
Cryptol Tutorial

Overview and Elements

purely functional
GALOISCONNECTIONS

© 2001,2002, Galois Connections Inc.

Purpose of the tutorial

� Overview of Cryptol
� Domain-specific language for crypto-algorithms
� Elements of Cryptol

� Cryptol in use for full crypto-algorithm
� IDEA
� Idioms

� Non-goal
� Principles and technology underlying the Cryptol

compiler — where does all the code come from?

© 2001,2002, Galois Connections Inc.

Tension

� Domain-specific languages (DSLs) attempt to
bridge this semantic gap

� Programs are written in domain-specific terms
� Programs “execute” as if a program had been

written

Programming
Language
Concepts

Application
Concepts

tension

© 2001,2002, Galois Connections Inc.

Classic examples

� Spreadsheets: Accountancy concepts and
notations

� Parser generators: LEX, YACC: use BNF grammars
� SQL: Relational database queries
� PERL: Text manipulation scripting
� TeX and LaTex: Document layout
� Postscript: Low-level graphics
� Mathematica / Maple: Symbolic computation

© 2001,2002, Galois Connections Inc.

Value of DSLs

� Design-level programming
� Huge productivity increase
� Major flexibility for code evolution
� Natural maintenance of design documents

� Multiple use
� Code
� Test generation
� Analysis

© 2001,2002, Galois Connections Inc.

Where do DSLs come from?

� Domain analysis
� Existing domain notations

� Textual
� Mathematical
� Graphical

� Semantics must be precise
� Prototype interpretation must match compiled

interpretation must match testing interpretation etc.
� Source level reasoning

� DSL programmers may not understand traditional programming

How do domain
experts talk to
each other?

© 2001,2002, Galois Connections Inc.

Crypto-algorithm domain analysis

� What we did
� Spoke with crypto-algorithm designers

� What are the important elements of algorithm specification?

� Studied five AES finalists and DES
� What do these algorithms have in common?
� What differences occur between them?

� Examined previous attempts at crypto DSL

� Now
� Embodying the domain analysis within a language
� Obtaining feedback from crypto specialists

© 2001,2002, Galois Connections Inc.

Requirements on Cryptol

� Focus on symmetric-key block algorithms
� Emphasize cryptographic concepts and

abstractions
� Rather than traditional computing abstractions

� Specifications expressed in Cryptol should lend
themselves to mathematical analysis
� Capture mathematical structure rather than detailed

representation issues
� Issues of space use and memory allocation should not

cloud the specification of crypto algorithms

© 2001,2002, Galois Connections Inc.

Consequently,
Cryptol should provide:

� Crypto data-types plus operators
� Fixed-width words, small matrices and vectors, Galois fields
� Flexible views of data wthout excessive annotations by the user

� Ability to express parameterized algorithms
� Work over varying key sizes and varying block sizes

� Appropriate control structures for crypto-algorithms
� Including iteration and recurrence

� Predefined standard cryptographic modes
� Plus facilities for describing new modes

© 2001,2002, Galois Connections Inc.

Block Ciphers

� Logical pattern of use

encrypt : (Xkey,PT) -> CT
decrypt : (Xkey,CT) -> PT
keySchedule : Key -> Xkey

� In the context of different modes
� ECB, CBC, etc…

© 2001,2002, Galois Connections Inc.

Bit Vectors

� Sizes ranging from 4 bits to 128 bits
� 8 and 32 most common

� All the usual boolean ops
� Simple modulo arithmetic (+, -, *, /)
� Permutations

� Mostly just rotations of bit vectors
� More general permutation used in DES

� Splitting and combining bit vectors
� Big and little endian

© 2001,2002, Galois Connections Inc.

Matrices

� Matrix/vector multiplication used in TwoFish and
Rijndael

� Other arithmetics
� Polynomials
� Galois fields

© 2001,2002, Galois Connections Inc.

Iteration

� For loops
� Over fixed counts

� Feistel networks (TwoFish)
� SP-networks (MARS, RC6, ...)
� Recurrence relations

© 2001,2002, Galois Connections Inc.

Common practice

� Use of arrays and in-place update
� Not fundamental to the domain
� Common implementation technique
� Underlying model is recurrence relations

© 2001,2002, Galois Connections Inc.

Cryptol
� Now that we know the

domain …

… what should the domain-
specific language be like?

