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Abstract— As social networking sites such as Facebook and
Twitter are becoming increasingly popular, a growing number
of malicious attacks, such as phishing and malware, are
exploiting them. Among these attacks, social botnets have
sophisticated infrastructure that leverages compromised user
accounts, known as bots, to automate the creation of new social
networking accounts for spamming and malware propagation.
Traditional defense mechanisms are often passive and reactive
to non-zero-day attacks. In this paper, we adopt a proactive
approach for enhancing security in social networks by in-
filtrating botnets with honeybots. We propose an integrated
system named SODEXO which can be interfaced with social
networking sites for creating deceptive honeybots and leverag-
ing them for gaining information from botnets. We establish a
Stackelberg game framework to capture strategic interactions
between honeybots and botnets, and use quantitative methods to
understand the tradeoffs of honeybots for their deployment and
exploitation in social networks. We design a protection and alert
system that integrates both microscopic and macroscopic mod-
els of honeybots and optimally determines the security strategies
for honeybots. We corroborate the proposed mechanism with
extensive simulations and comparisons with passive defenses.

I. INTRODUCTION

Online social networks such as Facebook and Twitter are
employed daily by hundreds of millions of users to commu-
nicate with acquaintances, follow news events, and exchange
information. The growing popularity of OSNs has led to a
corresponding increase in spam, phishing, and malware on
social networking sites. The fact that a user is likely to click
on a web link that appears in a friend’s Facebook message or
Twitter feed can be leveraged by attackers who compromise
or impersonate that individual.

An important class of malware attacks on social networks
is social botnets [1], [2]. In a social botnet, an infected user’s
device and social networking account are both compromised
by installed malware. The compromised account is then used
to send spam messages to the user’s contacts, containing
links to websites with the malware executable. As a result,
compromising a single well-connected user could lead to
hundreds or thousands of additional users being targeted
for spam, many of whom will also become members of
the botnet and further propagate the malware. The most
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prominent example of a social botnet to date is Koobface,
which at its peak had infected 600,000 hosts [1].

A promising approach to defending against social botnets
is through deception mechanisms. In a deceptive defense,
the defender generates fake social network profiles that
appear similar to real profiles and waits to receive a link
to malware. The defender follows the link to the malware
site, downloads the malware executable, and runs it in a
quarantined environment. By posing as an infected node and
interacting with the owner of the botnet, the defender gathers
links and reports them to the blacklist, reducing the detection
time and increasing the success rate. Currently, however,
there is no systematic approach to modeling social botnets
and the effectiveness of deception, as well as designing an
effective strategy for infiltrating the botnet and gathering
information.

In this paper, we introduce an analytical framework for
SOcial network Deception and EXploitation through hOney-
bots (SODEXO). Our contributions can be summarized as
follows: (a) developing a game-theoretic model for quantita-
tively understanding the tradeoffs faced by honyeybots and
analyzing their strategic behaviors in order to exploit the
botnet and gain information, and (b) creating a system frame-
work to relate the population dynamics of infected nodes and
honeybots with microscopic strategic behaviors of honeybots
for developing a honeybot deployment mechanism.

We model the exploitation by the honeybots as a Stackel-
berg game between the botmaster and the honeybots. In the
game, the botmaster allocates tasks, such as spam message
delivery, among multiple bots based on their trustworthiness
and capabilities. The honeybots face a trade-off between
obtaining more information by following the commands
of the botmaster, and the impact of those commands on
other network users. We derive closed forms for the optimal
strategies of both the botmaster and honeybots using Stackel-
berg equilibrium as a solution concept. We then incorporate
the utility of the honeybot owner under the Stackelberg
equilibrium in order to select an optimal deployment strategy.

For the deployment component, we first develop a dy-
namical model describing the population of a social botnet
over time. We derive the relevant steady-state equilibrium
of our model and prove its stability. We then formulate the
problem of selecting the optimal number of honeybots in
order to maximize the information gathered from the botnet
as a convex optimization problem. Our results are extended
to include networks with heterogeneous node degrees.

The paper is organized as follows. Related work is re-
viewed in Section II. In Section III, we describe the archi-
tecture of our proposed framework for deceptive defense.
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Fig. 1. System architecture of honeybot deceptive mechanism in social
networks: HD component creates and deploys deceptive honeybots in
social network for infiltrating botnets; HE component exploits the honeybot
infrastructure and collects information from botnets; PAS designs security
policies and coordinates between HD and HE.

In Section IV, we model the exploitation phase of the
botnet, in which the honeybot gathers the maximum possible
information while avoiding detection by the botmaster. In
Section V, we model the deployment and population dy-
namics of the infected nodes and honeybots. Section VI
describes the Protection and Alert System (PAS), which
provides a unifying framework for controlling deployment
and exploitation. Section VII presents our simulation results.
Section VIII concludes the paper.

