL2 Term

CrAM

ACL2 Term ≈

Compiler Compiler

CrAM semantics
o

Deep embedding
into ACL2

AAMP7 semantics
o

Deep embedding
into ACL2

µCryptol semantics
o

Deep embedding
into Isabelle

Isabelle
proof
script

ACL2 lemmas

Refinement proof

Axiomatization of ACL2
in Isabelle

Assertional program verification

CrAM CrAM verification problemverification problem
• We wish to verify that

if the initial CrAM state corresponds to
symbolic inputs of µCryptol program

then each final CrAM state corresponds to
expected output of µCryptol program

and every execution trace reaches a final
state

initial

final final

State invariantsState invariants
• We tie states to inputs and expected

outputs by adding invariants
– Invariant on initial state ties operand

stack to symbolic values for program
inputs

– Invariant on final states tie operand
stack to (the meaning of) µCryptol
expression describing output in terms of
symbolic inputs

• What about all the interior states?
– At first blush, need to find invariant for

every state, perhaps using a verification
condition generator

• Luckily, J Moore presented a
beautiful short-cut at HCSS 2004

final

≈ i0

≈ i1

≈ i4

≈ i3

≈ i5

≈ i6

initial

≈ i2

final

State invariants: Insight 1State invariants: Insight 1
• We only need invariants on cutpoint

states
– Ie those which are either initial, final, or

break a loop

• Once we have a small-step semantics
for the machine, we may use it to
propagate invariants from cutpoint
states to all other states

final

≈ i0

≈ i6

≈ i4

≈ i1

≈ i5

initial

≈ i2

≈ i3

final

State invariants: Insight 2State invariants: Insight 2
• The µCryptol compiler already

knows these invariants
– Frame and non-interference axioms
– Input/output correspondence with

source term
– Stack, locals and heap locations of all

relevant source variables
– Purpose and indexes for all loops

• Remember: we are not
demonstrating correctness w.r.t. an
absolute property, but equivalence
with an existing program

• Hence we do not have to deal with
inferring or supplying complicated
loop invariantsfinal final

≈ i0

≈ i3 ≈ i6

≈ i4

Compilerinitial

State invariants: Insight 3State invariants: Insight 3
• To show termination, we associate a

well-founded measure value to each
state, and show
– Each state transition strictly decreases

the measure

• Compiler also knows these measures
– They may be derived from the control

structure of the µCryptol source program

final final

m0

m6

m4

Compilerinitial

m3

StatusStatus
• See:

– A Symbolic Simulation Approach to Assertional Program
Verification
John Matthews, J S. Moore, Sandip Ray and Daron Vroon.
(Submitted for publication)

– Partial Clock Functions in ACL2
John Matthews and Daron Vroon.
Appeared in the Fifth International Workshop on the ACL2
Theorem Prover and Its Applications (ACL2-2004), Austin, Texas,
Nov 2004.

• Compiler currently generating AAMP7 binaries, which may
be executed on both real hardware and ACL2 model

• Currently developing µCryptol semantics in Isabelle

Other ongoing workOther ongoing work
• Cryptol Embedded

– Refined language and type system to support static memory
allocation for embedded devices

• Cryptol to FPGA
– Compile Cryptol directly to VHDL, which may be realized on an

FPGA using existing toolchain

• Public Key Algorithms
– Additional primitives to support prime field and elliptic curve

arithmetic with run-time field/group parameters

• Waveforms
– Extend Cryptol's applicability to describing the "waveform" or

"glue" code which surrounds cryptographic algorithms in actual
devices

Cryptol Cryptol FPGA: Cost FPGA: Cost vsvs ThroughputThroughput

The aim of the FPGA
project is to make crypto

implementation on an
FPGA as similar to

conventional processors
as possible

FPGA via Cryptol

µP FPGA ASIC

Cost

10MB/s 100MB/s 1GB/s 10GB/s 100GB/s
Throughput

Typical cryptographic device layeringTypical cryptographic device layering

• The entire device must be certified
• The actual cryptographic core is a

small fraction of overall code
• A great deal of tedious and error-prone

engineering must go into the lower
level "waveform" layers:
– padding and packet boundaries
– cryptographic modes, initialization, keying
– error detection and correction
– packet parsing and encoding
– packet protocol: start, data, end, ack,

timeout, resend
– parsing and encoding highly structured data

(eg certificate in ASN.1)

