
Advanced Technology CenterAdvanced Technology Center

Evaluatable, High-Assurance Microprocessors

David Greve
Matthew Wilding

{dagreve,mmwildin}@rockwellcollins.com

Rockwell Collins, Inc.
Advanced Technology Center

Cedar Rapids, Iowa

NSA HCSS research conference
March 2002

Page 2 NSA HCSS March 2002

� Advanced Communication and Aviation Equipment
– Air Transport, Business, Regional, and Military Markets
– $2.5 Billion in Sales

� Headquartered in Cedar Rapids, IA
– 17,000 Employees Worldwide

Page 3 NSA HCSS March 2002

Advanced Technology Center

� The Advanced Technology Center (ATC) identifies, acquires, develops and transitions value-driven technologies to
support the continued growth of Rockwell Collins.

� The Advanced Computing Systems department addresses emerging technologies for high assurance computing systems
with particular emphasis on embedded systems.

� The Formal Methods Center of Excellence applies mathematical tools and reasoning to the problem of producing high
assurance systems.

Commercial Systems Government Systems

Advanced Technology Center

Air Transport/BRS
Displays
SATCOM
Flight Guidance Systems
Data Management Systems

Military
Joint Strike
JTIDS
KC-135
GPS

Page 4 NSA HCSS March 2002

CAPS: Collins Adaptive Processing System

CAPS is a processor family for critical applications

� RC processors have a 30+ yr history

� stack-based, Java bytecode-like

� microcoded, stack and instruction caches

� verified through extensive process of “walkthrus”

� microarchitecture simulator: 5K LOC

� Some CAPS family members used in ultra-critical applications

Page 5 NSA HCSS March 2002

Background: ACL2

� ACL2 is a system for modeling and mathematical reasoning.
– One of a number of available “theorem provers”
– ACL2 homepage at the University of Texas at Austin

� The logic of ACL2 is a subset of Common Lisp
– basically, the functional (or applicative) part of standard Common Lisp

� ACL2 documented in 2 books and an extensive webpage
� Some interesting applications outside Rockwell Collins:

– communication protocol correctness
– AMD K5 and Athlon floating-point operation implementation

- numerical analysis
- pipeline disentanglement

– CLI “stack” (Nqthm)
– A verified BDD package
– proofs in mathematics

Page 6 NSA HCSS March 2002

Background: ACL2 (cont.)

Source: ACL2 documentation

Page 7 NSA HCSS March 2002

 Formal Informal Microprocessor Correctness

“Works the same as?”

Execution of physical device
End stateStart state

Documented instruction set
Start state End state

Page 8 NSA HCSS March 2002

Formal Formal Microprocessor Correctness

Our formalization of the informal
notion of correctness poses two
evaluation challenges:

• Does the theorem formalize the
 informal notion of correctness?

• Is I “right”?
• Is M “right”?
• Is Map “right”?

• Is it really a theorem?
M - CAPS Microarchitecture Model

I - CAPS Instruction Set ModelStart state

End stateStart state

End state

Map Map

“Formal” proofs in a “formal” process
Executable Formal Models for Validation
and Specless Verification” - DASC 2000

Page 9 NSA HCSS March 2002

� We build executable formal models (EFMs) of our machines.
Where some write imperative code
 state.alu.z := 1;
 state.alu.pc := state.alu.pc + 1
we write applicative code
 (let ((st (update-nth (alu.z) 1 st)))
 (let ((st (update-nth (alu.pc) (1+ (alu.pc st)) st)))

� Based on preexisting CAPS simulator
– roughly 5K LOC, 337 elements - integers and arrays - in state
– microcycle simulator let-expressions 300 x 4 = 1200 deep
– No performance degradation vs. C - no boxing!

� Imperative-speed execution now built into provers
– initial RC EFMs used homegrown tools
– STOBJs, starting with ACL2 2.4
– PVS has added execution with destructive optimization

Microarchitectural EFMs

Two papers about our EFM approach
What, Why
 Efficient Simulation of Formal Processor
 Models (FMSD, May 2001)
 How
 High-Speed, Analyzable Simulators (ACL2
 Case Studies, July 2000, KAP)

Page 10 NSA HCSS March 2002

The READER

The reader is a Common Lisp/ACL2 macro that expands imperative-
looking programs into EFMs.

The macro expansion has

� single-threaded access to a list containing the state,

� declarations so GCL compiles efficiently, and

� state accessing using “update-nth” and “nth” functions.

We exploit ACL2’s support of a
real programming language a lot.

