
Designing and Testing a Designing and Testing a
High Confidence ASN.1 CompilerHigh Confidence ASN.1 Compiler

HCSS ‘04

OverviewOverview

• The Challenge of ASN.1
– Complexity
– Exposure / impact / risk

• A High Assurance Response
– Meeting community’s needs

• Our Approach
• Next Steps

Outline of the ChallengeOutline of the Challenge

• ASN.1 and its uses
• Complexity of ASN.1
• Likelihood of errors in generated code
• Consequences of those errors
• Existing tools
• A High Assurance tool

ASN.1 is EverywhereASN.1 is Everywhere

• ASN.1 enables description of data in platform-
independent manner, ensuring that messages are:
– Mutually intelligible
– Given the same semantics by both parties

• ASN.1 is used in most network protocols, e.g.:
– SET, SNMP, TCAP, CMIS/CMIP, PKCS, MHS, ACSE,

CSTA, NSDP, DPA, TDP, ETSI, DMH, ICAO, IMTC,
DAVIC, DSS1, PKIX, IIF, LSM, MHEG, NSP, ROS(E),
FTAM, JTMP, VT, RPI, RR, SCAI, TME, WMtp,
GDMO, SMTP, X.400, X.500, X.509, SSL, …

• ASN.1 encoding and decoding code is ubiquitous
– In practically every network device or application

ASN.1 CompilerASN.1 Compiler

Application

Generated
Library

Run-time
Library

ASN.1
Compiler

Spec

ASN.1 is LargeASN.1 is Large

• As a language, ASN.1 is very large:
– Sums (e.g., CHOICE, SET)
– Records, with subtyping (e.g., SEQUENCE)
– Recursive data types (e.g., SEQUENCE OF,

SET OF, user-defined)
– Many (~26) primitive types
– Constraints (X.680, X.682)
– Information objects (X.681)
– Parameterization (X.683)

• Writing a compiler a difficult, error-
prone task

ASN.1: Complexity through DensityASN.1: Complexity through Density

• Even core elements (X.680 ASN.1 definition and X.690 BER/DER/CER
definition) very dense:
– Precise semantics of ASN.1 is very difficult to extract
– It is difficult to know when you’ve got it right, or for two parties to agree on

what is right
• Deciding when decode should reject messages

– Crucial but very difficult
– Constraints semantics given in terms of concrete syntax

• Semantics of type equality obscure
– Given in terms of lists of lexical tokens
– Assignment uses this to resolve implicit subtyping/overloading

• Language constructs subtly non-compositional:
– Semantics can depend upon its context, but structure gives no hint
– Cross-feature interference (esp. CHOICE and tagging)

• Every type is a special case
• Multiplicity: 13 string types

– Each defined in terms of International Register Tables

Generating Code for ASN.1Generating Code for ASN.1

• Additional pitfalls for the compiler
implementor:
– Numerous opportunities for overflowing

machine representation:
• Arbitrary precision integers and reals
• Arbitrarily long octet streams (led to recent bug

Microsoft ASN.1 library)

– Similar concepts get treated very differently:
• e.g., long tags vs. long lengths vs. long values
• Barrier to problem understanding, good code

design

Consequences of FailureConsequences of Failure

• High impact:
– Leads to attacker ingress, vulnerability to DoS
– ASN.1 code often run in “privileged” mode

• Costs of fixing ASN.1 problems estimated to be much
greater than Y2K reparation1:
– More equipment affected

– Repairs must be done more quickly, more often

– More regression testing required (configuration complexity)

– Attacks lead to outages, plus take time & money to discover,
repair

1 “Critical Infrastructure Protection Issues”, Bill Hancock, V.P. Security and Chief
Security Officer, Exodus, ITU Workshop on Creating Trust in Critical Network
Infrastructures, May 2002

Existing Tools UnsatisfactoryExisting Tools Unsatisfactory

• Open source:
– Evaluation/certification possible
– eSNACC:

• Not fully featured
• Produces incorrect code for encoding INTEGER

• Closed source:
– Barrier to evaluation/certification
– OSS Nokalva:

• Fully featured
• Produces incorrect code for decimal encoding of REAL
• API not developer-friendly

– Others from Objective Systems Inc., Sun, Atos Origin:
• Sun, Atos Origin: old versions of ASN.1
• Objective Systems Inc.: fully featured, code not examined

• Hand-written encode/decode:
– Expensive to produce; no reuse of certification possible

• Hand-written validation code:
– Expensive to produce; no reuse of certification possible