Cryptol

Domain-specific
language for

cryptoalgorithms

© 2001,2002, Galois Connections Inc.

Data in Cryptol
� The smallest elements: Bits
� Everything else is a matrix (a parameterized collection)

[False True False True False False True]

0x4A

[0x3F 0x02 0x41 0xD8]

[[1 2 3 4] [5 6 7 8]]

[1 .. 10]

7 single bits

7 (or more) bits
4 elements, each
8 (or more) bits

2 elements, each
having 4 elements,

each 4 (or more) bits

10 elements, each
of 4 (or more) bits

© 2001,2002, Galois Connections Inc.

Hierarchical Views of Data

0x99FAC6F975BABB3EDADD847FC237249F

� Data can be split into n subparts

[0x99FAC6F975BABB3E 0xDADD847FC237249F]

split

[[0x99FAC6F9 75BABB3E] [0xDADD847F C237249F]]

split split

© 2001,2002, Galois Connections Inc.

Primitive Operations

� Arithmetic operators
� Result is modulo the word

size of the arguments
� + - * / %

� Boolean operators
� From bits, to arbitrarily

nested matrices of the same
shape

� & | ^ ~

� Shift and rotate operators
� << >> <<< >>>

� Comparison operators
� Equality, order
� == < <= > >= !=

� Conditional operator
� Expression-level if-then-else
� Like C’s a?b:c
� Booleans are just bits

© 2001,2002, Galois Connections Inc.

Matrices

� Matrix operators
� Concatenation, indexing, size
� # @ @@ width

[1..5] # [3 6 8] = [1 2 3 4 5 3 6 8]

� Zero-based indexing from the left
[50 .. 99] @ 10 = 60

© 2001,2002, Galois Connections Inc.

Matrix Operations
� Logical operations lift to matrices of any size
� Arithmetic operations lift to matrices of words

� Word = matrix of bits

� Bulk indexing
[50 .. 99] @@ [10 .. 20] = [60 .. 70]

� Permutations
[1 .. 4] @@ [1 2 3 0] = [2 3 4 1]
[1 .. 4] @@ [3 2 .. 0] = [4 3 2 1]

© 2001,2002, Galois Connections Inc.

Cryptol Definitions

� Definitions of values or of functions
x = 13;
incr x = x + 1;
f (x, y) = 2 * x + 3 * y + 1;

� Pattern Matching on Matrices
sum4 [a b c d] = a + b + c + d;

� Nested definitions
f x = [y z]
 where {y = x + 1;
 z = not x};

Each definition
is assigned a

type

© 2001,2002, Galois Connections Inc.

Simple Cryptol Size Types

� Data sizes
 Bit single bit
[32] 32-bit word (same as [32]Bit)
[16][48] sixteen 48-bit words

� Functions
� Form is: argument -> result

© 2001,2002, Galois Connections Inc.

Examples

x : [4];
x = 13;

incr : [32] -> [32];
incr x = x + 1;

f : ([16],[16]) -> [16];
f (x, y) = 2 * x + 3 * y + 1;

sum4 : [4][32] -> [32];
sum4 [a b c d] = a + b + c + d;

Same code,
Different size

PRODUCES
Different effect
(different

runtime code)

© 2001,2002, Galois Connections Inc.

Widths

� Often it is important to know the size of a
structure at the top level
� Number of bits in a word
� Number of rows in a matrix

width 0x5f = 7
width [[2 3] [4 5] [6 7]] = 3

� Width is approximately the log2 of a number

© 2001,2002, Galois Connections Inc.

round [R0 R1 R2 R3] r = [S0 S1 R0 R1]
where {[F0 F1] = F (R0,R1,r);

 S0 = (R2 ^ F0) >>> 1;
 S1 = (R3 <<< 1) ^ F1;

 };

Equational Correspondence

© 2001,2002, Galois Connections Inc.

Bounded Iteration

� Borrowed the comprehension notion from set
theory
� { a+b | a � A, b � B}
� Adapted to matrices (i.e. sequences)

� Applying an operation to each element

[| 2*x + 3 || x <- [1 2 3 4] |]
 = [5 7 9 11]

© 2001,2002, Galois Connections Inc.

Traversals

� Cartesian traversal

[| [x y] || x <- [0..2], y <- [3..4] |]

 = [[0 3] [0 4] [1 3] [1 4] [2 3] [2 4]]

� Parallel traversal

[| x + y || x <- [1..3]
 || y <- [3..7] |]
 = [4 6 8]

© 2001,2002, Galois Connections Inc.

