
1

A developer-oriented approach to
Software Assurance and Evolution

William L. Scherlis

CMU School of Computer Science

scherlis@cmu.edu
412-268-8741

March 2005

The Fluid Project
www.fluid.cs.cmu.edu

Distrust in software T&E criteria

Ariane 5 — mission critical software

Starting point: “Heritage” Ariane 4 code

The code contained a known unhandled
exception in the software

Decision: Reuse for Ariane 5: don’t repair

n Trust in the legacy
w It worked for Ariane 4

n Distrust in defined criteria
w Too risky to modify “working”

software even when it is known
to be broken

Ariane 5 veered off course and exploded 40
seconds into its maiden flight

2

— Sir Tony Hoare, HCSS 2004

Indirect Measures
- Process
- People
- Bug counts
- KLOC counts

Direct Measures
- Model coverage

- By attribute kind
- By code coverage

- Code/model consistency

We treat our software as if it were
a phenomenon of nature

Direct measures

Verification for software engineering — goals

Scale-up

Composition

Adoptability by working developers

Respect for engineering process

Relevance and utility for specific needs

ROI model for investment

Attribute comprehensiveness

Predictive and evaluative measures

Small theorems about large programs

3

Verification for software engineering — our approach

Constructive engagement

n Integrate with the engineering process and its participants.
n Leverage and drive business and economics forces.

What’s new – why this is feasible now

n Concrete evidence of the possibility
w Attribute-specific tools with specific useful capabilities
w ROI case enabled by measurement and feedback

n The evidence:
w Adoption arguments for individual engineers
w Market arguments for organizations
w Technical and empirical evidence
w Infrastructure to enable the approach

Evidence of the possibility: Microsoft SLAM for Windows XP

Direct analysis of WinXP device driver code for
API protocol compliance

1. Compelling business case for direct assurance
of software artifacts – reduced frequency of
blue screens. Explicit feedback loops.

2. Based on the basic science of model checking
and BDDs: a deeply technical approach to
assurance, originated in university labs – with
DARPA and NSF sponsorship.

Windows
OS

3rd party
device driver

Device
driver
API

4

Who is in your supply chain?

Participants
n Internal dev’t groups
n Prime outsource

w Integrator
n Secondary outsource

w Vendor
w Innovator

n Offshore
n Off-the-shelf
n Open Source
n etc

Conventional means for
achieving assurance
n Test, inspect, etc.
n Trusted parties

w Organizations
w Individuals

n Process constraint
w Actions
w Documents

Quality stakeholders

At each supply chain interface:

Developers
n Immediate coding guidance
n Basis for dependability claims
n Incremental progress

Managers
n Direct evidence / measurement: modeling and assurance
n Asset capture: Design intent

CIO organization
n Standards (e.g., framework enforcement)
n Organizational memory

Acceptance evaluators
n Direct artifact evaluation
n Proxy elimination

5

“Software organizations” and IT SCM

Interface barriers exist between producers and consumers
at all stages of IT supply chains

Our problem:
Inadequate to assure dependability

Source of complacency :
Scale-up and diminishing defect density

Source of concern:
Plateau of overall assurance achievable?

Producers:
Internal teams
Primes
Subcontractors
Outsource suppliers
Off-the-shelf vendors
Open source projects

etc
Nearly all major firms

Barriers
Contractor qualification
Requirements definition
“Second” sourcing
Risk allocation
Engineering acceptance

Mitigation (today’s best)
CMM / CMMI
Close relationships
API conventionalization
Asymmetry
Testing, inspection, design analysis

“Software organizations” and IT SCM

Interface barriers exist between producers and consumers
at all stages of IT supply chains

Producers:
Internal teams
Primes
Subcontractors
Outsource suppliers
Off-the-shelf vendors
Open source projects

etc
Nearly all major firms

Acceptance evaluation
- Understanding the code – semantics-based queries?
- Evaluation of the code

Test, inspect, verification, modeling, simulation,
runtime observation, red-team, static analysis, etc.