(DEFUN CAPS_BUS_ALU (ST)
 (DECLARE …)
 (CAPS *STATE->STATE*

 (ALU. F_PREV = (ALU. F))
 (CASE (MSQ. FN)

((0)
 (ALU. F = (OR (ALU. S) (ALU. R)))
 (ALU. COUT = 0)
 (ST_. J0 = 1))

 ((1)
 (ALU. F = (OR (ALU. S) (~ (ALU. R))))
 (ALU. COUT = 0)
 (ST_. J0 = 0))
...

Page 11 NSA HCSS March 2002

CAPS ACL2 uarch
model passes 3-hr

standard CAPS
regression test!

CAPS Microarchitecture Model

The ACL2 CAPS uarch model
replaces the C model in the
CAPS microcode simulator.
The replacement is not
observable to users.

High-speed, formal models
provide for evaluatability

(looks like C, passes regression
tests, integrated into dev
process, proofs checked)

Page 12 NSA HCSS March 2002

CAPS Correctness Theorem

I - CAPS Instruction Set Model
Start state

End stateStart state

End state

M - CAPS Microarchitecture Model

How do we decompose the
proof of this theorem into

manageable pieces?

Page 13 NSA HCSS March 2002

Decomposing the Proof

Microcode sequences can be specified and verified in steps.

microcode line

Instruction microcode
implementation

Page 14 NSA HCSS March 2002

Decomposing the Proof

Microcode sequences can be specified and verified in steps.

microcode line

microcode line spec

Instruction microcode
implementation

Page 15 NSA HCSS March 2002

Decomposing the Proof

Microcode sequences can be specified and verified in steps.

microcode line

microcode line spec

microcode block spec

Instruction microcode
implementation

Page 16 NSA HCSS March 2002

Decomposing the Proof

Microcode sequences can be specified and verified in steps.

microcode line

microcode line spec

microcode block spec

abstract microcode block spec

Instruction microcode
implementation

Page 17 NSA HCSS March 2002

Decomposing the Proof

Microcode sequences can be specified and verified in steps.

microcode line

microcode line spec

microcode block spec

abstract microcode block spec

instruction

Instruction microcode
implementation

Page 18 NSA HCSS March 2002

Proving the CAPS Correctness Theorem

I - CAPS Instruction Set Model
Start state

End stateStart state

End state

M - CAPS Microarchitecture Model

Single Microcode Line Specs

Abstract Microcode Block Specs

Microcode Block Specs

Page 19 NSA HCSS March 2002

MAXOF2

We illustrate this proof architecture with a simple CAPS instruction.
 maxof2 pops 2 stack values and pushes the greater.
Goal theorem: A relevant definition used in I:

(defthm maxof2-works
 (implies
 (and
 (caps_init_uinstp (uaddr::maxof2) st)
 (goodocc st)
 (stk-adjusted (op::maxof2) st)
 (st-p st)
 (normal-operation st)
 (cache-loaded st))
 (equal (CAPS::map (m st (clock::maxof2 st)) CAPS::st)

 (CAPS::i (op::maxof2) (CAPS::map st CAPS::st)))))

Three or four 64-bit words of microcode are executed by the CAPS
machine for maxof at locations 12F, 41C, 41D, and 41E.

(defun op-maxof2 (st)
 (declare (xargs :stobjs (st)))
 (CAPS *state->state*
 (POP TS2)
 (POP TS1)
 (TSr = (? (> (logext 16 TS1) (logext 16 TS2))
 TS1 TS2))
 (PUSH TSr)
 (pc = (& (1+ (pc)) #xffffff))
 st))

Page 20 NSA HCSS March 2002

Specifying a Line of Microcode
(defun line::x041c (st)
 (let ((st0 st))
 (^
 (V = (logext 16 (uC::V)))
 (VM1 = (logext 16 (uC::VM1)))
 (uadr = (uC::IF?=> (! (ext. mode)) (uaddr::ill_inst)))
 (skv = (> VM1 V))

 (st = (m-step st))
 (st = (base-state st0 st))

 (st = (MACRO (misc-regs :sxv skv)))
 (st = (sequence uadr st))
 (return st))))

One line of microcodeWe only specify interesting parts of
how a line of microcode changes the

machine’s state. Other parts are
specified to work as defined by m.