II. RELATED WORK

Social botnets are a serious threat to network users and
managers, as they possess sophisticated infrastructure that
leverages compromised users’ accounts, known as bots, to
automate the creation of new social networking accounts for
spamming and malware propagation [2]. In [3], a honeypot-
based approach is used to uncover spammers in online social
networks. In [4], a zombie emulator is used to infiltrate the
Koobface botnet to discover the identities of fraudulent and
compromised accounts.

Game- and system-theoretic approaches have become piv-
otal for modeling and designing security mechanisms in a
quantitative way [5]. The following works are related to our
model. In [6], an optimal control approach to modeling the
maximum impact of a malware attack on a communication
network was presented. Stochastic models for the propaga-
tion of multiple competing malware strains were presented
in [7]. In [8], the authors have proposed an architecture
for a collaborative intrusion detection network and have
adopted a game-theoretic approach for designing a reciprocal
incentive compatible resource allocation component of the
system against free-rider and insider attacks.

III. SYSTEM ARCHITECTURE

In this section, we introduce our honeybot-based defense
system named SODEXO for protecting social networks
against malicious attacks. A honeybot is a fake account on an
online social network maintained by a specially quarantined
device under the control of a network defender, which is
capable of impersonating an infected node. Fig. 1 illustrates
the architecture of SODEXO. Our framework consists of
two components, namely, honeybot deployment (HD) and
honeybot exploitation (HE). The behaviors of the two blocks

are coordinated by a Protection and Alert System (PAS),
which uses the gathered information to generate real-time
signatures and alerts for the social network.

The SODEXO architecture resembles a feedback control
system. The HE component behaves as a security sensor of
the social network; PAS can be seen as a controller which
takes the “measurements” from HE and yields a honeybot
deployment strategy; and HD acts as an actuator that updates
the honeybot policy designed by PAS. In the following
subsections, we discuss each component in detail.

A. Honeybot Deployment (HD)

A honeybot is deployed by first creating an account on
a social networking site. The account profile is designed to
imitate a real user, as in [3]. Once deployed, the honeybot
sends a set of friend requests to a set of randomly chosen
other users. The honeybot continues sending friend requests
to random users until the desired number of neighbors,
denoted d, has been reached. The honeybot monitors the
message traffic of its neighbors, which may include personal
messages, wall posts, or Twitter feeds, and follows any
posted link. If the link points to a site containing a known
malware executable for the social botnet and has not been
blacklisted, then the honeybot becomes a member of the
social botnet and proceeds to the exploitation stage.

B. Honeybot Exploitation (HE)

The HE component of SODEXO takes advantage of the
successfully infiltrated honeybots to gain as much infor-
mation as possible from the botnet. The information is
obtained in the form of command and control messages. The
honeybots need to gain an appropriate level of trust from the
bots and respond to the C&C messages while minimizing
harm to the legitimate social network users and avoiding
legal liability. Honeybots work collaboratively to achieve this
goal. In the case where honeybots are commanded to send
spam or malware to network users, they can send them to
each other to remain active in the botnet. Depending on the
sophistication of the botnet, honeybots can sometimes be
detected using mechanisms described in [9]. In this case,
a higher growth rate of honeybot population will be needed
to replace the detected honeybots. Hence, the performance of
HE heavily depends on the effectiveness of HD, and in turn,
HD should change its policy based on the sophistication of
botnets and the amount of information learned in HE.

C. Protection and Alert System (PAS)

The major role of PAS is to provide security policies for
HD based on the information learned from HE. The first step
of PAS is to process the messages and logs gained from hon-
eybots. Using data mining and machine learning techniques,
it is possible that the structure of botnets can be inferred
from network traffic information [10]. This information can
be used by the network administrator to detect the location
of botmasters and remove them from the network.

The second important task of HD is to generate signatures
for detecting malware and spam, which are then used to
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update the libraries of intrusion detection systems, blacklists
of spam filters, and user alerts or recommendations. The
process of reconfiguration of IDSs and spam filters can be
done either offline or real-time as in [11].

IV. SYSTEM MODEL FOR HONEYBOT EXPLOITATION

In this section, we introduce a system model for hierar-
chical botnets and employ a Stackelberg game framework
to model the interactions between the botnet and infiltrating
honeybots. The proofs in the following sections are omitted
due to space constraints and can be bound in [12].

A. Theoretical Framework

Consider a botmaster B that sends requests to a set of C&C
bots M = {1,2, · · · ,m} with m= |M |. Each C&C bot i∈M
sends commands to a set of compromised bot nodes Ni with
ni = |Ni|. We assume that the botnet is a three-level tree
architecture and, without loss of generality, we can assume
that the sets Ni are pairwise disjoint, i.e., ∩i∈M Ni = /0 since
a single bot controlled by multiple independent C&C bots
can be modeled using multiple duplicate bots. Let H be a
honeybot that communicates with node i ∈M , i.e., H ∈Ni.
We assume that all honeybots work together as a team, and
hence one honeybot node H under one C&C subtree can
conceptually represent a group of collaborative honeybots
who have succeeded in infiltrating the same botnet.

