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OverviewOverview

• The Challenge of ASN.1
– Complexity
– Exposure / impact / risk

• A High Assurance Response
– Meeting community’s needs

• Our Approach
• Next Steps



Outline of the ChallengeOutline of the Challenge

• ASN.1 and its uses
• Complexity of ASN.1
• Likelihood of errors in generated code
• Consequences of those errors
• Existing tools
• A High Assurance tool



ASN.1 is EverywhereASN.1 is Everywhere

• ASN.1 enables description of data in platform-
independent manner, ensuring that messages are:
– Mutually intelligible
– Given the same semantics by both parties

• ASN.1 is used in most network protocols, e.g.:
– SET, SNMP, TCAP, CMIS/CMIP, PKCS, MHS, ACSE, 

CSTA, NSDP, DPA, TDP, ETSI, DMH, ICAO, IMTC, 
DAVIC, DSS1, PKIX, IIF, LSM, MHEG, NSP, ROS(E), 
FTAM, JTMP, VT, RPI, RR, SCAI, TME, WMtp, 
GDMO, SMTP, X.400, X.500, X.509, SSL, …

• ASN.1 encoding and decoding code is ubiquitous
– In practically every network device or application
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ASN.1 is LargeASN.1 is Large

• As a language, ASN.1 is very large:
– Sums (e.g., CHOICE, SET)
– Records, with subtyping (e.g., SEQUENCE)
– Recursive data types (e.g., SEQUENCE OF, 

SET OF, user-defined)
– Many (~26) primitive types
– Constraints (X.680, X.682)
– Information objects (X.681)
– Parameterization (X.683)

• Writing a compiler a difficult, error-
prone task



ASN.1: Complexity through DensityASN.1: Complexity through Density

• Even core elements (X.680 ASN.1 definition and X.690 BER/DER/CER
definition) very dense:
– Precise semantics of ASN.1 is very difficult to extract
– It is difficult to know when you’ve got it right, or for two parties to agree on 

what is right
• Deciding when decode should reject messages

– Crucial but very difficult
– Constraints semantics given in terms of concrete syntax

• Semantics of type equality obscure
– Given in terms of lists of lexical tokens
– Assignment uses this to resolve implicit subtyping/overloading

• Language constructs subtly non-compositional: 
– Semantics can depend upon its context, but structure gives no hint
– Cross-feature interference (esp. CHOICE and tagging)

• Every type is a special case
• Multiplicity: 13 string types

– Each defined in terms of International Register Tables



Generating Code for ASN.1Generating Code for ASN.1

• Additional pitfalls for the compiler 
implementor:
– Numerous opportunities for overflowing 

machine representation:
• Arbitrary precision integers and reals
• Arbitrarily long octet streams (led to recent bug 

Microsoft ASN.1 library)

– Similar concepts get treated very differently:
• e.g., long tags vs. long lengths vs. long values
• Barrier to problem understanding, good code 

design 



Consequences of FailureConsequences of Failure

• High impact:
– Leads to attacker ingress, vulnerability to DoS
– ASN.1 code often run in “privileged” mode

• Costs of fixing ASN.1 problems estimated to be much 
greater than Y2K reparation1:
– More equipment affected

– Repairs must be done more quickly, more often

– More regression testing required (configuration complexity)

– Attacks lead to outages, plus take time & money to discover, 
repair

1 “Critical Infrastructure Protection Issues”, Bill Hancock, V.P. Security and Chief 
Security Officer, Exodus, ITU Workshop on Creating Trust in Critical Network 
Infrastructures, May 2002



Existing Tools UnsatisfactoryExisting Tools Unsatisfactory

• Open source:
– Evaluation/certification possible
– eSNACC:

• Not fully featured
• Produces incorrect code for encoding INTEGER

• Closed source:
– Barrier to evaluation/certification
– OSS Nokalva: 

• Fully featured
• Produces incorrect code for decimal encoding of REAL
• API not developer-friendly