Data Link

Physical

Packets

Data Protocol

Crypto Core

Security Protocol

Application

Key Management

Tackling the waveform problemTackling the waveform problem
• Much lower-layer code is bit-twiddling

– With use of error-correction primitives

• Bit-twiddling is Cryptol's bread and butter
• Possible approach

– Allow packet layout to be declared as a new Cryptol type
– Allow packet protocols to be declared
– Allow packet recognition to be declared
– Compile all of above down to vanilla Cryptol

• Generated code may be subject to verification by same
methods we have already discussed

Cryptol Cryptol team and partnersteam and partners
• Core

– Jeff Lewis, Sigbjorn Finne

• Cryptol development methodology
– General Dynamics

• FPGA
– Andy Gill, Fergus Henderson
– Xilinx

• SHADE
– John Matthews, Mark Shields
– Rockwell Collins

• SAT Verifier
– Thomas Nordin

• Public Key
– Thomas Nordin, Frank Taylor

Questions?Questions?

Additional MaterialAdditional Material

A flavor of A flavor of CryptolCryptol

Cryptol Cryptol values and operatorsvalues and operators
• Values:

– Bits: True, False : Bit

– Vectors of bits: [True False True], 5 : [3]

– Tuples of any type: (3 True [True]) : ([2], Bit, [1])

– Vectors of any type: [(3, 2) (2, 1)] : (B^2, B^2)^2

• Built in operators:
– Modular arithmetic: (3:[3]) +7 == 2

– Comparison: 7 < 8 == True

– Logical: 7 < 8 && (3:[3]) == 1+2 == True

– Bitwise logical: 6 || 1 == 7

– Shift and rotate: [7 9 11] <<< 2 == [11 7 9]

– Indexing: [7 9 11]@0 == 7

– Polynomials: pmult 3 4 == 12

Cryptol Cryptol values and operatorsvalues and operators
• More advanced operations on vectors:

– Append: [1 2] # [3 4] == [1 2 3 4]

– Reverse: reverse [(1, 2) (3, 4)] == [(3,4) (1,2)]

– Join: join [[1 2] [3 4]] == [1 2 3 4]

– Split: split [1 2 3 4 5 6] : [2][3][8]
== [[1 2 3] [4 5 6]]

– Drop: drop [1 2 3 4] : [3][8] == [2 3 4]

– Take: take [1 2 3 4] : [3][8] == [1 2 3]

– Transpose: transpose [[1 2] [3 4]] == [[1 3] [2 4]]

• Note that:
– The type checker knows the width of every vector at compile time

• Type checker performs arithmetic at compile time
– All the vector operators work on vectors of anything

• We say they are "polymorphic" on their element type and width

Cryptol Cryptol constructsconstructs
• Enumerations (shorthand for sequences of numbers):

[3, 5 .. 11] == [3 5 7 9 11]

• Local definitions:
x + y where { x = 7; y = 8; }

• Functions:
f : [8] -> [8];
f x = g (x + 1) * 3
where { g : [8] -> [8]; g y = y + x; }

• Branching:
if x > 3 then x - 1 else x + 1

• Comprehensions ("calculate for each element of..."):
[| x + 1 || x <- [0{8}..3]] == [1 2 3 4]

[| x + y || x <- [0 1], y <- [2 3]] == [2 3 3 4]

[| x + y || x <- [0 1] || y <- [2 3]] == [2 4]