We let pi j ∈R+ be the number of messages or commands
(in bytes) per second sent from C&C bot i to bot node j∈Ni.
Likewise, p ji denotes the number of response messages per
second to C&C node i ∈M from node j ∈Ni.

Each C&C node i maintains a trust value Ti j ∈ [0,1]
associated with a bot or honeybot node j ∈ Ni. The trust
values indicate the quality of response and performance
of bot nodes. The trust values also inherently model the
detection mechanisms in botnets, which have been discussed
in [9]. For botnets with such mechanisms, low trust values
indicate the inefficiency of a bot or a high likelihood of being
a honeybot. For those without such mechanisms, we can take
Ti j = 1, for all j ∈Ni, i.e., equivalently see all bots to be
equally trusted.

One C&C bot needs to send commands to a large pop-
ulation of bot nodes. Hence, the goal of C&C bot i ∈M
is to allocate its communication resources pi := [pi j, j ∈Ni]
to maximize the utility of its subtree network Ui : Rni

+→ R,
which is the sum of utilities obtained from each bot j, i.e.,

Ui(pi) = ∑
j∈Ni

Ui j(pi j), (1)

where Ui j : R+ → R is the individual utility of C&C bot i
from bot j ∈Ni, which is chosen to be

Ui j(pi j) := Ti j p ji ln(αi pi j +1). (2)

The choice of logarithmic function in (2) indicates that the
marginal utility of the C&C bot diminishes as the number of
messages increases. It captures the fact that the bots have
limited resources to respond to commands, and a larger
volume of commands can overwhelm the bots, which leads to

diminishing marginal utility of node i. αi ∈R++ is a positive
system parameter that determines marginal utility.

The utility of C&C bot i is also proportional to the number
of messages or responses per second from bot j, indicated
by p ji ∈ R+. The number of response messages from bot j
indicates the level of activity of a bot. We can see that when
p ji = 0 or Ti j = 0 in (2), then bot i is believed to be either
inactive or fake, and it is equivalently removed from the
subtree of C&C node j in terms of the total utility (1). Note
that Ti j in (2) evaluates the quality of the responses while p ji
evaluates the quantity. The product of Ti j and p ji captures
the fact that the botnet values highly active and trusted bots.

We consider the following C&C bot optimization problem
(BOP) of every node i ∈M :

(BOP) max
pi∈R

ni
+

Ui := ∑ j∈Ni Ti j p ji ln(αi pi j +1)

s.t. ∑ j∈Ni ci j pi j ≤Ci. (3)

The constraint (3) in (BOP) is a capacity constraint on the
communications using C&C channel, where Ci is the total
capacity of the channel. The cost ci j ∈ R++ is the cost on
sending commands to bots. The cost is also dependent on
the size of messages from C&C bot i to its controlled bots.
It has been found in [4] that Twitter has larger volume of
spam messages than Facebook. This is due to the fact that
Twitter messages are often shorter than Facebook messages,
and hence the cost for commanding bots spamming with
Twitter messages is relatively less than the one for Facebook.

Let Fi := {pi ∈ Rni
+ : ∑ j∈Ni ci j pi j ≤ Ci} be the feasible

set of (BOP). We let Li : Rni
+ ×R→ R be the associated

Lagrangian defined as follows:

Li(pi,λi) = ∑
j∈Ni

Ti j p ji ln(αi pi j +1)+λi

(
∑

j∈Ni

ci j pi j−Ci

)
.

Since the feasible set is nonempty and convex, and the
objective function is convex in pi, it is clear that (BOP)
is a convex program, and hence we can use the first-order
optimality condition to characterize the solution to (BOP):

∂Li

∂ pi j
=

αiTi j p ji

αi pi j +1
+λici j = 0, (4)

which leads to pi j = −
Ti j p ji
λici j
− 1

αi
. Due to the monotonicity

of logarithmic functions in (2), the optimal solution is found
on the Pareto boundary of the feasible set. Hence by letting
∑ j∈Ni ci j pi j =Ci, we solve for the Lagrangian multiplier λi
as follows:

λi =−
∑ j∈Ni Ti j p ji

Ci +
1
αi

∑ j∈Ni ci j
. (5)

We make following assumptions before stating Theorem 1.

(A1) The product Ti j p ji 6= 0 for all j ∈Ni, i ∈M .

Assumption (A1) states that all bots controlled by C&C
bot i are both active and trusted by C&C bot i. This
assumption is valid because a controlled bot j that is either
inactive (pi j = 0) or untrusted (Ti j = 0) can be viewed as the
one excluded from the set Ni. Hence Assumption (A0) is

214



equivalent to the statement that Ni contains all active and
trusted bots.