– Others from Objective Systems Inc., Sun, Atos Origin:
• Sun, Atos Origin: old versions of ASN.1
• Objective Systems Inc.: fully featured, code not examined

• Hand-written encode/decode:
– Expensive to produce; no reuse of certification possible

• Hand-written validation code:
– Expensive to produce; no reuse of certification possible



Requirements for HA ASN.1 CompilerRequirements for HA ASN.1 Compiler

• Supports all of ASN.1 X.680 (07/2002)
– Some legacy support also required (macros, ANY DEFINED BY)
– Desirable: X.681, X.682, X.683 (07/2002)
– Supports BER/DER/PER

• Is easy for developers to use
– Good error messages
– Produces code that is easy to use (well-designed APIs)

• Produces correct, robust encode/decode routines 
every time
– Passes NSA C group evaluation
– Becomes part of “approved” tool chain
– Produces code that obeys properties that may be used in 

certifying the parent application



Galois and ASN.1Galois and ASN.1

• In 2002, Galois was working on H-CDSA, 
sponsored by NSA R2:
– High confidence reworking of Intel’s Common Data 

Security Architecture

• Needed to parse X.509 certificates
• Team used own innovative approach:

– Parse ASN.1 definition into Haskell type
– Use Haskell polymorphism and class system to derive 

encode/decode routines
– Very similar to Slind et al. polytypic approach

• Client saw value in investigating how far these 
ideas could be taken



Showing Galois’ Approach ValidShowing Galois’ Approach Valid

• NSA R2 funded Galois to build proof-of-
concept for ideal tool:
– Supports meaningful subset of ASN.1
– Supported features behavior on legal inputs 

thoroughly tested
– Design and implementation demonstrably 

amenable to evaluation
– Tool friendly, API friendly



Galois’ MethodologyGalois’ Methodology

• Specify and develop in problem 
domain:
• Makes use of formal methods tractable

• Allows focus on crucial properties

• Apply mathematical rigor early 

• Use functional programming to 
express model in executable form

• Progress rapidly to implementation 
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Designed for Manifest CorrectnessDesigned for Manifest Correctness

• Parser grammar almost identical to X.680 grammar:
– Direct comparison feasible

• Code generation correct by construction, transformation and 
translation:
– V1: type-driven specification of encode/decode

• Derivation system gives a formal semantics to ASN.1
– V2: lambda calculus implementation of encode/decode

• Inlined, specialized version of V1
• Gives a formal semantics to individual ASN.1 specifications

– EnDe C: domain-specific language for encode/decode
• Translated from V2
• Gives an operational semantics to individual ASN.1 specifications

– C: Final code target
• Translated from EnDe C



Designed For Robustness Designed For Robustness 

• Mapping to C for each EnDe C construct 
considered in isolation

• Each mapping designed with robustness 
properties in mind:
– Use ADT-style API for all types

• Our code handles all allocation, user handles freeing
– Encode calculates the buffer size required before 

encoding; allocates accordingly
– All buffers have associated lengths
– All mallocs are guarded
– All pointer dereferences guarded

• Run-time library designed from same principles



Random Coverage TestingRandom Coverage Testing

• Handwritten tests
– Unit tests
– Regression testing

• Randomly-generated test data
– Coverage metrics for the input space

• Gives an idea of how representative a test set is
– Tests expected behavior on valid inputs for:

• Parser
• Static Analysis
• Code generation

• Rejection behavior
– Testing framework currently at design stage
– Corresponding approach planned



Expected Behavior of Generated CodeExpected Behavior of Generated Code
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Mutually Inverse Encode/Decode PairsMutually Inverse Encode/Decode Pairs
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Haskell Property CodeHaskell Property Code

prop_decodeEncodeT1_All :: T1 -> Bool
prop_decodeEncodeT1_All x =
let x'  = Right (x, [])

os  = H.encTLV_T1 x  in
os == I.encTLV_T1 x  &&
os == C.encodeT1  x  &&
os == E.encodeT1  x  &&