Complicating factors
- Frameworks, libraries
- Intertwined processes
- Invisible producers: M&A code, brownfield

Barriers
Contractor qualification
Requirements definition
“Second” sourcing
Risk allocation
Engineering acceptance, 1st 90%
Engineering acceptance, last 10%

Mitigation (today’s best)
CMM / CMMI
Close relationships
API conventionalization
Asymmetry
Testing, inspection, design analysis

what goes here?

6

Why now?

Recent emergence of advanced tools
n Analysis tools
n Developer and team support: Server-side DB

w Development traceability

Measurement approaches
n Instrumentation

w Coarse (Watson) and fine (autonomic probes)
n Attribute-specific measures

Evidence of a business case

Need
n What is pervasive is becoming critical
n CC++
n IT SCM needs

Evaluation best practice

What’s also needed:

Direct assurance (focused tools and ongoing research)
(technology-dependent; attribute focused)
Assure the software itself Quality, dependability, security

(objective analysis)

Accepted best practices for evaluation:

CMM/CMMI (cf. ISO 9001x)
(timeless; comprehensive)
n Evaluate the team Cost and schedule predictability
n Evaluate the process (correlates with bug reduction)

NIAP/CC (cf. ISO 15408)
(timeless; comprehensive)
n Evaluate the process Security policy definition
n Evaluate the design Design compliance
n Sample the product* (*sampled – no direct assurance)

7

Process evaluation
Premise:

The quality of a software system is governed by the quality of
the process used to develop and maintain it.

– Watts Humphrey, SEI

CMM
n Developed in 1991, building on work of Deming & others
n Rationale
w Qualification of producers to deliver reliably (cost, schedule, quality)

n Role
w Describe essential management tasks

nDocument best practices
w Provide roadmap to improved predictability and quality

nPrioritize improvements
w Enable measurement of capability of the organization’s process

nCriterion for source selection
n Cf. ISO 9001

Does this approach extend to the “last 10%” ??

Defining Requirements

ISO/IEC Standard 15408

A flexible, robust catalogue of
standardized IT security requirements

(features and assurances)

Protection Profiles

Consumer-driven security
requirements in specific

information technology areas

ü Operating Systems
ü Database Systems
ü Firewalls
ü Smart Cards
ü Applications
ü Biometrics
ü Routers
ü VPNs

Access Control
Identification

Authentication
Audit

Cryptography

From NIST

8

Industry Responds

Protection Profile

Consumer statement of IT security
requirements to industry in a specific

information technology area

Security Targets

Vendor statements of security
claims for their IT products

ü CISCO Firewall
ü Lucent Firewall
ü Checkpoint Firewall
ü Network Assoc. FirewallSecurity

Features
and

Assurances

Firewall Security
Requirements

From NIST

Evaluation: Process and Product

A Common Criteria certificate:
§ Does not imply that the functional requirements of the

product are approved as “good enough” to provide an
adequate level of security in its intended environment of use

§ Does not imply with absolute certainty that the
product conforms to the security claims stated by the
vendor in the security target

§ Does not imply or guarantee that the product is free from
malicious or erroneous code

From NIST

9

Looking Forward …

What’s also needed:

Direct assurance (focused tools and ongoing research)
(technology-dependent; attribute focused)
n Assure the software itself Quality, dependability, security

(objective analysis)

Accepted best practices for evaluation:

CMM/CMMI (ISO 9001x)
(timeless; comprehensive)
n Evaluate the team Cost and schedule predictability
n Evaluate the process (correlates with bug reduction)

NIAP/CC (ISO 15408)
(timeless; comprehensive)
n Evaluate the process Security policy definition
n Evaluate the design Design compliance
n Sample the product* (*sampled – no direct assurance)

The challenge

What are strategies to stimulate
adoption in the full supply chain
for critical systems

What is the stimulus for a
business case?
What economic value do we place
on these attributes?
What causes this to change?
n Assurance and evaluation
n The actuarial challenge
n Means and variances

We are entering a period of
rapidly increasing valuation on
dependability, safety, and security
attributes
n Impact on incentive structure

within supply chain
n Not gradual

10

Fluid –
a case study of attribute-specific high assurance

The Fluid Project
www.fluid.cs.cmu.edu

The Testing Dilemma – what attributes do we consider?