Theorem 1: Under Assumption (A1) and with αi’s suffi-
ciently large, , (BOP) admits a unique non-negative solution:

pi j =

(
Ti j p ji

∑ j∈Ni Ti j p ji

)(Ci +
1
αi

∑ j∈Ni ci j

ci j

)
− 1

αi
. (6)

B. Stackelberg Game
The interactions between honeybots and C&C nodes

possess an inherent leader-and-follower architecture. The
deceptive mechanism of honeybots suggests that they need
to follow a C&C protocol and poll information from the
botnet [1], [4]. They proactively initiate requests and the bots
respond to them. Hence honeybots behave as leaders who
can learn the behaviors of C&C bots, and choose optimal
strategies to collect the maximum amount of information by
responding to the commands from C&C bots subject to cost
constraints.

In this section, we formulate a two-stage Stackelberg game
between honeybots and C&C nodes. The goal of honeybots is
to collect as much information as possible from the botmas-
ter. We consider the following game between honeybots and
a C&C bot. The honeybot node H first chooses a response
rate pHi to the commands from C&C bot i, and then C&C bot
i observes the response and chooses an optimal rate to send
information to honeybot H according to (BOP). We make
the following assumption on the real bots in the network.

(A2) The real bots do not strategically interact with the C&C
bot i, i.e., they follow a prescribed botnet protocol and
send messages to bot i at a rate pi j, j 6= H, j ∈Ni.

The above assumption is reasonable because bots are
non-human driven, pre-programmed to perform the same
routine logic and communications as coordinated by the
same botmaster [1], [13]. Under Assumption (A2), strategic
interactions exist only between honeybots and C&C nodes.

The honeybot node H has a certain cost when it responds
to the botnet. This can be either because of the potential
harm that it can cause on the system or due to the cost of
implementing commands from the botmaster. We consider
the following honeybot optimization problem (HOP), where
node H aims to maximize its utility function UH : R+×R→
R+ as follows:

(HOP) max
pHi∈FH

UH(piH , pHi) := ln(piH +ξH)−β H
i pHi, (7)

where ξH ∈ R++ is a positive system parameter; β H
i is the

cost of honeybot H responding to the bot node i; piH is the
message sending rate from honeybot node H to C&C bot i
and pHi is the rate of C&C bot i sending commands to H.

FH denotes the feasible set of the honeybot node H. We
let FH = {pHi,0≤ pHi ≤ pHi,max}, where pHi,max ∈ R++ is
a positive parameter that can be chosen to be sufficiently
large. The logarithmic part of the utility function (7) is
used to model the property of diminishing returns of an
information source. The value of receiving an additional
piece of information from the C&C bot decreases as the total
number of messages received by the honeybot increases.

The interactions between honeybot H and C&C node
i can be captured by the Stackelberg game model ΞS :=
〈(i,H),(Ui,UH),(Fi,FH)〉, and Stackelberg equilibrium can
be used as a solution concept to characterize the outcome.

Definition 1 (Stackelberg Equilibrium): Let πiH(·) :
Rni
+→ R+ be the unique best response of the C&C bots

to the response rate pHi of the honeybots. An action
profile (p∗i , p∗Hi) ∈ Fi ×FH is a Stackelberg equilibrium
if p∗i = πiH(p∗Hi), and for all pHi ∈ FH the inequality
UH(πiH(p∗Hi), p∗Hi)≥UH(πiH(pHi), pHi) holds.

Theorem 2: Under Assumption (A1), the nonzero-sum
continuous-kernel Stackelberg game ΞS admits a Stackelberg
equilibrium.

Under Assumption (A1), the unique best response πiH(·)
can be obtained from (6) for sufficiently large αi as follows:

piH = πiH(pHi) =CH

(
TiH pHi

TiH pHi + I−H

)
− 1

αi
, (8)

where I−H = ∑ j 6=H, j∈Ni Ti j p ji is the number of responses
from real bots weighted by their trust values and CH :=
Ci+

1
αi

∑ j∈Ni ci j

ciH
.

Letting ξH = (1/αi)+ ξ̄H and substituting (8) in (HOP),
we arrive at the following optimization problem faced by the
honeybot node H:

max
pHi∈FH

UH(πiH(pHi), pHi) :=

ln
(

CH

(
TiH pHi

TiH pHi + I−H

)
+ ξ̄H

)
−β

H
i pHi. (9)

Theorem 3: Under Assumptions (A1) and (A2), the
Stackelberg equilibrium solution (p∗i , p∗Hi) of the game ΞS
is unique and can be found as follows:

p∗Hi =
CH I−H

2TiH(CH +ξH)

√1+4
TiH(CH + ξ̄H)

I−HCHβ H
i
−1


+

I−HξH

TiH(CH +ξH)
, (10)

and p∗iH = πiH(p∗Hi) and p∗i j = πi j(pi j) for j 6= H, j ∈Ni.
In order to provide insight into the solution obtained in

(10), we make the following assumptions based on common
structures of the botnets.