Requirements for HA ASN.1 CompilerRequirements for HA ASN.1 Compiler

• Supports all of ASN.1 X.680 (07/2002)
– Some legacy support also required (macros, ANY DEFINED BY)
– Desirable: X.681, X.682, X.683 (07/2002)
– Supports BER/DER/PER

• Is easy for developers to use
– Good error messages
– Produces code that is easy to use (well-designed APIs)

• Produces correct, robust encode/decode routines
every time
– Passes NSA C group evaluation
– Becomes part of “approved” tool chain
– Produces code that obeys properties that may be used in

certifying the parent application

Galois and ASN.1Galois and ASN.1

• In 2002, Galois was working on H-CDSA,
sponsored by NSA R2:
– High confidence reworking of Intel’s Common Data

Security Architecture

• Needed to parse X.509 certificates
• Team used own innovative approach:

– Parse ASN.1 definition into Haskell type
– Use Haskell polymorphism and class system to derive

encode/decode routines
– Very similar to Slind et al. polytypic approach

• Client saw value in investigating how far these
ideas could be taken

Showing Galois’ Approach ValidShowing Galois’ Approach Valid

• NSA R2 funded Galois to build proof-of-
concept for ideal tool:
– Supports meaningful subset of ASN.1
– Supported features behavior on legal inputs

thoroughly tested
– Design and implementation demonstrably

amenable to evaluation
– Tool friendly, API friendly

Galois’ MethodologyGalois’ Methodology

• Specify and develop in problem
domain:
• Makes use of formal methods tractable

• Allows focus on crucial properties

• Apply mathematical rigor early

• Use functional programming to
express model in executable form

• Progress rapidly to implementation

Design

Validate

Build

Abstract
model
Abstract
model

Designed for Manifest CorrectnessDesigned for Manifest Correctness

• Parser grammar almost identical to X.680 grammar:
– Direct comparison feasible

• Code generation correct by construction, transformation and
translation:
– V1: type-driven specification of encode/decode

• Derivation system gives a formal semantics to ASN.1
– V2: lambda calculus implementation of encode/decode

• Inlined, specialized version of V1
• Gives a formal semantics to individual ASN.1 specifications

– EnDe C: domain-specific language for encode/decode
• Translated from V2
• Gives an operational semantics to individual ASN.1 specifications

– C: Final code target
• Translated from EnDe C

Designed For Robustness Designed For Robustness

• Mapping to C for each EnDe C construct
considered in isolation

• Each mapping designed with robustness
properties in mind:
– Use ADT-style API for all types

• Our code handles all allocation, user handles freeing
– Encode calculates the buffer size required before

encoding; allocates accordingly
– All buffers have associated lengths
– All mallocs are guarded
– All pointer dereferences guarded

• Run-time library designed from same principles

Random Coverage TestingRandom Coverage Testing

• Handwritten tests
– Unit tests
– Regression testing

• Randomly-generated test data
– Coverage metrics for the input space

• Gives an idea of how representative a test set is
– Tests expected behavior on valid inputs for:

• Parser
• Static Analysis
• Code generation

• Rejection behavior
– Testing framework currently at design stage
– Corresponding approach planned

Expected Behavior of Generated CodeExpected Behavior of Generated Code

Simplify

C

V2

V1
Random

AST
Generator

OSS
Nokalva

Pretty
Printer

Check all
encode/decode pairs

mutually inverse

Random
Data

Generator

Mutually Inverse Encode/Decode PairsMutually Inverse Encode/Decode Pairs

Data equality

Random
AST

Generator

==

encodeV1

Octet stream equality

Data equality

encodeV2

encodeC

Random
Data

Generator
====

decodeV1

decodeV2

decodeC

encodeOSS decodeOSS

Haskell Property CodeHaskell Property Code

prop_decodeEncodeT1_All :: T1 -> Bool
prop_decodeEncodeT1_All x =
let x' = Right (x, [])

os = H.encTLV_T1 x in
os == I.encTLV_T1 x &&
os == C.encodeT1 x &&
os == E.encodeT1 x &&

H.decTLV_T1 os == x' &&
I.decTLV_T1 os == x' &&
C.decodeT1 os == x' &&
E.decodeT1 os == x'

Test ResultsTest Results

224kStatic Analysis

348kBack-end

6290kParser

Defects# TestsPhase

Manifest Correctness and TestingManifest Correctness and Testing

• If the design is so good, why the need for testing?
– Design ≠ implementation, even in high-level

languages like Haskell
• Developers make errors

– Design was of little help with primitive types
• Biggest problem is correctly interpreting X.690 spec
• Several defects related to primitives