Low
High

High

Total
Cost
of

Error

Low Detection Complexity

IDE’s,
Compilers

Software Assurance

Conventional
analysis tools

11

Examples of dependability attributes that are difficult to assure

Safe concurrency
n Race conditions
n Lock management
n Single thread concurrency

control
n Deadlocks

Policy compliance
n API policy compliance
n Framework compliance
n Object references and

aliasing
n Patterns, uses, structure

Real time
n Real-time thread/memory

policies

Information flows
n Security attributes
n Aliases, references, effects
n Encapsulation, overlay

abstractions

Code safety
n Appropriate typing

• Hard to test
• Nondeterminism

• Hard to inspect
• Non-local
• Model-based

Focus
of this

talk

Example race
condition

Hazard vs.
Failure vs.
Error vs.

Fault

12

The Fluid Project

Create and maintain safe, dependable, secure code

n Directly assure critical dependability attributes
w Attributes tend to defy testing and inspection

n {Dependability, safety, security}
w Direct static assurance

n Express dependability-related models
w Incrementally capture design intent

n Provide direct positive assurance
w Do not allow false negatives

n Support measurement of progress
1. Inventory of fault-relevant sites
2. Modeling progress
3. Analysis progress: assurance, potential faults

n Adoptability and scalability are paramount
w Ease of use by practicing developers
w Management value – metrics and process support
w Composability and components
w Incrementality and early rewards
w Partiality and contingency

Models are missing

Programmer design intent is missing
n Not explicit in Java, C, C++, etc

w What lock protects this object?
n This lock protects that state

w What is the actual extent of shared state of this object?
n This object is “part of” that object

Adoptability
n Programmers: “Too difficult to express this stuff.”
n Fluid: Minimal effort — concise expression

w Capture what programmers are already thinking about
w No full specification

The Incremental Reward Model
n Programmers: “I’m too busy; maybe after the deadline.”
n Fluid: Payoffs early and often

w Direct programmer utility – negative marginal cost
w Increments of payoff for increments of effort

13

FLUID Distinguishing Characteristics

1. The “hardest” errors
n Errors that defy conventional testing and inspection
n Attribute-specific focus

2. Positive assurance – no false negatives
n Documenting the absence of important categories of errors

3. Design intent
n Incremental Reward Model

w Readily adoptable by working developers and easily integrated
into ongoing development processes

n Analysis-Based Verification
w Scalable and composable, enabling assured components to be

assembled into assured systems

4. No false positives in practice
n Tool relies on explicit design intent
n Tool can assist developer in inferring potential design intent

Reporting Assurance Results

Assurance results
Model – programmer provided
design intent / cutpoint

Assured – design intent is
consistent with code

Not Assured – design intent is
inconsistent with code

Relative to design intent

Inferred results
Next steps, reasonable defaults

Warnings and possible problems

Metric results
How much have I done?
n Model building
n Assurance development

Assurance locator
n Identifies where models and assurance

exist within the system’s structure

n Incrementality allows assurance of focused
“islands” within a large software system

w Cut points allow programmer selected
modularization of assurance efforts

14

Formative empirical studies

Analysis of concurrency in production Java code
n Abundant race conditions, including in published code exemplars

Automatic “quality” analysis of 2 MLOC of production Java code
n E.g., 20% of caught exceptions are ignored (most without comment)

Analysis of 45,000 Java open source bug reports
n “Hard” problems –

w API confusion, design comm, code safety, ripples, portability
n Concurrency bugs often don’t get resolved:

w “Works for me”
w “Its intermittent – the garbage characters will usually go away if refresh your browser.”
w “After several more months looking at this bug I might have some more insight…”

CERT security exploits database
n More than 90% enabled by engineering errors
n More than half result from coding and low -level design errors

Race conditions

Races can occur when:
n Multiple threads of control access shared data
n Data gets corrupted when internal integrity assumptions are violated.

How we protect against races
n Use “lock” objects that enable access by one thread at a time
w E.g., event dispatch
w A language feature in Java, Ada95, etc.