(A3) The real bots controlled by C&C bot i have identical
features, i.e., ci j = c̄i, pi j = p̄i and Ti j = T̄i for all j 6=
H, j ∈Ni.

(A4) The size of the real bots controlled by C&C bot i is
much larger than the size of honeybots.

(A5) We let ξ̄H = 0.
Assumption (A5) is valid due to the freedom of choosing

parameter ξH in (HOP). Without loss of generality, we can
let ξH = 1

α i and hence ξ̄H = 0. Assumption (A3) holds if
real bots controlled by C&C bot i are of the same type, for
example, Windows non-expert Facebook users. This type of
users are commonly the target of botnets. Under (A3), we
can simplify the expressions in (10) and obtain CH = Ci

ci
+ ni

αi
,

I−H = nB
i T̄i p̄i.

215



Assumption (A4) is built upon the fact that one C&C
node in botnets often controls thousands of bots and the
size of honeybots are often comparably small due to their
implementation costs [14].

Corollary 1: Under Assumptions (A1), (A2) and (A4),
the Stackelberg equilibrium solution (p∗i , p∗Hi) of the game
ΞS is given by

p∗Hi =

(
1

β H
i
− I−HξH

CHTiH +TiHξH

)+

, (11)

where (·)+ = max{0, ·}; p∗iH = πiH(p∗Hi) and p∗i j = πi j(pi j)
for j 6= H, j ∈Ni.

The ensuing result immediately follows from Corollary 1
using (A3) and (A5).

Corollary 2: Let the size of real bots under C&C be nB
i

and the size of the honeybots represented by super node H
nH

i . Note that ni = nB
i +nH

i . Under Assumptions (A1) - (A5),
the Stackelberg equilibrium of the game ΞS is given by

p∗Hi =
1

β H
i
, p∗i j = πi j(pi j), (12)

for j 6= H, j ∈Ni, and the equilibrium solution of C&C node
i is composed of two terms given by p∗iH = p∗iH,S+ p∗iH,N , with
the first term independent of nH

i ,

p∗iH,S =
TiH

TiH +β H
i nB

i T̄i p̄i

(
Ci

ci
+

nB
i

αi

)
− 1

αi
, (13)

and the second term dependent on nH
i ,

p∗iH,S =
nH

i TiH

TiH +β H
i nB

i T̄i p̄i
. (14)

Remark 1: From Corollary 2, we can see that under As-
sumption (A1), the equilibrium response strategy is inversely
proportional to the unit cost β H

i . We can see that the number
of command and control messages harvested from the botnet
is affine in the number of successfully infiltrated honeybots.
The growth rate of the number of messages is given by

r∗iH :=
∂ p∗iH
∂nH

i
=

TiH

β H
i nB

i T̄i p̄i +TiH
. (15)

The growth rate is dependent of the trust value TiH . Honey-
bots can harvest more information from the botnet if they
are more trusted. The growth rate is also dependent on the
number of the real bots controlled by C&C bot i. As nB

i →∞,
the growth rate r∗iH→ 0, i.e., size of honeybots will not affect
the number of messages received by the network.

V. MODEL OF HONEYBOT DEPLOYMENT AND BOTNET
GROWTH

In what follows, a macroscopic model of the dynamics of
the number of bots at time t, denoted x1(t), and the number of
honeybots, denoted x2(t), is presented. We present our model
for both idealized networks where all nodes have the same
degree, as well as networks with heterogeneous degrees.

A. Botnet and honeybot growth models

The bots are assumed to send spam messages, containing
links to malware, with rate r. Each message is sent to the

d neighbors of the bot, where d is the average node degree.
Hence in each time interval dt, rd dt spam messages are sent.
Since the number of valid nodes is N−x1(t), the number of
messages reaching valid nodes is equal to rd N−x1(t)

N dt.
The number of nodes that become bots depends on the

valid users’ behavior and the number of links that have been
blacklisted. Each user clicks on a spam link with probability
q. If the link has been blacklisted, then the user will be
blocked from visiting the infected site; otherwise, the user’s
account is compromised and becomes part of the botnet.

To determine the probability that a link has been black-
listed, we assume that each bot is independently given a set
of k malicious links, out of M links total. The probability
that a link has been given to a specific honeybot is therefore
k
M . Hence the probability that a link has not been blacklisted
is the probability that that link has not been given to any
honeybot, which is equal to

(
1− k

M

)x2 . We assume that:
(A6) The number of links given to each honeybot, k, satisfies

k�M.
Under (A6),

(
1− k

M

)x2 can be approximated by
(

1− kx2
M

)
.