Recurrence

� Textual description of shift circuits
� Traditionally use a language of commands

� Arrays, updates, and command-loops
� Alternatively, use stream-equations

� Stream-definitions can be recursive

ints : [inf][256]
ints = [0] # [| y+1 || y <- ints |];

0ints

+1

© 2001,2002, Galois Connections Inc.

Sizes of Recurrences

� Stream is unbounded
� No finite size
� But generated by a finite state machine

� Use the inf type

ints : [inf][8];
ints = [0] # [| y+1 || y <- ints |];

© 2001,2002, Galois Connections Inc.

Parallel Traversal

� Define an unbounded sequence of factorials

facts : [inf][32];
facts = [1] # [| x * n || x <- facts
 || n <- [1..] |];

© 2001,2002, Galois Connections Inc.

Cryptol “Execution”

Execution by calculation

� Example
� facts @@ [0..10]

is a mathematical expression whose result will
be computed

� Storage (and other issues) are left to the Cryptol
system

© 2001,2002, Galois Connections Inc.

Multiple Access Points

� Define an unbounded sequence of fibonacci
numbers, parameterized on starting pair

fibs : ([32],[32]) -> [inf][32];
fibs (p,q) = xs
 where
 xs = [p q]
 # [| x + y || x <- xs
 || y <- drop (1,xs) |];

© 2001,2002, Galois Connections Inc.

More Complex Stream Equations

as = [Ox3F OxE2 Ox65 OxCA] # ds;
ds = [| a ^ b ^ c || a <- as
 || b <- drop(1,as)
 || c <- drop(3,as) |];

3Fas E2

^

65 CA

^

ds

© 2001,2002, Galois Connections Inc.

Alternative Description

as = [Ox3F] # bs;
bs = [OxE2 Ox65] # cs;
cs = [OxCA] # [| a ^ b ^ c || a<-as
 || b<-bs
 || c<-cs |];

3Fas E2

^

65 CA

^

bs cs

© 2001,2002, Galois Connections Inc.

Additional Complexity

as = [Ox3F OxE2 Ox65]
 # [| c^c’ || c <- cs
 || c’<- drop(1,cs) |];
cs = [OxCA] # [| a^a’
 || a <- as
 || a’<- drop(1,as) |];

3Fas E2

^

65 CA^
cs

© 2001,2002, Galois Connections Inc.

RC6 Key Expansion

� Published specification is in terms of array updates
� Imperative code for key expansion appears entirely

symmetrical — Cryptol exposes non-symmetry

ss = [(s+a+b) <<< 3 || s <- initS # ss
 || a <- [0] # ss
 || b <- [0] # ls];

ls = [(l+a+b)<<<(a+b) || l <- initL # ls
 || a <- ss
 || b <- [0] # ls];

© 2001,2002, Galois Connections Inc.

“Circuit” Diagram

0

0

ss

ls

initS

initL

a
s

b

b
a

l

© 2001,2002, Galois Connections Inc.

Electronic code book

ecb(pt, key) = ct
 where
 ct = [| encrypt (x, key) || x <- pt |]

 enckey

© 2001,2002, Galois Connections Inc.

Cipher Block Chaining

cbc(iv, pt, key) = ct
 where
 ct = [iv] # [| encrypt (x^y, key) || x <- pt
 || y <- ct |]

 enckey^ iv

	GALOISCONNECTIONS
	Purpose of the tutorial
	Tension
	Classic examples
	Value of DSLs
	Where do DSLs come from?
	Crypto-algorithm domain analysis
	Requirements on Cryptol
	Consequently,Cryptol should provide:
	Block Ciphers
	Bit Vectors
	Matrices
	Iteration
	Common practice
	Cryptol
	Data in Cryptol
	Hierarchical Views of Data
	Primitive Operations
	Matrices
	Matrix Operations
	Cryptol Definitions
	Simple Cryptol Size Types
	Examples
	Widths
	Equational Correspondence
	Bounded Iteration
	Traversals
	Recurrence
	Sizes of Recurrences
	Parallel Traversal
	Cryptol “Execution”
	Multiple Access Points
	More Complex Stream Equations
	Alternative Description
	Additional Complexity
	RC6 Key Expansion
	“Circuit” Diagram
	Electronic code book
	Cipher Block Chaining

