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Purpose of the tutorial

� Overview of Cryptol
� Domain-specific language for crypto-algorithms
� Elements of Cryptol

� Cryptol in use for full crypto-algorithm
� IDEA
� Idioms

� Non-goal
� Principles and technology underlying the Cryptol

compiler — where does all the code come from?



© 2001,2002, Galois Connections Inc.

Tension

� Domain-specific languages (DSLs) attempt to
bridge this semantic gap

� Programs are written in domain-specific terms
� Programs “execute” as if a program had been

written

Programming
Language
Concepts

Application
Concepts

tension
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Classic examples

� Spreadsheets: Accountancy concepts and
notations

� Parser generators: LEX, YACC: use BNF grammars
� SQL: Relational database queries
� PERL: Text manipulation scripting
� TeX and LaTex: Document layout
� Postscript: Low-level graphics
� Mathematica / Maple: Symbolic computation
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Value of DSLs

� Design-level programming
� Huge productivity increase
� Major flexibility for code evolution
� Natural maintenance of design documents

� Multiple use
� Code
� Test generation
� Analysis
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Where do DSLs come from?

� Domain analysis
� Existing domain notations

� Textual
� Mathematical
� Graphical

� Semantics must be precise
� Prototype interpretation must match compiled

interpretation must match testing interpretation etc.
� Source level reasoning

� DSL programmers may not understand traditional programming

How do domain
experts talk to
each other?



© 2001,2002, Galois Connections Inc.

Crypto-algorithm domain analysis

� What we did
� Spoke with crypto-algorithm designers

� What are the important elements of algorithm specification?

� Studied five AES finalists and DES
� What do these algorithms have in common?
� What differences occur between them?

� Examined previous attempts at crypto DSL

� Now
� Embodying the domain analysis within a language
� Obtaining feedback from crypto specialists
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Requirements on Cryptol

� Focus on symmetric-key block algorithms
� Emphasize cryptographic concepts and

abstractions
� Rather than traditional computing abstractions

� Specifications expressed in Cryptol should lend
themselves to mathematical analysis
� Capture mathematical structure rather than detailed

representation issues
� Issues of space use and memory allocation should not

cloud the specification of crypto algorithms
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Consequently,
Cryptol should provide:

� Crypto data-types plus operators
� Fixed-width words, small matrices and vectors, Galois fields
� Flexible views of data wthout excessive annotations by the user

� Ability to express parameterized algorithms
� Work over varying key sizes and varying block sizes

� Appropriate control structures for crypto-algorithms
� Including iteration and recurrence

� Predefined standard cryptographic modes
� Plus facilities for describing new modes
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Block Ciphers

� Logical pattern of use

encrypt : (Xkey,PT) -> CT
decrypt : (Xkey,CT) -> PT
keySchedule : Key -> Xkey

� In the context of different modes
� ECB, CBC, etc…
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Bit Vectors

� Sizes ranging from 4 bits to 128 bits
�  8 and 32 most common

� All the usual boolean ops
� Simple modulo arithmetic (+, -, *, /)
� Permutations

� Mostly just rotations of bit vectors
� More general permutation used in DES

� Splitting and combining bit vectors
� Big and little endian
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Matrices

� Matrix/vector multiplication used in TwoFish and
Rijndael

� Other arithmetics
� Polynomials
� Galois fields
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Iteration

� For loops
� Over fixed counts

� Feistel networks (TwoFish)
� SP-networks (MARS, RC6, ...)
� Recurrence relations
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Common practice

� Use of arrays and in-place update
� Not fundamental to the domain
� Common implementation technique
� Underlying model is recurrence relations
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Cryptol
� Now that we know the

domain …

… what should the domain-
specific language be like?

Cryptol

Domain-specific
language for

cryptoalgorithms
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Data in Cryptol
� The smallest elements: Bits
� Everything else is a matrix (a parameterized collection)

[False True False True False False True]

0x4A

[0x3F 0x02 0x41 0xD8]

[[1 2 3 4] [5 6 7 8]]

[1 .. 10]

7 single bits

7 (or more) bits
4 elements, each
8 (or more) bits

2 elements, each
having 4 elements,

each 4 (or more) bits

10 elements, each
of 4 (or more) bits
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Hierarchical Views of Data

0x99FAC6F975BABB3EDADD847FC237249F

� Data can be split into n subparts

[0x99FAC6F975BABB3E    0xDADD847FC237249F]

split

[[0x99FAC6F9 75BABB3E] [0xDADD847F C237249F]]

split split
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Primitive Operations

� Arithmetic operators
� Result is modulo the word

size of the arguments
� + - * / %

� Boolean operators
� From bits, to arbitrarily

nested matrices of the same
shape

� & | ^ ~

� Shift and rotate operators
� << >> <<< >>>

� Comparison operators
� Equality, order
� == < <= > >= !=

� Conditional operator
� Expression-level if-then-else
� Like C’s a?b:c
� Booleans are just bits
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Matrices

� Matrix operators
� Concatenation, indexing, size
� # @ @@ width

[1..5] # [3 6 8]  =  [1 2 3 4 5 3 6 8]

� Zero-based indexing from the left
[50 .. 99] @ 10  =  60
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Matrix Operations
� Logical operations lift to matrices of any size
� Arithmetic operations lift to matrices of words