Finally, we assume that the infected devices are discovered
and cleaned with rate µ1. This leads to dynamics

ẋ1(t) = rdqx1

(
1− kx2

M

)
N− x1

N
−µ1x1. (16)

Honeybot nodes are inducted into the botnet in a similar
fashion. We make the following assumptions regarding the
honeybot population:

(A7) The number of honeybots that are not part of the botnet,
denoted z, is constant.

(A8) The number of honeybots is small compared to the total
number of users, so that z

z+N ≈
z
N .

Assumption (A7) can be guaranteed by creating new, un-
infected honeybots when existing honeybots infiltrate the
botnet. Since blacklisted links are automatically deleted by
the social network owner [4], honeybot nodes cannot follow
such links; however, unlike real users, honeybot nodes will
attempt to follow any non-blacklisted link with probability
1. The botmaster detects and removes honeybots with rate
µ2. The honeybot population is therefore defined by

ẋ2(t) = rdx1

(
1− kx2

M

)
z
N
−µ2x2. (17)

Proposition 1: Under assumptions (A6)–(A8), the dy-
namics defined by (16) and (17) have two equilibria, given
by (x1,x2) = (0,0) and

x∗1 =
Nµ2M(rdq−µ1)

rdqµ2M+ rdkzµ1
, x∗2 =

(
rd− µ1

q

)
z

rdkz
M +µ2

. (18)

The quantity rdq corresponds to the rate at which new
nodes are inducted into the botnet, while µ1 is the rate at
which nodes are cleaned and exit the botnet. Thus if rdq <
µ1, then the number of bots converges to zero, while rdq >
µ1 implies that the number of bots converges to a nonzero
steady-state value.

Since network security policies are typically updated in-
termittently, while the dynamics of (16) and (17) converge
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rapidly, we base our subsequent analysis on the steady-
state values of x1 and x2, and derive the optimal number
of honeybots to introduce into the system in steady-state.
In order to prove that this problem is well defined, we first
examine the stability properties of each equilibrium in the
following theorem.

Theorem 4: Assume that (A6)–(A8) hold. If µ1 > rdq,
then (x1,x2) = (0,0) is asymptotically stable. If µ1 < rdq,
then (x∗1,x

∗
2) is asymptotically stable in the limit as M→ ∞,

N→ ∞.

B. Computation of system parameters

The parameter µ2 determines the rate at which honeybot
nodes are discovered and removed by the botmaster, and
hence can be calculated by observing the lifetime of deployed
honeybots (see Section VI). Similarly, the number of received
messages p and the cost τ can be estimated by averaging
over the set of deployed honeybots over time. The fraction of
malicious links k

M that are given to a single bot or honeybot
is estimated by using the assumption that links are distributed
independently and uniformly at random by the botmaster, so
that the probability that a given link has been received by
a honeybot is

(
1− k

M

)x2 . This probability can be estimated
by analyzing the set of malicious links received by new
honeybots, which combined with knowledge of x2 enables
computation of k

M . The rate at which spam messages are sent
by bots, denoted r, is estimated by the number of instruction
messages received by the honeybots.

The parameters µ1 and q, equal to the rate at which bots
are removed from the botnet, and the fraction of malicious
links that are followed by users, depend on user behavior.
These parameters can be estimated using data sets of user
behavior [15]. Furthermore, to obtain an upper bound on the
effectiveness of the botnet, the parameter q can be set equal
to 1, implying that a valid user always clicks any link to
the malware executable (the worst case). The average node
degree, d, is estimated based on existing analyses of the
degree distribution of social networks [16].

VI. MODELING OF PROTECTION AND ALERT SYSTEM

PAS is a coordination system that strategically deploys
honeybots and designs security policies for social networks.
In this section, we focus on optimal reconfiguration of hon-
eybots. We introduce a mathematical framework for finding
honeybot deployment strategies based on system models
described in Sections IV and V.

A. Relations between HD and HE

We have adopted a divide-and-conquer approach in Sec-
tions IV and V, and have modeled the behavior of each
system independently. However, the interdependencies be-
tween HD and HE are essential for PAS to make optimal
security policies for the social network. The HE model in
Section IV describes strategic operations of honeybots at a
microscopic level while the HD model in Section V provides
a macroscopic description of the population dynamics of bots

and honeybots. These two models are interrelated through
their parameters together with the feedback from PAS.

The interactions between bots and honeybots in the HE
model occur on a time scale of seconds. The analysis of
Stackelberg equilibrium in Section IV captures the steady-
state equilibrium after a repeated or learning process of the
game. Hence the equilibrium can be reached on a time scale
of minutes. On the other hand, the population dynamics
in HD model evolve on a larger time scale (for example,
days). Hence, we can assume that the Stackelberg game has
reached its equilibrium when the populations evolve at a
macroscopic level. Decisions made at PAS are on a longer
time scale (for example, weeks) because the processing of
collected information, learning of bots and honeybots in
social networks, and high-level decision on security policy
in reality demand considerable amount of human resources
for coordination and supervision.

