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Motivation 
n System characteristics 

¨ Very serious consequences of failure 
¨ Safety and security are critical concerns  
¨ Formal verification highly desirable 

n Subject software 
¨ Compact 
¨ Efficient 
¨ Highly functional 
¨ Complexity limits formal verification  
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Traditional Formal Verification 

n  e.g. Floyd-Hoare verification 

Formal 
Specification 
(Z, Statecharts, etc.) 

Implementation 
(Program in Java, C, etc.) 

Compliance 
Proof 

Very Difficult 
Very Complicated 

Very Time Consuming 

n  Correctness Proof 
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Severe Limitations 
On Developers n  Refinement 

n  e.g. B Method 
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Goals Of Echo Verification 
n Focus on functional correctness: 

¨ No verification of timing 
n More practical proof structure 

¨ Relevant 
n  Benefit from formal verification 

¨ Scalable 
n  Applicable to larger systems 

¨ Accessible 
n  Routine usage 

¨ Efficient 
n  Acceptable time and resource 

 

This Is Strictly a 
Pragmatic Issue 



University of Virginia 6 14-Jan-13 

Echo Concept 
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Echo Approach 

Original 
Specification Implementation 

Conventional 
Development 

Refactored 
Implementation 

Verification 
Refactoring 

Annotation 

Implementation 
Proof 

Extracted 
Specification Specification 

Extraction 

Implication 
Proof 

Verification Argument 

Reverse Synthesis 

Verification 
Refactoring 

Refactored 
Implementation 



University of Virginia 8 14-Jan-13 

Prototype Instantiation 
n  SPARK Ada implementation 
n  PVS specification 
n  Stratego transformer 

Verification 
Refactoring 

Specification 
Extraction 

Annotated 
Implementation 

SPARK Ada 

Extracted 
Specification 

PVS 

Formal 
Specification 

PVS 

SPARK Ada 
Verification 

Tools 
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Theorem 
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Practicality 
n  Combines existing powerful techniques 

¨  Intermediate level representation 
¨ Partitioned proof 

n  Introduces reverse synthesis 
¨ Fills the gap between proofs 
¨ Links proof and provides end-to-end argument 

n  Permits use of existing implementations 
¨ Development decisions minimally restricted 

Annotated 
Code 

Refactoring for Verification 
+ 

Specification Extraction 
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Reverse Synthesis 

Refactoring for Verification 
¨ Change implementation to reduce complexity 
¨ Facilitate verification and proofs 
¨ Transform the code instead of transforming the proof 

obligations 
¨ Human guided, mechanically checked 

n  Specification Extraction 
¨ Abstract out irrelevant implementation details 
¨ Automatically produce synthetic specification 
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Implication Proof 
n  Match the extracted specification to the original 

specification 
n  Implication, not equivalence 
n  Implication theorem: 

 
Preoriginal => Preextracted ٨ Postextracted => Postoriginal 

n  Proof between two abstract specification models 
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Verification Refactoring 

Original 
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Transformation 
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Verification Refactoring Process 

n  Prototype Instantiation 
¨  SPARK Ada implementation 
¨  PVS Specification 

PVS Theorem 
Prover 

Stratego/XT 
Toolset 

AdaCore GNAT Metric 
Praxis SPARK Examiner 

Our Code Analyzer 
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Complexity Metrics 
n  A hybrid of metrics for review: 

¨  Element metrics 
n  Lines of code, number of declarations and statements, size of 

subprograms, construct nesting level, etc. 
¨  Complexity metrics 

n  McCabe cyclomatic complexity, essential complexity, loop nesting 
level, etc. 

¨  Verification condition metrics 
n  Number and size of VCs, machine time to analyze the VCs, etc. 

¨  Specification structure metrics 
n  Summary of the architectures of the original and the extracted 

specifications, visually inspected and evaluated match-ratio 

n  Indicate likely difficulty of proofs 
n  Interpretation of the metrics is subjective 
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Example – AES 
n  Original AES implementation 

¨  Various optimization 
n  Unrolled loops, 32-bit word packing, pre-computed tables, inlined 

functions 
¨  SPARK tools ran out of resources 

n  Generated VCs too complex 

n  Verification refactoring 
¨  Human guided process 
¨  50 transformations in 8 categories 

n  AES specific transformations 
¨  Adjusting data structures 
¨  Reversing table lookups 

n  Refactored code annotated and verified 
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AES Verification Results 
n  Implementation Proof 