… or …

n Follow a thread discipline in which only one thread can access critical data
w E.g., graphical toolkit redraw – common in GUI APIs.
w Also used in Java critical realtime software – noHeapRealtimeThread.

Issue: How to provide verification regarding race conditions?
n Understanding the limits of testing and inspection
n Fluid approach: Analysis-Based Verification

15

Scenario 3: responsibility, aggregation

Apache log4j
BoundedFIFO

Demonstration

The initial version of the
model is too weak – it
does not assure lock
protection for the array.
Other threads could
corrupt the array contents.

Apache Log4j BoundedFIFO: Model semantics

Express lock policy
nObject protects itself:

@lock BufLock is this
protects Instance

nCaller of method must
acquire lock:

@requiresLock BufLock

Aggregate subsidiary state
nWarning: A reference to a
delegate
object is protected, but
not the
referenced object itself.

buf

.

.

.

size

next

[0]

[1]

[2]
.
.
.

buf

.

.

.

[0]

[1]

[2]
.
.
.

size

nextThe improved model
enables verification that the
array is protected – that
there are no references to
the array other than from
within the BoundedFIFO
object

Demonstration

16

Scenario 4: mid-scale, JMM

util.concurrent

Demonstration

•Visual assurance indicators
•Textual warnings
•Drill down analyses

17

Scenario 6: Non-lock concurrency

AWT and GraphLayout
(Dean Sutherland)

AWT Threading Model

Annotations associated with java.awt

/*@ color group AWT_Thread_Usage
* color AWT
* color Compute
* thread count AWT <= 1
* incompatibleColors AWT, Compute
* end AWT_Thread_Usage */

Don’t steal the redraw thread.
Don’t try to call paint yourself.

18

What library methods require
the AWT color?

//@requiresColor AWT
java.applet.Applet
java.awt.event.MouseListener
java.awt.event.MouseMotionListener
java.awt.Graphics
java.awt.Button
java.awt.Checkbox

//@requiresColor AWT
java.awt.Component

on methods
update, mouseDown,
mouseClicked,
mousePressed,
mouseEntered, mouseExited,
mouseDragged, mouseMoved,
paint

Annotation required in AWT

What library classes are “Don’t
Care?”

//@transparent
java.util.StringTokenizer
java.lang.Number
java.lang.String
math.*
thread.*

Note: Only 24 AWT annotations required for GraphLayout.

Pseudo-Sequence Diagram
(no temporal ordering implied)

AWT
Thread

Compute
Thread

X

start()

stop()

Graph
AWT callbacks

GraphPanel
AWT callbacks
run
relax

*

*

GraphLayout Thread LifeCycle

AWT
Library

Other
Java

Libraries

19

Result of initial analysis – no annotation in GraphLayout

GraphPanel
GraphPanel
findNode
addNode
addEdge
Run#
relax

paintNode*
Update*

mouseClicked*
mousePressed*
mouseReleased*
mouseEntered*
mouseExited*
mouseDragged*
mouseMoved*

Graph
Init+

Destroy+
Start+
Stop+

getAppletInfo+
getParameterinfo+
actionPerformed*
itemStateChanged*

Graph
AWT

Compute

Transparent

• 22 of 24 methods colored successfully
• AWT_Thread_Usage not verified

Specifically -- unable to verify annotation
Compatibility AWT != Compute

because some methods are not colored

Can’t Tell

Java.lang.string

Java.lang.Number

Elsewhere…

…

Only to be used as *AWT or +Applet or #Thread callbacks

Result of analysis – with model in GraphLayout

GraphPanel
GraphPanel
findNode
addNode
addEdge
Run#
relax

paintNode
update

mouseClicked
mousePressed
mouseReleased
mouseEntered
mouseExited
mouseDragged
mouseMoved

Graph
AWT

Compute

Transparent

• All methods colored successfully
• AWT_Thread_Usage verified

Can’t Tell

Java.lang.string

Java.lang.Number

Elsewhere…

…

paintNode*
Update*

mouseClicked*
mousePressed*
mouseReleased*
mouseEntered*
mouseExited*
mouseDragged*
mouseMoved*