1) Trust Values and Detection Rate: The trust values Ti j
used in HE model are related to the macroscopic detection
and removal rate µ2 in HD model. As we have pointed out
earlier, zero trust values are equivalent to the removal of
honeybots from the botnet. Hence we can adopt a simple
dynamic model to describe the change of Ti j over a longer
time period (say, days). We let T 0

i j be the initial condition
of the trust value. The evolution of Ti j over the macroscopic
time scale can be modeled using the following ODE:

Ti j(t) =−µ2Ti j(t), Ti j(t0
i j) = T 0

i j . (19)

Note that honeybots have different initial times t0
i j. Hence

from (19), we obtain

Ti j(t) = T 0
i je
−µ2(t−t0

i j), t ≥ t0
i j, (20)

i.e., the trust values exponentially decay with respect to the
removal rate. From (20), we can obtain the mean life time
of a honeybot to be 1/µ2. Macroscopic parameter µ2 can
be estimated by the rate of change of working honeybots
in the botnet, which is known to the system, while Ti j is
a microscopic parameter and is often unknown directly to
honeybots. With the ODE model in (19), we can use µ2 to
estimate Ti j.

2) Honeybot and Bot Populations: In Section V, the
populations of bots and infiltrating honeybots are denoted
by x1 and x2, respectively, whereas in Section IV, the bot
size under C&C bot is nB

i . Under a hierarchical structure
of botnet, the total bot and honeybot populations x1,x2 are
x1 = ∑

m
i=1 nB

i and x2 = ∑
m
i=1 nH

i . If all C&C bots are identical,
i.e., nB

i = n̄B, i ∈M ,nH
i = n̄H , i ∈M ; then xi = mn̄B, and

xi = mn̄H , i = 1,2.
3) Activity Level of Bots: The rate p̄i in (15) indicates

the activity level of bots when they respond to or poll
information from C&C node i. This level of activity is
often correlated with parameter r, the rate of sending out
spamming messages to the social network. Assume that all
C&C bots are assumed to be identical, i.e., p̄i = p̄, i ∈M ,
then we can let p̄ = ηr, where p̄ is in messages/sec, r is in
messages/sec and η ∈ R++ is a unitless positive parameter.

217



(a) (b) (c)

Fig. 2. Simulation of our framework for a network of N = 106 users, where each user has probability q = 0.01 of following a malicious link, messages
are sent at a rate of 0.4 messages per bot per day, and infected nodes are cleaned after 5 days on average. (a) Effect of increasing the number of honeybot
nodes on the botnet population. Deployment of a small number of honeybots can greatly reduce the number of bots present. (b) The optimum number of
bots based on (22) for different costs τ and benefits ρ . The total number of honeybots remains small for each case. (c) Effect of degree distribution on
the botnet population for number of honeybots z = 5. Each network is scale-free, with exponent γ varying between networks.

B. Optimal Honeybot Deployment

In what follows, we first derive the optimal honeybot
deployment for the homogeneous degree model when the
benefit from each honeybot is measurable. We then combine
the analysis of Sections IV and V to determine the optimal
honeybot deployment, taking into account the behavior of
the honeybots during the exploitation phase.

The goal of the honeybot operator is to maximize the
number of blacklisted links that are reported to the social
network. Based on the analysis of Corollary 2, we assume
that the number of blacklisted links is proportional to the
number of honeybot nodes in the botnet in steady-state, x∗2.
The variable is the number of honeybot nodes that have not
yet been inducted into the botnet, z. This leads to a utility
function given by VH(z) = ρx∗2(z)− τ(x∗2 + z), where ρ and
τ represent the benefit (information gathered) and cost of
maintaining a single honeybot node. Substituting (18) yields

VH(z) = ρ

(
rd− µ1

q

)
z

rdkz
M +µ2

− τ


(

rd− µ1
q

)
z

rdkz
M +µ2

+ z


=

(ρ− τ)
(

rd− µ1
q

)
z

rdkz
M +µ2

− τz. (21)

The value of z that maximizes (21) is given by the following
proposition.

Proposition 2: Assuming (A6)–(A8) and ρ > τ , the op-
timum value of z that maximizes (21) is given by

z∗ = M

−µ2 +
√

(ρ− τ)(rd− µ1
q )µ2/τ

rdk

 . (22)

Remark 2: Eq. (22) has several implications for the de-
sign of honeybot systems. First, for malware that propagates
rapidly (corresponding to a large rd value), fewer honeybots
are needed, since the malware will quickly spread to the
deployed honeybot. Second, if µ2 is large, then honeybots are
rapidly detected and removed by the botmaster, and hence
the cost of deploying honeybots outweighs the benefits.