EgEg: RC6 Key Expansion : RC6 Key Expansion -- HardwareHardware

v0 v1 vNk-1

+-1-2-3-Nk

-1-2-3-C

-Nk+1 -Nk+2

-C+1 -C+2

0

0

init

init

<<<

3

+<<<

+

vi = 0xb7e15163 +

i * 0x9e3779b9

init

shift

shift

+ counter
+ barrel-shift

output

key
zero padding

init

EgEg: RC6 Key Expansion : RC6 Key Expansion -- CC

#define A ...
#define Nk 44
#define C (max(1, (A + 3) / 4))
#define V (3 * max(C, Nk))

void rc6exp(byte key[A], byte s[Nk]) {
word l[C]; int i, j, s; word a, b;
l[C - 1] = 0; memcpy(l, key, A);
l[0] = 0xb7e15163;
for (i = 1; i < Nk; i++)

s[i] = s[i - 1] + 0x9e3779b9;
a = b = 0; i = j = 0;
for (s = 0; s < V; s++) {

a = s[i] = (s[i] + a + b) <<< 3;
b = l[j] = (l[j] + a + b) <<< (a + b);
i = (i + 1) % Nk;
j = (j + 1) % C;

}
}

EgEg: RC6 Key Expansion : RC6 Key Expansion -- CryptolCryptol

A = ...;
Nk = 44;
C = max(1, (A + 3) / 4);
V = 3 * max(C, Nk);

rc6exp : [A][Byte] -> [Nk][Word];
rc6exp key = segment(V-Nk, s) >>> (V - 3 * Nk)
where {

consts : [inf][Word];
consts = [0xb7e15163] # [| x + 0x9e3779b9 || x <- consts |];
inits : [Nk][Word];
inits = segment(0, consts);
initl : [C][Word];
initl = split (join ((key # zero) : [4*C][Byte])));
s : [inf][Word];
s = [| (x+a+b) <<< 3

|| x <- inits # s || a <- [0] # s || b <- [0] # l |];
l : [inf][Word];
l = [| (x+a+b) <<< (a+b)

|| x <- initl # l || a <- s || b <- [0] # l |]; };

µµCryptolCryptol

Cryptol Cryptol as an implementation languageas an implementation language
• Implementations have many concerns which may be

conveniently ignored in a specification:
– Efficient and bounded use of memory
– Efficient use of available hardware primitives
– Timing and power analysis attacks
– Zeroing sensitive memory after use

• Many implementation details are device dependent
– Eg: Software only vs custom hardware targets

• So is it realistic to push these issues up into the language?
• Our strategy:

• Programmer may thus start with a reference
implementation, and progressively refine it to an efficient
implementation

Support as many implementation refinements within Cryptol itself.

Constraints on embedded devicesConstraints on embedded devices
• Dynamic allocation of memory generally frowned upon
• Memory at a premium
• Don't always have access to high quality C compiler
• Alas, these all work against the implementation of a

declarative language such as Cryptol
– Existing backend targets C, and makes use of garbage collected

heap allocated memory

• We have developed µCryptol, a sub-language of Cryptol
intended for embedded devices
– Current target is the Rockwell Collins AAMP7 processor
– Complier goes directly from source to AAMP7 binary image
– Complier intended to be verifying: AAMP7 program may be shown

input/output equivalent to µCryptol source program

• Biggest challenge is dealing with streams

Sequence flavorsSequence flavors
xs0 = [x + 1 | x <- [0..3]];
xs1 = [0..];
xs2 = take{5} ([0] # xs2);
xs3 = [0] # [x + y | x <- xs3 | y <- [0..3]];
xs4 = [0, 1] # [x + y | x <- xs4 | y <- drops{1} xs4];

xs4xs2, xs3Dependent

xs1xs0Independent

InfiniteFiniteWidth

Elements

• Cryptol Classic
distinguishes sequences
according to width

• Semantics and compilation
must distinguish according
to element dependencies

• For simplicity, µCryptol
allows only two
combinations

• Easy to re-express others
using just these two

"Vectors"

"Streams"

