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Breakthrough in SAT Solving in the Last 20 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, and Walsh ’09]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]
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Progress in SAT Solving (I)
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SAT Competition Winners on the SC2011 Benchmark Suite

kissat-2020
maple-lcm-dist-2017
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
abcdsat-2015
maple-comsps-drup-2016
lingeling-2014
cryptominisat-2010
precosat-2009
glucose-2011
lingeling-2013
glucose-2012
minisat-2008
satelite-gti-2005
minisat-2006
rsat-2007
limmat-2002
berkmin-2003
zchaff-2004

Benchmark suite used to show progress and get funding
Fisher: “instrumental ... for launching DARPA’s HACMS program”
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Progress in SAT Solving (II)
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Examples of Challenges

Trusted Computing

Parallel Computing

Conclusions and Challenges
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Pythagorean Triples Problem (I) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

32 + 42 = 52 62 + 82 = 102 52 + 122 = 132 92 + 122 = 152

82 + 152 = 172 122 + 162 = 202 152 + 202 = 252 72 + 242 = 252

102 + 242 = 262 202 + 212 = 292 182 + 242 = 302 162 + 302 = 342

212 + 282 = 352 122 + 352 = 372 152 + 362 = 392 242 + 322 = 402

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].
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Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

marijn@cmu.edu 8 / 35



Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

marijn@cmu.edu 8 / 35



Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

marijn@cmu.edu 8 / 35



Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

marijn@cmu.edu 8 / 35



“The Largest Math Proof Ever”
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Another Example: Tiling in various Dimensions

Consider tiling a floor with square tiles, all of the same size. Is
it the case that any gap-free tiling results in at least two fully
connected tiles, i.e., tiles that have an entire edge in common?
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Keller’s Conjecture

In 1930, Ott-Heinrich Keller
conjectured that this phenomenon holds
in every dimension.

Keller’s Conjecture.
For all n ≥ 1, every tiling of the
n-dimensional space with unit cubes has
two which fully share a face.

In 1940, Perron proved that Keller’s
conjecture is true for 1 ≤ n ≤ 6.

In 1992, Lagarias and Shor showed
that it is false for n ≥ 10.

In 2002, Mackey showed that it is
false for n ≥ 8.

[Wikipedia, CC BY-SA]
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Keller’s Conjecture Resolved [Brakensiek, Heule, Mackey, Narváez ’20]

Quanta Magazine: “Computer Search Settles 90-Year-Old Math Problem”

The final dimension of Keller’s conjecture finally resolved:

Tools worked out of the box, linear time speedups;

The complex symmetry-breaking argument is included in the proof;

The proof has been validated using a verified checker.
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Trusted Computing: Checking Satisfiability is Easy
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Formal verification
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Can We Trust Them?

No!

Complex software with lots
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Trusted Computing: Proof Generating Solvers
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Trusted Computing: Motivation

Automated reasoning tools may give incorrect answers.

Documented bugs in SAT, SMT, and QSAT solvers;
[Brummayer and Biere, 2009; Brummayer et al., 2010]

Claims of correctness could be due to bugs;

Misconception that only weak tools are buggy;

Implementation errors often imply conceptual errors;

Proofs now mandatory in some competitive events;

Mathematical results require a stronger justification than a
simple yes/no by a tool. Answers must be verifiable.
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Trusted Computing: Verified Solving versus Verified Proofs

Verifying efficient automated reasoning tools is a daunting task:

Tools are constantly modified and improved; and

Even top-tier and “experimentally correct” solvers turned
out to be buggy. [Järvisalo, Heule, Biere ’12]

Various simple solvers can verified, but they lack performance

DPLL [Shankar and Vaucher ’11]

CDCL [Fleury, Blanchette, Lammich ’18]

Validating proof is the more effective approach

Solving + proof logging + proof verification is much faster
compared to running a verified solver

One verified tool can validate the results of many solvers
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Trusted Computing: Initial Challenges

Theoretical challenges:

Some “simple” problems have exponentially large proofs in
the resolution proof system [Urquhart ’87, Buss and Pitassi ’98];

While some dedicated techniques can quickly solve them.

Solution: A proof system to compactly express all techniques.

