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� Advanced Communication and Aviation Equipment
– Air Transport, Business, Regional, and Military Markets
– $2.5 Billion in Sales

� Headquartered in Cedar Rapids, IA
– 17,000 Employees Worldwide
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Advanced Technology Center

� The Advanced Technology Center (ATC) identifies, acquires, develops and transitions value-driven technologies to
support the continued growth of Rockwell Collins.

� The Advanced Computing Systems department addresses emerging technologies for high assurance computing systems
with particular emphasis on embedded systems.

� The Formal Methods Center of Excellence applies mathematical tools and reasoning to the problem of producing high
assurance systems.

Commercial Systems Government Systems

Advanced Technology Center

Air Transport/BRS
Displays
SATCOM
Flight Guidance Systems
Data Management Systems

Military
Joint Strike
JTIDS
KC-135
GPS
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CAPS: Collins Adaptive Processing System

CAPS is a processor family for critical applications

� RC processors have a 30+ yr history

� stack-based, Java bytecode-like

� microcoded, stack and instruction caches

� verified through extensive process of “walkthrus”

� microarchitecture simulator: 5K LOC

� Some CAPS family members used in ultra-critical applications
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Background: ACL2

� ACL2 is a system for modeling and mathematical reasoning.
– One of a number of available “theorem provers”
– ACL2 homepage at the University of Texas at Austin

� The logic of ACL2 is a subset of Common Lisp
– basically, the functional (or applicative) part of standard Common Lisp

� ACL2 documented in 2 books and an extensive webpage
� Some interesting applications outside Rockwell Collins:

– communication protocol correctness
– AMD K5 and Athlon floating-point operation implementation

- numerical analysis
- pipeline disentanglement

– CLI “stack” (Nqthm)
– A verified BDD package
– proofs in mathematics
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Background: ACL2 (cont.)

Source: ACL2 documentation
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 Formal Informal Microprocessor Correctness

“Works the same as?”

Execution of physical device
End stateStart state

Documented instruction set
Start state End state
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Formal Formal Microprocessor Correctness

Our formalization of the informal
notion of correctness poses two 
evaluation challenges:

• Does the theorem formalize the 
    informal notion of correctness?

• Is I “right”?         
• Is M “right”? 
• Is Map “right”?   

• Is it really a theorem? 
M - CAPS Microarchitecture Model

I - CAPS Instruction Set ModelStart state

End stateStart state

End state

Map Map

“Formal” proofs in a “formal” process
Executable Formal Models for Validation
and Specless Verification” - DASC 2000
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� We build executable formal models (EFMs) of our machines.
Where some write imperative code
   state.alu.z := 1;
   state.alu.pc := state.alu.pc + 1
we write applicative code
   (let ((st (update-nth (alu.z) 1 st)))
     (let ((st (update-nth (alu.pc) (1+ (alu.pc st)) st)))

� Based on preexisting CAPS simulator
– roughly 5K LOC, 337 elements - integers and arrays -  in state
– microcycle simulator let-expressions 300 x 4 = 1200 deep
– No performance degradation vs. C - no boxing!

� Imperative-speed execution now built into provers
– initial RC EFMs used homegrown tools
– STOBJs, starting with ACL2 2.4
– PVS has added execution with destructive optimization

Microarchitectural EFMs

Two papers about our EFM approach
What, Why
  Efficient Simulation of Formal Processor
  Models (FMSD, May 2001)
 How
   High-Speed, Analyzable Simulators (ACL2
   Case Studies, July 2000, KAP)
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The READER

The reader is a Common Lisp/ACL2 macro that expands imperative-
looking programs into EFMs.

The macro expansion has

� single-threaded access to a list containing the state,

� declarations so GCL compiles efficiently, and

� state accessing using “update-nth” and “nth” functions.

We exploit ACL2’s support of a
real programming language a lot.