Vectors and streams in Vectors and streams in µµCryptolCryptol
• Vectors

– Types like B^8, (B, B^8)^4
– Must be non-recursive
– Must be finite, with statically known width
– May compute elements in any order

• Eg sequential for loop, parallel hardware, etc

• Streams
– Types like B^inf[32,4], B^5^inf[8,2]
– Must be recursive
– Must be infinite (unbounded) width
– Must compute elements in a particular order

Stream expressivenessStream expressiveness
• How expressive a language of streams do we need?
• Choices have huge impact on time and space efficiency

ys0 = [0, 1] ## [x + y | x <- ys0 | y <- drops{1} ys0];
ys1 = (drops{4} ys1 ## [0..3]) ## ys1;
ys2 = [0] ## [x + y | x <- ys2, y <- [0, 1]];
ys3 = [0..3] ## [(ys3 @ (3 - (x % 4))) + 1 | x <- ys3];
ys4 = [0] # [x + y | x <- ys4 | y <- drops{1} ys4];

Non-sequential, cyclicS = E8ys1

OperationalDenotational

Not obviously sequential or cyclicS = N → E⊥ys3
Possibly undefined elementsS = N → E⊥ys4

Sequential, unbounded historyS = να .E × αys2

Sequential, finite historyS = 1+E+E2 → Eys0 ✔ µCryptol

Cryptol
Classic

Compiling streams

: forall a : Type, b : Nat, c : Nat .
(a^b, a^c) -> a^(b+c)

: forall a : Type, b : Nat .
(a^b, a^inf) -> a^inf

@ : forall a : Type, b : Nat, c : Nat .
(a^b, 2^c) -> a

@@ : forall a : Type, b : Nat .
(a^inf, 2^b) -> a

rec fibs : 2^8^inf;
fibs = [0, 1] ##

[x + y | x <- fibs
| y <- drops{1} fibs];

fib : 2^16 -> 2^8;
fib i = fibs @@ i;

rec fibs : 2^8^inf;
fibs = {i} .
i < 2 -> [0, 1] @ i

| True -> fibs {i -2} + fibs {i -1};

fib : 2^16 -> 2^8;
fib i = fibs . i;

fibs : 2^16 -> 2^8^2;
fibs i {fibs'} =

i < 2 -> [0, 1] @ i
| True -> fibs' @ (i-2 % 2) +

fibs' @ (i-1 % 2);

fib : 2^16 -> 2^8;
fib i = (fibs i) @ (i % 2);

NOTE: Simplification of actual situation
fibs 12

Compiling streams
µCryptol

Basic type checking

Delay analysis

Reduction to
indexed form

Simplification

Reduction to
iterator form

Simplification

Translation to CrAM

CrAM

Type checking streamsType checking streams
• We implement delay analysis within the type system

– "External" stream types (as seen by the programmer)

– "Internal" stream types (as used by the type checker)

where
τ stream element type
w width of stream indexes
h no. previous stream elements needed to compute next
m delay from stream definition to current term context
l recursive stream level

• Stream primitives track delays by polymorphism

τ^inf[w,h]

τ^inf{w,m,l}

: forall wl, wi, t, d, l .
t^wl, t^inf{wi, d + wl, l} -> t^inf{wi,d,l}

StatusStatus
• Type system implemented within the µCryptol compiler
• Work needed to integrate µCryptol and current Cryptol

PublicPublic--key Algorithmskey Algorithms

Symmetric Symmetric vsvs PublicPublic
• Symmetric-key algorithms typically work in:

– Z2n Arithmetic on naturals modulo 2n

(where n is known at compile-time)
– F2n Binary field (polynomials over F2) (eg AES)

(where n is known at compile-time)
– Vectors and tuples over the above
– Recursive streams over the above

• Public-key algorithms typically work in:
– Fp Prime field on prime p (eg RSA)

(where p may only be known at run-time)
– E(p,a,b,P,n,h) Group of points on elliptic curve over Fp (eg ECC)

defined by y2 = x3 + ax + b with base point
P of order prime n, and group order nh
(where above may only be known at run-time)

Key design decisionsKey design decisions
• Cryptol already has built-in support Z2n and F2n

• Extending to Fp and E(...) presents many challenges:
– How to handle the run-time field or elliptic curve parameters?