C. Optimal Deployment and Exploitation

The utility function (21) can be augmented by incorporat-
ing the impact on the exploitation phase. In particular, (15)

implies that ρ = 1

1+
βH

i x∗1T ir
TiH

, which we write as ρ = 1
1+ζ x∗1

≈

1
ζ x∗1

when the number of bots is sufficiently large. The utility
function VH can then be written as

VH =

(
1

ζ x∗1
− τ

)
x∗2− τz (23)

An efficient algorithm for maximizing (23) can be derived
using the following theorem.

Theorem 5: Under assumptions (A6)–(A8), the problem
of selecting z to maximize VH in (23) is equivalent to the
following convex program

max
θ ,φ ,x∗2,z

1
ζ

− rdqθ 2

Nrdqφ −µ1
+

M/4k

N(rdq
(

1− kx∗2
M

)
−µ1)


−τx∗2− τz, (24)

s.t. θ = x∗2−
M
2k

, φ = 1− kx∗2
M

,

x∗2 ≤

(
rd− µ1

q

)
z

rdkz
M +µ2

,
1
ζ

rdqµ2M+ rdkzµ1

(rdq−µ1)µ2M
≥ τ, (25)

z≥ 0, 0≤ x∗2 ≤ N. (26)

The convex optimization approach presented in Theorem
5 is used to select a honeybot deployment strategy in order
to maximize the level of infiltration into the botnet and
the amount of data gathered during the exploitation phase.
Once inducted into the botnet, the honeybots follow the
Stackelberg equilibrium strategy of Section IV and use the
collected data to generate malware signatures and create
URL blacklists. The parameters of (23) are updated in
response to changes in botnet behavior observed during the
exploitation phase.

VII. SIMULATION STUDY

We evaluated our proposed method using Matlab sim-
ulation study, described as follows. A network consisting
of N = 106 nodes was generated, with degree d = 100
(consistent with observations of the average degree of social
networks [16]). The rate at which malware messages are sent
is given by r = 0.4 messages per bot day, and the rate at

218



which nodes are disinfected and removed from the botnet
is µ1 = 0.2, yielding an average lifetime for each bot of 5
days. These statistics are based on the empirical observations
of [4]. Based on [15], we estimate that the probability of
a user clicking on a spam link is given by q = 0.01. It is
assumed that the fraction of malware links given to each bot
is equal to k/M = 0.01. The rate at which honeybots are
detected and removed is equal to µ2 = 0.5. In each case,
we assume that there are 50 infected nodes and 0 honeybots
present in the network initially.

The population dynamics of the bots, described by (16)
and (17), are shown in Fig. 2(a). Each curve represents the
number of infected users over time for a different level of
honeybot activity, as described by the parameter z. In each
case, the number of bots converges to its equilibrium value.
The top curve (solid line) assumes z = 0, i.e. no decep-
tion takes place and malicious links are detected through
blacklists only. Employing deception through honeybots
significantly reduces the botnet population, even when the
number of honeybots is small relative to the population size.
As additional honeybots are added, the botnet population
continues to decline. However, the marginal benefit of adding
a honeybot decreases as the number of honeybots grows.

The optimum number of honeybots depends on the cost of
introducing and maintaining honeybots, denoted τ , as well
as the benefit ρ from each honeybot, as described in (22).
The optimum number of honeybots is given in Fig. 2(b).
As the cost of introducing new honeybots is reduced, the
optimal number of honeybots increases. In each case, the
optimum number of honeybots remains small, at around 25
nodes, relative to the total network population of 106 nodes.

The effect of a heterogeneous degree distribution is shown
in Fig. 2(c). The degree distribution was chosen to be scale-
free, so that the probability that a node has degree d was
proportional to d−γ . Hence a higher value of γ corresponds to
a less-connected network. The parameter γ had a significant
impact on the rate of propagation of the botnet, even through
for the chosen values of γ the average degrees of the three
networks were similar.

VIII. CONCLUSION

In this paper, we studied deception-based defenses against
social botnets. We considered a defense mechanism in which
fake honeybot accounts are deployed and infiltrate the bot-
net, impersonating infected users. The infiltrating honeybots
gather information from command and control messages,
which are used to form malware signatures or add spam
links to URL blacklists. We introduced a framework for
SOcial network Deception and EXploitation through hOn-
eybots (SODEXO), which provides an analytical approach
to modeling and designing social honeybot defenses. We
decomposed SODEXO into deployment and exploitation
components.

In the deployment component, we modeled the popu-
lation dynamics of the infected users and honeybots, and
showed how the infected population is affected by the

number of honeybots introduced. We derived the steady-
state populations of infected users and honeybots and proved
the stability of the equilibrium point. In the exploitation
component, we formulated a Stackelberg game between the
botmaster and the honeybots, and determined the amount of
information gathered by the honeybot in equilibrium. The
two components were combined in the Protection and Alert
System (PAS), which chose an optimal deployment strategy
based on the information gathered by the honeybots. We
presented simulation studies supporting our results, which
show that a small number of honeybots significantly decrease
the infected population of a large social network.
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