– Design was of no help with transition between
static analysis phase and back-end

• Most defects in this phase transition

• Even so, number of defects surprisingly low for
project of this complexity

Project SummaryProject Summary

• Ran from October 2003 to March 2004
• Team:

– Galois (3 developers)
– SPRE:

• Reliability evaluation
• Ongoing (due end April 2004)

– NCSU:
• Studying Galois software process
• Led to work with Programatica (OHSU OGI)

– Deriving reliability measure from certificate graph

Compiler DeliveredCompiler Delivered

• Supports most primitives, and important
compound types

• Supports value notation for supported types
• Detailed, accurate and “friendly” error messages

– Type errors, validation errors
– Syntax error reporting not yet friendly

• Generates Haskell and C
• Windows and Linux

– Compiler and compiled code

• Test plan fully implemented for valid inputs to
parser, static analysis, code generation

Possible Next StepsPossible Next Steps

• Define precise, formal ASN.1 semantics
– Based on core elements, not concrete

syntax
• Define precise EnDe C semantics:

– Formally express translation to C code
– Formally express desirable robustness

properties
• Generate proof scripts to enable machine-

assisted proof of correctness, robustness
properties

ConclusionsConclusions

• ASN.1 is intricate and complex
– Innovative techniques were required
– Formal, semantics-based, transformational code-

generation yielded very low defect count for
compound types

– Test plan exposed bugs in other compilers, our code,
for primitive types

• Success of this project shows that it is feasible
to build a fully-featured high assurance ASN.1
compiler
– Semantic approach enabled the production of a solid

compiler in short time
– Techniques will scale: full ASN.1 introduces no new

fundamental challenges

Formal ASN.1 SemanticsFormal ASN.1 Semantics

• X.680 (and others) defines ASN.1 in terms of
concrete syntax:
– Dense, hard to read
– Details and interrelationships must be painstakingly teased out
– ASN.1’s constraint language is particularly baroque

• Formal ASN.1 semantics:
– Express the core elements of ASN.1, without extraneous detail
– Translate every ASN.1 spec into a core ASN.1 spec
– Well-defined, easily understood semantics
– Suitable for use in formal proof

• Inherently useful as a reference

Enhancing Robustness DesignEnhancing Robustness Design

• Augment EnDe C operational semantics with a
model of memory usage

• Benefit:
– Formally express the mapping to C
– Formally express robustness properties, i.e., that

generated code does not introduce:
• Space leaks
• Integer overflow
• Buffer under/overrun
• Stack overflow
• Dangling pointers

– Automatic generation of test data
• Deepen confidence that code generation preserves these

properties

Decode Rejection BehaviorDecode Rejection Behavior

Front-
End Simplify V1

C

V2

eSNACC

Failure
Data

decodex ~ Error

x ∈ {V1, V2, C, eSNACC}

Handwritten
ASN.1
Specs

Generating Proof ScriptsGenerating Proof Scripts

• For a given ASN.1 specification, generate a
theorem prover proof script that:
– Automatically proves that encode/decode pairs are all

mutually inverse
– Automatically proves that generated code preserves

robustness properties

• Formal correctness of each compilation
– Appears to be a tractable approach (cf. Slind et al.)
– Adds more confidence to correctness of compiler
– Provides artifacts for use by compiler user in their

certification effort:
• Requires some requirements input from C group

	Designing and Testing a High Confidence ASN.1 Compiler
	Overview
	Outline of the Challenge
	ASN.1 is Everywhere
	ASN.1 Compiler
	ASN.1 is Large
	ASN.1: Complexity through Density
	Generating Code for ASN.1
	Consequences of Failure
	Existing Tools Unsatisfactory
	Requirements for HA ASN.1 Compiler
	Galois and ASN.1
	Showing Galois’ Approach Valid
	Galois’ Methodology
	Designed for Manifest Correctness
	Designed For Robustness
	Random Coverage Testing
	Expected Behavior of Generated Code
	Mutually Inverse Encode/Decode Pairs
	Haskell Property Code
	Test Results
	Manifest Correctness and Testing
	Project Summary
	Compiler Delivered
	Possible Next Steps
	Conclusions
	
	Formal ASN.1 Semantics
	Enhancing Robustness Design
	Decode Rejection Behavior
	Generating Proof Scripts