Graph
init

destroy
start
stop

getAppletInfo+
getParameterinfo+
actionPerformed*
itemStateChanged*

Init+
Destroy+
Start+
Stop+

Only to be used as *AWT or +Applet or #Thread callbacks

20

Fluid: published results

Annotation, analysis, and tool publications

SOCP ’05 (to appear)
POPL ’05
CSJP ’04
OOPSLA ’03 Eclipse eXchange
PASTE ’02
ICSE ’02
Software—Practice and Experience ’01
ECOOP ’99
ICSE ’98

http://www.fluid.cs.cmu.edu/

Assured Development: Hub and spokes

Hub – Fluid core infrastructure
n Representations, core analyses, etc.
n Interactive online, build-based offline
n Verification support

w Proof management and assertion propagation
w Effects, aliasing, regions, permissions, etc.

Spokes – attribute-specific analyses (examples: present, future):
n Assurance:

w Races (lock) ? Data boundaries
w Concurrency (non-lock) ? Null pointers
w Deadlock ? Framework compliance
w Modular non-lock ? Custom API compliance
w Real time ? Performance

n Indicators ? Management
w Appropriate typing ? Modeling metrics
w Exceptions ignored ? Assurance metrics
w Concurrency finder ? Query support
w Thread effects ? Query-based modeling

21

Other expressions of design intent

Familiar informal expressions of design intent:
“Only these two subclasses” (even though it is public)

“Not intended to be aliased” (but a reference can be “borrowed”)

“The object is immutable” (but lazy calculation and caching are ok)

This state may be accessed outside this module only thru this gateway

The state may be written from here only, but read more widely

The AWT thread is the only thread that can call paint, update, mouseMoved, …

The exception caught here is thrown only from these two places

Challenge:
Capturing intent while satisfying adoptability concerns

Lock Model Annotations
@lock
@requiresLock
@returnsLock
@singleThreaded

Policy Annotations
@selfProtected
@policyLock

Uniqueness Annotations
@unshared
@borrowed

Effect Annotations
@reads
@writes

Region Annotations
@region
@mapInto
@aggregate

Uniqueness Analysis

Effects Analysis

Lock Analysis

Binding Context
Analysis

MayEqual

Verified properties
Lock precondition satistifed
Correct lock held on data access
Lock returned by a method
No escaping receiver from constructor
Uniqueness assured
Effects upper bound

Warnings
Synchronize without data access
Lock cannot be identified
Possible hidden alias

Interacting analyses – a simplified view

22

Scaling up: expressing larger models

Scoped promises
(Tim Halloran)

The “red dot” – composable partial results

Support for separate development and modular assurances
n Library/framework code
n Externalized code
n Outsourced code
n Expectations regarding code not yet written

Consistency of model and code is contingent on a “trusted” result

23

Motivation

Problem 1: Parsimonious model expression
n Example:

w Log4j’s DateFormatManager

Assurance at scale:

Problem 2: API contracts
n Examples:

w Log4j’s BoundedFIFO
w Java GUIs AWT, SWING, etc.

org.apache.log4j.lf5.util.
DateFormatManager

Using @promise

“@singleThreaded”

24

Part 2: Teamwork, contracts, APIs

Problem 1: Parsimonious model expression
n Example:

w Log4j’s DateFormatManager

Assurance at scale:

Problem 2: API contracts
n Examples:

w Log4j’s BoundedFIFO
w Java GUIs AWT, SWING, etc.

Solution #1

Auxiliary file (xml) for external code

org.apache.log4j.helpers.
BoundedFIFO

25

Solution #2

/**
* @lock BufLock is this protects Instance
* @promise "@borrowed this" for new(**) | *(**)
* @promise "@singleThreaded" for new(**)
* @promise "@requiresLock BufLock" for *(**) & !(resize(**))
* @assume “@borrowed arg0”
* for “System.arraycopy(Object, int, Object, int, int)”
*/
public class BoundedFIFO {
/** @unshared @aggregate [] into Instance */
LoggingEvent[] buf;
...
synchronized public void resize(int newSize) {
...
System.arraycopy(buf, first, tmp, 0, len1);
...
}

}

org.apache.log4j.helpers.
BoundedFIFO

(aside) Apache
Bug 26224