⇒ Specially named variable

– Is an element of (eg) F29 incompatible with an element of F31?
⇒ No, the programmer must keep them separate

– Is an element of (eg) F31 incompatible with an element of Z25?
⇒ No, the programmer may switch between these two views

– Should the new operators be implemented as built-in primitives, or
supplied as a library?
⇒ For prime fields, implemented within interpreter using GMP
⇒ For elliptic groups, implemented as a Cryptol library

PublicPublic--key inkey in CryptolCryptol
• The type system remains unchanged. Eg:

– An element of F31 is represented by a 5 or greater bit word

• New operators expect a specially named variable to bind
the necessary run-time parameters. Eg:
– Move a 6-bit word into F31

– Perform arithmetic in F31

– Perform arithmetic on a pre-defined curve f13

Cryptol> @% 33 where modulus = 31

Cryptol> 3 *% 17 +% 9

2

**% 2 where modulus = 31
8

Cryptol> @&(1,4,1) +& @&(1,4,1) where ellipticcurve = f13
(11, 9, 1)

StatusStatus
• Current implementation:

– 3 point multiplies (on a NIST curve) per second

• Future work:
– Support in multiple backends (currently just interpreter)

Cryptol Cryptol to FPGAto FPGA

Technical approachTechnical approach

Cryptol to
SPIR

SPIR

VHDL

Optimizer

SPIR to
VHDL

Bitfile
generation

Annotated
netlist

FPGA
bitfile

Galois
FPGA

Compiler

FPGAFPGA

Cryptol Synthesis,
place and route

fib:fib: Intermediate representationIntermediate representation

sequentialize

append

16

switch

+

"x" "y"

"x+y"
8

fib :: [inf][8];

fib = [1 1] # [| x + y

|| x <- fib

|| y <- drop(1,fib) |];

"fib"

delay -1

delay 2

1, 1, 0, 0, ...

1, 1, ... 1, 1, ...

1, 1, 2, 3, 5, ...

1

fib:fib: Optimized representationOptimized representation

switch

delay 1

delay 1

1

fib :: [inf][8];

fib = [1 1] # [| x + y

|| x <- fib

|| y <- drop(1,fib) |];
"fib"

+

1, 1, 0, 0, ...

1, 1, ...

1, 1, 2, 3, 5, ...

8

Pipelining TEA: starting pointPipelining TEA: starting point

code : ([2][32],[4][32]) -> [2][32];
code ([y z], [k0 k1 k2 k3]) = [(ys @ 32) (zs @ 32)]

where {
sums = [0x9e3779b9] # [| x + 0x9e3779b9 || x <- sums |];
ys = [y] # [| (y + ((z << 4) + k0 ^ (z +sum) ^ (z >> 5) + k1))

|| sum <- sums || y <- ys || z <- zs |];
zs = [z] # [| (z + ((y' << 4) + k2 ^ (y'+sum) ^ (y' >> 5) + k3))

|| sum <- sums || y' <- tail ys || z <- zs |];
};

• What are the sequential dependencies?
– 32 outer rounds, each requires result of previous
– Expression in zs comprehension depends on value of ys at the

same round
– sums could be precomputed

Pipelining TEA: outer roundsPipelining TEA: outer rounds
• Convert streams ys, zs and sums to a round function
• Then unwind outer loop 32 times
round : ([32], [32], [32], [4][32]) -> ([32], [32], [32], [4][32]);

round (y, z, sum, [k0 k1 k2 k3]) = (nexty, nextz, nextsum, [k0 k1 k2 k3])

where {

nexty = y + ((z << 4) + k0 ^ (z +sum) ^ (z >> 5) + k1);

nextz = z + ((nexty << 4) + k2 ^ (nexty+sum) ^ (nexty >> 5) + k3);

nextsum = sum + delta; };

pipeline32 : [inf]([32],[32],[32],[4][32]) -> [inf]([32],[32],[32],[4][32]);

pipeline32(vs0) = drop(32,vs32) where {

vs32 = [zero] # [| round x || x <- vs31 |];

vs31 = [zero] # [| round x || x <- vs30 |];