Page 21 NSA HCSS March 2002

Theorems for a Line of Microcode
(line::prove :uaddr #x041c)

generates many needed lemmas, such as:
(DEFTHM LINE::X041C-OPERATION
 (IMPLIES (AND (ST-P ST)
 (GOODOCC ST)
 (CAPS_INIT_UINSTP 1052 ST)
 (NORMAL-OPERATION ST)
 (MAPPED-MICROCYCLE ST))
 (AND (ST-P (LINE::X041C ST))
 (NORMAL-OPERATION (LINE::X041C ST))
 (GOODOCC (LINE::X041C ST)))))

(DEFTHM LINE::X041C-UINST-1
 (IMPLIES (AND (ST-P ST)
 (GOODOCC ST)
 (CAPS_INIT_UINSTP 1052 ST)
 (NORMAL-OPERATION ST)
 (MAPPED-MICROCYCLE ST))
 (AND (CAPS_INIT_UINSTP 1053 (LINE::X041C ST))
 (MAPPED-MICROCYCLE (LINE::X041C ST)))))

(DEFTHM LINE::X041C-EXECUTION
 (IMPLIES (AND (CAPS_INIT_UINSTP 1052 ST)
 (ST-P ST)
 (NORMAL-OPERATION ST)
 (GOODOCC ST)
 (MAPPED-MICROCYCLE ST))
 (EQUAL (M ST (CLOCK::X041C ST))
 (LINE::X041C ST))))

One line of microcode

Page 22 NSA HCSS March 2002

Proof of a Line of Microcode

� Even after decomposing the proof, programming
ACL2 to prove these kinds of theorems is a big job!
� Super-IHS

� We have proved hundreds of rules in our strategy for
simplifying microprocessor operation expressions.

� moving bits around - easy

� arithmetic - easy

� arithmetic and bit-vector - hard

� update-nth equality

� thousands of rules get automatically generated and
proved related to state updates and references

� ACL2 theorem prover itself enhanced to integrate
efficient nth-update-nth reasoning into simplifier.

One line of microcode

See J Moore’s CAV’01 paper
for nu-rewriter details

Page 23 NSA HCSS March 2002

Specifying a Block of Microcode
 (defblock maxof2
 :uaddr (uaddr::maxof2)
 :ep? t
 :raw? t
 :body (line::x012f
 line::x041c

 (caps.alu.sxv.q
 (1 line::x041d
 :map
)
 (0 line::x041d

 line::x041e
 :map)))

Defblock generates what is needed to specify and
verify a block of microcode, like line::prove.

� clock function
� spec function
� correctness theorems

One block of microcode

Page 24 NSA HCSS March 2002

Abstract Microcode Block Specification

Abstract specs can be very helpful.
� Practically speaking, they are required for blocks

containing loops in order to eliminate recursion
over state.

� Like at the microcode-line level, these specs
benefit from identifying interesting elements and
specifying irrelevant elements using the lower-
level model.

(MAXof2 is too simple to benefit from a more
abstract spec for the execution of its microcode.)

Microcode block abstraction

Page 25 NSA HCSS March 2002

MAXOF2 works!

We put the pieces together to prove the main theorem:

(defthm maxof2-works
 (implies
 (and
 (caps_init_uinstp (uaddr::maxof2) st)
 (goodocc st)
 (stk-adjusted (op::maxof2) st)
 (st-p st)
 (normal-operation st)
 (cache-loaded st))
 (equal (CAPS::map (m st (clock::maxof2 st)) CAPS::st)

 (CAPS::i (op::maxof2) (CAPS::map st CAPS::st)))))

Entire instruction

Page 26 NSA HCSS March 2002

New Stuff
� Executable formal models (EFMs)

� A “reader” that greatly simplifies writing analyzable
applicative code that runs with imperative speed.

� Proof decomposition
– similar in some ways to other proof decomposition

challenges

– definition of level by using lower levels

� Nu-rewriter (JSM)

� Proof automation
– Books of theorems that constitute a strategy (of course!)

– Theorems generated from state description

– Code that supports the proof decomposition process
- Theorem-generating macros

Page 27 NSA HCSS March 2002

Summary

At Rockwell Collins we are...

� writing software that is evaluatable - and fast!

� modeling microprocessor microarchitectures,

� proving correctness using a theorem prover, and

� exploring how to use this in a certification context.

	Evaluatable, High-Assurance Microprocessors
	Advanced Technology Center
	CAPS: Collins Adaptive Processing System
	Background: ACL2
	Background: ACL2 (cont.)
	Formal Informal Microprocessor Correctness
	Formal Formal Microprocessor Correctness
	Microarchitectural EFMs
	The READER
	CAPS Microarchitecture Model
	CAPS Correctness Theorem
	Decomposing the Proof
	Decomposing the Proof
	Decomposing the Proof
	Decomposing the Proof
	Decomposing the Proof
	Proving the CAPS Correctness Theorem
	MAXOF2
	Specifying a Line of Microcode
	Theorems for a Line of Microcode
	Proof of a Line of Microcode
	Specifying a Block of Microcode
	Abstract Microcode Block Specification
	MAXOF2 works!
	New Stuff
	Summary