(DEFUN CAPS_BUS_ALU (ST)
  (DECLARE …)
  (CAPS *STATE->STATE*

  (ALU. F_PREV = (ALU. F))
  (CASE (MSQ. FN)

((0)
 (ALU. F = (OR (ALU. S) (ALU. R)))
 (ALU. COUT = 0)
 (ST_. J0 = 1))

                    ((1)
 (ALU. F = (OR (ALU. S) (~ (ALU. R))))
 (ALU. COUT = 0)
 (ST_. J0 = 0))
...
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CAPS ACL2 uarch
model passes 3-hr

standard CAPS
regression test!

CAPS Microarchitecture Model

The ACL2 CAPS uarch model
replaces the C model in the
CAPS microcode simulator.
The replacement is not
observable to users.

High-speed, formal models
provide for evaluatability

(looks like C, passes regression
tests, integrated into dev
process, proofs checked)
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CAPS Correctness Theorem

I - CAPS Instruction Set Model
Start state

End stateStart state

End state

M - CAPS Microarchitecture Model

How do we decompose the
proof of this theorem into

manageable pieces?
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Decomposing the Proof

Microcode sequences can be specified and verified in steps.

microcode line

 

 

 

 

Instruction microcode
implementation
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Decomposing the Proof

Microcode sequences can be specified and verified in steps.

microcode line

microcode line spec

 

 

 

Instruction microcode
implementation
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Decomposing the Proof

Microcode sequences can be specified and verified in steps.

microcode line

microcode line spec

microcode block spec

 

 

Instruction microcode
implementation
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Decomposing the Proof

Microcode sequences can be specified and verified in steps.

microcode line

microcode line spec

microcode block spec

abstract microcode block spec

 

Instruction microcode
implementation
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Decomposing the Proof

Microcode sequences can be specified and verified in steps.

microcode line

microcode line spec

microcode block spec

abstract microcode block spec

instruction

Instruction microcode
implementation
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Proving the CAPS Correctness Theorem

I - CAPS Instruction Set Model
Start state

End stateStart state

End state

M - CAPS Microarchitecture Model

Single Microcode Line Specs

Abstract Microcode Block Specs

Microcode Block Specs
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MAXOF2

We illustrate this proof architecture with a simple CAPS instruction.
 maxof2 pops 2 stack values and pushes the greater.
Goal theorem:                                  A relevant definition used in I:

(defthm maxof2-works
  (implies
   (and
    (caps_init_uinstp (uaddr::maxof2) st)
    (goodocc st)
    (stk-adjusted (op::maxof2) st)
    (st-p st)
    (normal-operation st)
    (cache-loaded st))
   (equal (CAPS::map (m st (clock::maxof2 st)) CAPS::st)

  (CAPS::i (op::maxof2) (CAPS::map st CAPS::st)))))

Three or four 64-bit words of microcode are executed by the CAPS
machine for maxof at locations 12F, 41C, 41D, and 41E. 

(defun op-maxof2 (st)
  (declare (xargs :stobjs (st)))
  (CAPS *state->state*
       (POP TS2)
       (POP TS1)
       (TSr = (? (> (logext 16 TS1) (logext 16 TS2))
                 TS1 TS2))
       (PUSH TSr)
       (pc = (& (1+ (pc)) #xffffff))
        st))
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Specifying a Line of Microcode
(defun line::x041c (st)
    (let ((st0 st))
    (^
     (V    = (logext 16 (uC::V  )))
     (VM1  = (logext 16 (uC::VM1)))
     (uadr = (uC::IF?=> (! (ext. mode)) (uaddr::ill_inst)))
     (skv  = (> VM1 V))

     (st = (m-step st))
     (st = (base-state st0 st))

     (st = (MACRO (misc-regs :sxv skv)))
     (st = (sequence uadr st))
     (return st))))

  

  