...

vs1 = [zero] # [| round x || x <- vs0 |]; };

Pipelining TEA: inner pipelinePipelining TEA: inner pipeline

• Pipeline round function into two parts:
roundA (y, z, sum, [k0 k1 k2 k3]) = (nexty, z, sum, [k0 k1 k2 k3])

where {
nexty = y + ((z << 4) + k0 ^ (z +sum) ^ (z >> 5) + k1); };

roundB (nexty, z, sum, [k0 k1 k2 k3]) = (nexty, nextz, nextsum, [k0 k1 k2 k3])
where {
nextz = z + ((nexty << 4) + k2 ^ (nexty+sum) ^ (nexty >> 5) + k3);
nextsum = sum + delta;

};

pipeline64 : [inf]([32],[32],[32],[4][32]) -> [inf]([32],[32],[32],[4][32]);
pipeline64(vs0) = drop(64,vs64)

where {
vs64 = [zero] # [| roundB x || x <- vs63 |];
vs63 = [zero] # [| roundA x || x <- vs62 |];
vs62 = [zero] # [| roundB x || x <- vs61 |];
vs61 = [zero] # [| roundA x || x <- vs60 |];
...
vs2 = [zero] # [| roundB x || x <- vs1 |];
vs1 = [zero] # [| roundA x || x <- vs0 |]; };

StatusStatus
• Have tested on Spartan 3 (Xilinx XC3S200, 200 Kgates) and

Wildcard II (Xilinx XC2V3000, 3000 Kgates) evaluation
hardware

• Pipelined DES performance comparable with hand-written
VHDL using Xilinx VHDL synthesis toolchain

	Cryptol Verification Technology1 Mar 2005
	Threats to cryptographic systems
	Cryptol directions
	Verification spectrum
	A flavor of Cryptol
	Eg: Fibonacci numbers
	Cryptol as an aid to implementation and certification
	From specification to implementation
	Cryptol in the development process
	Status
	Equivalence verification by SAT-solving
	Symbolic simulation
	Verification approach
	Equivalence checking
	Equivalence checking problem
	Equivalence checking after merging
	Equivalence checking with hints
	Equivalence checking with hints
	Status
	Equivalence verification by theorem proving
	Context
	How to verify equivalent behavior?
	How to verify equivalent behavior?
	Verification approach
	Verification approach
	CrAM verification problem
	State invariants
	State invariants: Insight 1
	State invariants: Insight 2
	State invariants: Insight 3
	Status
	Other ongoing work
	Cryptol FPGA: Cost vs Throughput
	Typical cryptographic device layering
	Tackling the waveform problem
	Cryptol team and partners
	Questions?
	Additional Material
	A flavor of Cryptol
	Cryptol values and operators
	Cryptol values and operators
	Cryptol constructs
	Eg: RC6 Key Expansion - Hardware
	Eg: RC6 Key Expansion - C
	Eg: RC6 Key Expansion - Cryptol
	mCryptol
	Cryptol as an implementation language
	Constraints on embedded devices
	Sequence flavors
	Vectors and streams in ?Cryptol
	Stream expressiveness
	Compiling streams
	Type checking streams
	Status
	Public-key Algorithms
	Symmetric vs Public
	Key design decisions
	Public-key in Cryptol
	Status
	Cryptol to FPGA
	Technical approach
	fib: Intermediate representation
	fib: Optimized representation
	Pipelining TEA: starting point
	Pipelining TEA: outer rounds
	Pipelining TEA: inner pipeline
	Status