¨  Annotation: pre- / post-conditions, loop invariants 
¨  SPARK toolset: 306 VCs, 87% VCs discharged automatically in minutes 
¨  Trivial human guidance on remaining VCs 

n  Length of the VCs remained completely manageable 
 

n  Specification Extraction 
¨  Automatically extracted using architectural and direct mapping 
¨  Showed great similarity in structure to the original specification 

n  Implication Proof 
¨  Easily constructed due to structure similarity 
¨  201 TCCs, all discharged automatically or subsumed in seconds 
¨  Implication theorem required straightforward human intervention 

n  32 major lemmas, each proved interactively in a few minutes 

n  Complete Verification Argument 
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Refactoring and Defect Detection 
n  Software defects revealed by failure of proof 

n  Stages to expose defects: 
¨  Application of refactoring 

n  Inconsistency with transformation template 
¨  Implementation proof 

n  Inconsistency between code and annotations 
n  Detected by the SPARK tools 
n  Defect in either or both 

¨  Implication Proof 
n  Unprovable lemma in PVS theorem prover 
n  Defective code with corresponding defective annotation 
n  Annotation not complete or strong enough 
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Evaluation of Defect Detection 
n  Evaluation using seeded defects 

¨ 15 seeded defects into AES 
n  Simple but reflect common errors 
n  Randomly change numeric value, array index, operator, 

variable, statement, function call 

n  Annotation for defective code 
¨ Describe actual functional behavior 

n  e.g. misunderstanding of the specification 
¨ Describe desired functional behavior 

n  e.g. implementation error 
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Defect Detection Results 

Verification Stage 
Defects 
Caught 

Defects 
Left 

Defects 
Caught 

Defects 
Left 

Initial state 15 15 

Verification refactoring 4 11 4 11 

Implementation proof in SPARK 2 9 10 1 

Implication proof in PVS 8 1 0 1 

n  Setup 1: Annotation according to code 
n  Setup 2: Annotation according to specification 

Setup 1 Setup 2 

benign 



Structural Matching Hypothesis 
n  High-level structure of a specification retained in the 

implementation: 
¨  Specification:  contains design information 
¨  Implementation:  often similar in structure, at least partially 

n  Save design effort 
n  More maintainable 

n  e.g. Z schema             A system operation 
n  e.g. model-based specifications: states & operations 
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state: TYPE = [# a: int, b: int #] 
foo(st: state) : state 

type state is 
  record 
    a: Integer; 
    b: Integer; 
  end record; 
 
procedure foo(st: in out state); 
--# derives st from st; 

PVS Ada 



Proof by Parts 
n  Implementation I, Specification S: I => S  

¨  pre(S) => pre(I) ˄ post(I) => post(S) 

¨  Weakens the pre-condition 
¨  Decreases non-determinism 

n  Rely on reverse synthesis: 
¨  Break into two proofs 
¨  Make implication proof between two abstract specifications 

n  Rely on structural matching hypothesis: 
¨  Pairs of matching elements: types, states, operations 
¨  Implication lemma for each distinct element 
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Evaluation 
n  Target: The Tokeneer ID Station 

¨  Hypothetical secure enclave protection software  
§  Defined by NSA as security challenge problem 
§  Developed by Praxis High Integrity Systems 

Z 
Specification 
(117 pages) 

SPARK Ada 
Implementation 

(9939 lines) 

Developers 

Verifiers 

PVS 
Specification 
(2336 lines) 

n  Scenario: 
¨  Public available artifacts (developed by others) 
¨  Non-trivial application 
¨  Several thousand lines long 
¨  In a domain requiring high assurance 
¨  Focus on functional proof 
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Tokeneer Proof 
n  Proof: correctness of functionality: 

¨  Different from Praxis’ correctness by construction proof 

n  Structural matching hypothesis: 
¨  Upon review: 

n  Source code structure resembled specification closely 
¨  Skeleton extraction: 

n  Structure match ratio 74.7% 

n  Verification refactoring: 
¨  Sufficiently similar to proceed without major refactoring 

n  Specification extraction: 
¨  5622 lines of PVS extracted automatically 
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Tokeneer Proof 
n  Implementation Proof 

¨  Pre- / post-condition annotations, freedom from run-time exceptions 
¨  SPARK toolset: Over 2600 VCs generated, 95% VCs discharged 

automatically 
n  Implication Proof 

¨  Matching elements identified straightforwardly 
n  Can be partly automatically suggested by names 

¨  Over 300 implication lemmas 
n  Most TCCs discharged automatically 

¨  10% of the lemmas discharged automatically 
¨  90% required straightforward human intervention 

n  expansion of function definitions 
n  introduction of type predicates 
n  application of extensionality 
n  etc. 

n  Complete Proof 
¨  Identified mismatches that were documented design decisions 
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Conclusion 
n  Formal verification that works: 

¨  Large programs 
¨  Realistic development environments 

n  Verification refactoring to deal with: 
¨  Unworkably large verification conditions 
¨  Rigid development process 

n  Complexity metrics to guide refactoring: 
¨  Select transformations 
¨  Determine when the program was likely to be amenable to proof 

n  Defect detection: 
¨  Fairly straightforward 
¨  Demonstrated by seeded errors 

n  Makes formal verification easier but not easy 
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Questions? 