One line of microcodeWe only specify interesting parts of
how a line of microcode changes the

machine’s state.  Other parts are
specified to work as defined by m.
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Theorems for a Line of Microcode
(line::prove :uaddr #x041c)

generates many needed lemmas, such as:
(DEFTHM LINE::X041C-OPERATION
          (IMPLIES (AND (ST-P ST)
                        (GOODOCC ST)
                        (CAPS_INIT_UINSTP 1052 ST)
                        (NORMAL-OPERATION ST)
                        (MAPPED-MICROCYCLE ST))
                   (AND (ST-P (LINE::X041C ST))
                        (NORMAL-OPERATION (LINE::X041C ST))
                        (GOODOCC (LINE::X041C ST)))))

(DEFTHM LINE::X041C-UINST-1
          (IMPLIES (AND (ST-P ST)
                        (GOODOCC ST)
                        (CAPS_INIT_UINSTP 1052 ST)
                        (NORMAL-OPERATION ST)
                        (MAPPED-MICROCYCLE ST))
                   (AND (CAPS_INIT_UINSTP 1053 (LINE::X041C ST))
                        (MAPPED-MICROCYCLE (LINE::X041C ST)))))

(DEFTHM LINE::X041C-EXECUTION
          (IMPLIES (AND (CAPS_INIT_UINSTP 1052 ST)
                        (ST-P ST)
                        (NORMAL-OPERATION ST)
                        (GOODOCC ST)
                        (MAPPED-MICROCYCLE ST))
                   (EQUAL (M ST (CLOCK::X041C ST))
                          (LINE::X041C ST))))

  

  

One line of microcode
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Proof of a Line of Microcode

� Even after decomposing the proof, programming
ACL2 to prove these kinds of theorems is a big job!
� Super-IHS

� We have proved hundreds of rules in our strategy for
simplifying microprocessor operation expressions.

� moving bits around - easy

� arithmetic  - easy

� arithmetic and bit-vector - hard

� update-nth equality

� thousands of rules get automatically generated and
proved related to state updates and references

� ACL2 theorem prover itself enhanced to integrate
efficient nth-update-nth reasoning into simplifier.

  

  

One line of microcode

See J Moore’s CAV’01 paper
for nu-rewriter details
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Specifying a Block of Microcode
    (defblock maxof2
      :uaddr (uaddr::maxof2)
      :ep? t
      :raw? t
      :body (line::x012f
             line::x041c

         (caps.alu.sxv.q
          (1 line::x041d
             :map
            )
          (0 line::x041d

                 line::x041e
             :map)))

Defblock generates what is needed to specify and
verify a block of microcode, like line::prove.

� clock function
� spec function
� correctness theorems

  

  

One block of microcode
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Abstract Microcode Block Specification

Abstract specs can be very helpful.
� Practically speaking, they are required for blocks

containing loops in order to eliminate recursion
over state.

� Like at the microcode-line level, these specs
benefit from identifying interesting elements and
specifying irrelevant elements using the lower-
level model.

(MAXof2 is too simple to benefit from a more
abstract spec for the execution of its microcode.)

  

  

Microcode block abstraction
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MAXOF2 works!

We put the pieces together to prove the main theorem:

(defthm maxof2-works
  (implies
   (and
    (caps_init_uinstp (uaddr::maxof2) st)
    (goodocc st)
    (stk-adjusted (op::maxof2) st)
    (st-p st)
    (normal-operation st)
    (cache-loaded st))
   (equal (CAPS::map (m st (clock::maxof2 st)) CAPS::st)

  (CAPS::i (op::maxof2) (CAPS::map st CAPS::st)))))

  

  

Entire instruction
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New Stuff
� Executable formal models (EFMs)

� A “reader” that greatly simplifies writing analyzable
applicative code that runs with imperative speed.

� Proof decomposition
– similar in some ways to other proof decomposition

challenges

– definition of level by using lower levels

� Nu-rewriter (JSM)

� Proof automation
– Books of theorems that constitute a strategy (of course!)

– Theorems generated from state description

– Code that supports the proof decomposition process
- Theorem-generating macros
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Summary

At Rockwell Collins we are...

� writing software that is evaluatable - and fast!

� modeling microprocessor microarchitectures,

� proving correctness using a theorem prover, and

� exploring how to use this in a certification context.
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