� Word = matrix of bits

� Bulk indexing
[50 .. 99] @@ [10 .. 20]  =  [60 .. 70]

� Permutations
[1 .. 4] @@ [1 2 3 0]   =  [2 3 4 1]
[1 .. 4] @@ [3 2 .. 0]  =  [4 3 2 1]
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Cryptol Definitions

� Definitions of values or of functions
x = 13;
incr x = x + 1;
f (x, y) = 2 * x + 3 * y + 1;

� Pattern Matching on Matrices
sum4 [a b c d] = a + b + c + d;

� Nested definitions
f x = [y z]
  where {y = x + 1;
         z = not x};

Each definition
is assigned a

type
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Simple Cryptol Size Types

� Data sizes
 Bit       single bit
[32]       32-bit word (same as [32]Bit)
[16][48]   sixteen 48-bit words

� Functions
� Form is: argument -> result
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Examples

x : [4];
x = 13;

incr : [32] -> [32];
incr x = x + 1;

f : ([16],[16]) -> [16];
f (x, y) = 2 * x + 3 * y + 1;

sum4 : [4][32] -> [32];
sum4 [a b c d] = a + b + c + d;

Same code, 
Different size

PRODUCES
Different effect
(different   

runtime code)   
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Widths

� Often it is important to know the size of a
structure at the top level
� Number of bits in a word
� Number of rows in a matrix

width 0x5f = 7
width [[2 3] [4 5] [6 7]] = 3

� Width is approximately the log2 of a number
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round [R0 R1 R2 R3] r = [S0 S1 R0 R1]
where {[F0 F1] = F (R0,R1,r);

    S0 = (R2 ^ F0) >>> 1;
    S1 = (R3 <<< 1) ^ F1;

        };

Equational Correspondence
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Bounded Iteration

� Borrowed the comprehension notion from set
theory
� { a+b | a � A, b � B}
� Adapted to matrices (i.e. sequences)

� Applying an operation to each element

[| 2*x + 3  ||  x <- [1 2 3 4] |]
  =  [5 7 9 11]
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Traversals

� Cartesian traversal

[| [x y]  ||  x <- [0..2], y <- [3..4] |]

   =  [[0 3] [0 4] [1 3] [1 4] [2 3] [2 4]]

� Parallel traversal

[| x + y  ||  x <- [1..3]
          ||  y <- [3..7] |]
  =  [4 6 8]
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Recurrence

� Textual description of shift circuits
� Traditionally use a language of commands

� Arrays, updates, and command-loops
� Alternatively, use stream-equations

� Stream-definitions can be recursive

ints : [inf][256]
ints = [0] # [| y+1 || y <- ints |];

0ints

+1
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Sizes of Recurrences

� Stream is unbounded
� No finite size
� But generated by a finite state machine

� Use the inf type

ints : [inf][8];
ints = [0] # [| y+1 || y <- ints |];
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Parallel Traversal

� Define an unbounded sequence of factorials

facts : [inf][32];
facts = [1] # [| x * n || x <- facts
                       || n <- [1..] |];
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Cryptol “Execution”

Execution by calculation

� Example
� facts @@ [0..10]

is a mathematical expression whose result will
be computed

� Storage (and other issues) are left to the Cryptol
system
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Multiple Access Points

� Define an unbounded sequence of fibonacci
numbers, parameterized on starting pair

fibs : ([32],[32]) -> [inf][32];
fibs (p,q) = xs
  where
    xs = [p q]
       # [| x + y || x <- xs
                  || y <- drop (1,xs) |];
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More Complex Stream Equations

as = [Ox3F OxE2 Ox65 OxCA] # ds;
ds = [| a ^ b ^ c || a <- as
                  || b <- drop(1,as)
                  || c <- drop(3,as) |];

3Fas E2

^

65 CA

^

ds
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Alternative Description

as = [Ox3F] # bs;
bs = [OxE2 Ox65] # cs;
cs = [OxCA] # [| a ^ b ^ c || a<-as
                           || b<-bs
                           || c<-cs |];

3Fas E2

^

65 CA

^

bs cs
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Additional Complexity

as = [Ox3F OxE2 Ox65]
     # [| c^c’ || c <- cs
               || c’<- drop(1,cs) |];
cs = [OxCA] # [| a^a’
              || a <- as
              || a’<- drop(1,as) |];

3Fas E2

^

65 CA^
cs
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RC6 Key Expansion

� Published specification is in terms of array updates
� Imperative code for key expansion appears entirely

symmetrical — Cryptol exposes non-symmetry

ss = [ (s+a+b) <<< 3 || s <- initS # ss
                     || a <- [0] # ss
                     || b <- [0] # ls ];

ls = [ (l+a+b)<<<(a+b) || l <- initL # ls
                       || a <- ss
                       || b <- [0] # ls ];
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“Circuit” Diagram

0

0

ss

ls

initS

initL

a
s

b

b
a

l
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Electronic code book

ecb(pt, key) = ct
  where
    ct = [| encrypt (x, key) || x <- pt |]

 enckey
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Cipher Block Chaining

cbc(iv, pt, key) = ct
  where
    ct = [iv] # [| encrypt (x^y, key) || x <- pt
                                      || y <- ct |]

 enckey^ iv
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