H.decTLV_T1 os == x' &&
I.decTLV_T1 os == x' &&
C.decodeT1  os == x' &&
E.decodeT1  os == x'



Test ResultsTest Results

224kStatic Analysis

348kBack-end

6290kParser

# Defects# TestsPhase



Manifest Correctness and TestingManifest Correctness and Testing

• If the design is so good, why the need for testing?
– Design ≠ implementation, even in high-level 

languages like Haskell
• Developers make errors

– Design was of little help with primitive types
• Biggest problem is correctly interpreting X.690 spec
• Several defects related to primitives

– Design was of no help with transition between 
static analysis phase and back-end

• Most defects in this phase transition

• Even so, number of defects surprisingly low for 
project of this complexity



Project SummaryProject Summary

• Ran from October 2003 to March 2004
• Team:

– Galois (3 developers)
– SPRE:

• Reliability evaluation
• Ongoing (due end April 2004)

– NCSU:
• Studying Galois software process
• Led to work with Programatica (OHSU OGI)

– Deriving reliability measure from certificate graph



Compiler DeliveredCompiler Delivered

• Supports most primitives, and important 
compound types

• Supports value notation for supported types
• Detailed, accurate and “friendly” error messages

– Type errors, validation errors
– Syntax error reporting not yet friendly

• Generates Haskell and C
• Windows and Linux

– Compiler and compiled code

• Test plan fully implemented for valid inputs to 
parser, static analysis, code generation



Possible Next StepsPossible Next Steps

• Define precise, formal ASN.1 semantics
– Based on core elements, not concrete 

syntax
• Define precise EnDe C semantics:

– Formally express translation to C code
– Formally express desirable robustness 

properties
• Generate proof scripts to enable machine-

assisted proof of correctness, robustness 
properties



ConclusionsConclusions

• ASN.1 is intricate and complex
– Innovative techniques were required
– Formal, semantics-based, transformational code-

generation yielded very low defect count for 
compound types

– Test plan exposed bugs in other compilers, our code, 
for primitive types

• Success of this project shows that it is feasible 
to build a fully-featured high assurance ASN.1 
compiler
– Semantic approach enabled the production of a solid 

compiler in short time
– Techniques will scale: full ASN.1 introduces no new 

fundamental challenges





Formal ASN.1 SemanticsFormal ASN.1 Semantics

• X.680 (and others) defines ASN.1 in terms of 
concrete syntax:
– Dense, hard to read
– Details and interrelationships must be painstakingly teased out
– ASN.1’s constraint language is particularly baroque

• Formal ASN.1 semantics:
– Express the core elements of ASN.1, without extraneous detail
– Translate every ASN.1 spec into a core ASN.1 spec
– Well-defined, easily understood semantics
– Suitable for use in formal proof

• Inherently useful as a reference



Enhancing Robustness DesignEnhancing Robustness Design

• Augment EnDe C operational semantics with a 
model of memory usage

• Benefit:
– Formally express the mapping to C
– Formally express robustness properties, i.e., that 

generated code does not introduce:
• Space leaks
• Integer overflow
• Buffer under/overrun
• Stack overflow
• Dangling pointers

– Automatic generation of test data
• Deepen confidence that code generation preserves these 

properties



Decode Rejection BehaviorDecode Rejection Behavior
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Generating Proof ScriptsGenerating Proof Scripts

• For a given ASN.1 specification, generate a 
theorem prover proof script that:
– Automatically proves that encode/decode pairs are all 

mutually inverse
– Automatically proves that generated code preserves 

robustness properties

• Formal correctness of each compilation
– Appears to be a tractable approach (cf. Slind et al.)
– Adds more confidence to correctness of compiler
– Provides artifacts for use by compiler user in their 

certification effort:
• Requires some requirements input from C group
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