Practical challenges:

Earlier efforts failed due to complexity and overhead

Convince developers to support proof logging

Solution:

The computational burden and complexity is in the checker

A reference implementation of proof logging
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Trusted Computing: Arbitrarily Complex Solvers

Verified checkers of certificates in strong proof systems:

Don’t worry about correctness or completeness of tools;

Facilitates making tools more complex and efficient; while

Full confidence in results. [Heule, Hunt, Kaufmann, Wetzler ’17]

Formally verified checkers now also used in industry
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Trusted Computing: Verified SAT Solving Tool Chain

1: encode 2: re-encode

3: solve

4: optimize

5: validate

problem

original
formula

re-encoded
formula

re-encoding
proof

refutation
proof

optimized
proof

The validate step uses a formally-verified checker;

Ideally the encoding step is also formally-verified;

The other steps can be heavily optimized and unverified.

marijn@cmu.edu 20 / 35



Trusted Computing: Verified SAT Solving Tool Chain

1: encode 2: re-encode

3: solve

4: optimize

5: validate

problem

original
formula

re-encoded
formula

re-encoding
proof

refutation
proof

optimized
proof

The validate step uses a formally-verified checker;

Ideally the encoding step is also formally-verified;

The other steps can be heavily optimized and unverified.
marijn@cmu.edu 20 / 35



Reduced, Ordered Binary Decision Diagrams (BDDs)

Bryant, 1986

Representation

Canonical representation of
Boolean function

Compact for many useful cases

Algorithms

Apply(f , g, op)
• op is Boolean operation

(e.g., ∧, ∨, ⊕)
• BDD representation of f op g

EQuant(f , X)
• X set of variables
• BDD representation of ∃Vf
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Mutilated Chessboards: “A Tough Nut to Crack” [McCarthy]

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:

There are more white squares than black squares; and

A domino covers exactly one white and one black square.
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Compact and Verified Proofs from BDDs [Sinze & Biere ’06]

[Bryant & Heule ’21?]
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Mutilated Chessboard: problem size ∼ N2, BDD proof size ∼ N2.69

Same proof format as SAT and same verified checker
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Challenge: How to Parallelize Automated Reasoning?

Successes

Industrial applications, such as equivalence checking;

Long-standing open math problems resolved; and

Speedups even with thousands of cores

Challenges

Many memory issues (from cache misses to out of memory);

Different approaches are effective on different problems; and

Reduced performance in many tools, when using more cores.
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Parallel Computing: SAT Solver Paradigms

Conflict-driven clause learning (CDCL): Makes fast decisions
and converts conflicting assignments into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Look-ahead: Aims at finding a small binary search-tree by
selecting effective splitting variables via looking ahead.

Strength: Effective on small, hard formulas.

Weakness: Expensive.
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Parallel Computing: Portfolio Solvers

The most commonly used parallel solving paradigm is portfolio:

Run multiple (typically identical) solvers with different
configurations on the same formula; and

Share clauses among the solvers.

P CDCL

CDCL

CDCL

The portfolio approach is effective on large “easy” problems,
but has difficulties to solve hard problems (out of memory).
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Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere ’11]

Cube-and-conquer splits a given problem into millions of
subproblems that are solved independently by CDCL.

P

CDCL

P1

CDCL

P2

CDCL

. . .

CDCL

PN−1

CDCL

PN

Efficient look-ahead splitting heuristics allow for linear
speedups even when using 1000s of cores.

Cube-and-conquer recently integrated in Z3
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The Hidden Strength of Cube-and-Conquer

Let N denote the number of leaves in the cube-phase:

the case N = 1 means pure CDCL,
and very large N means pure look-ahead splitting.

Consider the total run-time (y-axis) in dependency on N (x-axis):

typically, first it increases, then
it decreases, but only for a large number of subproblems!

Example with Schur Triples
and 5 colors: a formula with
708 vars and 22608 clauses.

The performance tends to be
optimal when the cube and
conquer times are comparable.
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Parallel Computing: SAT Competition Cloud Track

Long tradition of SAT competitive events, starting from 1992

3 competitions in the 90s (1992,1993, 1996)

13 SAT Competitions (2002–)

5 SAT Races (2006, 2008, 2010, 2015, 2019)

1 SAT Challenge (2012)

New this year

Cloud Track – evaluate distributed solvers on
the Amazon cloud. Solvers are run on 1600
virtual cores for 1000 seconds. Sponsored by
Amazon. Participants received AWS credit to
develop their solvers.

Winner of the cloud track clearly outperformed sequential winner
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Distributed versus Competition Winners
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Parallel Computing: Reasoning in the Cloud

Automated reasoning as a service:

Solves problems from easy to hard;

Can provide correctness proofs;

Explains the solution and/or method.

Joint work with Siemens to fully explore
the design space of gearboxes.

Joint work with Amazon Web Services
on routing and software verification.
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Conclusions and Challenges

We can have full confidence in the correctness of SAT solvers:

All top-tier solvers emit proof logging (also for re-encoding)

Formally-verified tools can efficiently certify the proofs

How to lift this success to richer logics (SMT/HWMCC/FOL)?

Linear speedups are possible on a range of problems

Even when using 1000s of CPUs;

And the enormous proofs can be validated in parallel.

Various challenges:

Make the techniques effective on a broader range of problems

Expand the potential users: automated reasoning in the cloud

Explainable automated reasoning to increase understanding
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