Finally: Practical

Formal Verification of
Large Software Systems

John C. Knight
University of Virginia

and a cast of thousands

14-Jan-13 Department of Computer Science, University of Virginia

~1CSE 2013
San Francisco

SEHC'13
5th International Workshop on
Software Engineering in Health Care

Submission Deadline — February 7

14-Jan-13 University of Virginia 1

" SN
Motivation

m System characteristics
Very serious consequences of failure
Safety and security are critical concerns
Formal verification highly desirable

m Subject software
Compact
Efficient
Highly functional _,
Complexity limits formal verification

14-Jan-13 University of Virginia

" I
Traditional Formal Verification

m Correctness Proof

Formal

Specification
(Z, Statecharts, etc.)

R Compliance Y=
Proof

Implementation

(Program in Java, C, etc.)

. . Very Difficult
m e.g. Floyd-Hoare verification Very Complicated

Very Time Consuming

14-Jan-13 University of Virginia

" B
Refinement

m Refinement Severe Limitations

On Developers

Proof Proof < _—

Formal

Specification Implementation

Refinement«
Reflnement
v

m e.g. B Method

14-Jan-13 University of Virginia 4

Goals Of Echo Verification

m Focus on functional correctness:

No verification of timing

m More practical proof structure

Relevant
m Benefit from formal verification

Scalable

m Applicable to larger systems
Accessible

= Routine usage

Efficient

m Acceptable time and resource

14-Jan-13 University of Virginia

This Is Strictly a
Pragmatic Issue

" S
Echo Concept

Conventional
par Development
Original -
Specification >| Implementation
Implication
Proof
Specification Extraction
Extracted
Specification

14-Jan-13 University of Virginia

" S
Echo Approach

Conventional
. Development
Original]
Specification >| implementation ‘
4____1___Reverse Synthesis ___|
qmplncatlon | i \Y
/i | Proof Annotation | Veﬂﬂ@aﬁpn
/ : Extracted < TImpIemerimtation R%&fﬁf’ i hg
I 1| Specification |specification| Proof : l
\ :\ Extraction Refactored 4 4
. |Implementation| |
:_ _ ?_ : ___ T aey e _I__—_ —..—__'__:h_-_ = ___ _T_T_ —_— :

Verification Argument

14-Jan-13 University of Virginia 7

" J
Prototype Instantiation

m SPARK Ada implementation
m PVS specification
m Stratego transformer

Formal Strateao/XT SPARK Ada
Specification Theorem Tr;i;%?m or Verification
PVS Prover Tools
"‘ rCTTT T T T T 1 r========-=" | ‘l’
EAEGEE :S eciﬁcation: : Verification : AT
Specification [« Z‘xtraction : : Refactoring 4= |mplementation
PVS | : SPARK Ada

14-Jan-13 University of Virginia

" SN
Practicality

m Combines existing powerful techniques
Intermediate level representation
Partitioned proof

Annotated
: Code
m Introduces reverse synthesis
Fills the gap between
Links proof and provides end= argument

Refactoring for Verification
+

m Permits use of existing imple
Specification Extraction

Development decisions minim

14-Jan-13 University of Virginia 9

"
Reverse Synthesis

Refactoring for Verification
Change implementation to reduce complexity

Facilitate verification and proofs

Transform the code instead of transforming the proof
obligations
Human guided, mechanically checked

m Specification Extraction
Abstract out irrelevant implementation details
Automatically produce synthetic specification

14-Jan-13 University of Virginia 10

" I
Implication Proof

m Match the extracted specification to the original
specification

m Implication, not equivalence

m Implication theorem:

I:)reoriginal == I:)reextracted A I:)Os‘textracted == I:)Os‘toriginal

m Proof between two abstract specification models

14-Jan-13 University of Virginia 11

"
Verification Refactoring

Optimized
Efficient
Hard to verify

Original
Implementation

LI

Semantics-preserving #& s &

transformations

Less Optimized
Less efficient
Easier to verify

14-Jan-13

< «” ’
= N

Refactored
Implementation

University of Virginia

Programmers

§Mechanical proof

Bend The
Program To
Make It
Verifiable

12

" S
Verification Refactoring Process

/ PVS Theorem

Add new L Prover
transformation

to library

m Prototype Instantiation
SPARK Ada implementation
PVS Specification

Transformation
Proof Checker

Specify & prove
new transformation

Transformation

AdaCore GNAT Metric Select ey
. . transformation
Praxis SPARK Examiner
Our Code Analyzer

User
Guidance

Stratego/XT
Toolset

Apply
transformation

Original
Specification

-

,,,,,,,,,,,,,,,,,,,,,,,,,

LA

Transformer

Transformed
Code

Metric
Analyzer

,,,,,,,,,,,,,,,,,,,,,,,,,,

Statically collect & Mechanically check &
analyze code properties apply transformation

Unable to complete verification

14-Jan-13 University of Virginia 13

" I
Complexity Metrics

m A hybrid of metrics for review:
Element metrics

m Lines of code, number of declarations and statements, size of
subprograms, construct nesting level, etc.

Complexity metrics

m McCabe cyclomatic complexity, essential complexity, loop nesting
level, etc.

Verification condition metrics
m Number and size of VCs, machine time to analyze the VCs, etc.
Specification structure metrics

s Summary of the architectures of the original and the extracted
specifications, visually inspected and evaluated match-ratio

m Indicate likely difficulty of proofs
m Interpretation of the metrics is subjective

14-Jan-13 University of Virginia

" S
Example — AES

m Original AES implementation

Various optimization

m Unrolled loops, 32-bit word packing, pre-computed tables, inlined
functions

SPARK tools ran out of resources
m Generated VCs too complex

m Verification refactoring
Human guided process

50 transformations in 8 categories

m AES specific transformations
Adjusting data structures
Reversing table lookups

m Refactored code annotated and verified

14-Jan-13 University of Virginia

" I
AES Verification Results

m Implementation Proof
Annotation: pre- / post-conditions, loop invariants
SPARK toolset: 306 VCs, 87% VCs discharged automatically in minutes

Trivial human guidance on remaining VCs
m Length of the VCs remained completely manageable

m Specification Extraction
Automatically extracted using architectural and direct mapping
Showed great similarity in structure to the original specification

m Implication Proof
Easily constructed due to structure similarity
201 TCCs, all discharged automatically or subsumed in seconds

Implication theorem required straightforward human intervention
m 32 major lemmas, each proved interactively in a few minutes

m Complete Verification Argument

14-Jan-13 University of Virginia 16

" S
Refactoring and Defect Detection

m Software defects revealed by failure of proof

m Stages to expose defects:
Application of refactoring
m Inconsistency with transformation template
Implementation proof
m Inconsistency between code and annotations
m Detected by the SPARK tools
m Defect in either or both
Implication Proof
m Unprovable lemma in PVS theorem prover
m Defective code with corresponding defective annotation
= Annotation not complete or strong enough

14-Jan-13 University of Virginia 17

" I
Evaluation of Defect Detection

m Evaluation using seeded defects
15 seeded defects into AES

m Simple but reflect common errors

s Randomly change numeric value, array index, operator,
variable, statement, function call

m Annotation for defective code

Describe actual functional behavior
m e.g. misunderstanding of the specification

Describe desired functional behavior
= e.g. implementation error

14-Jan-13 University of Virginia

18

"
Defect Detection Results

m Setup 1: Annotation according to code

m Setup 2: Annotation according to specification

Setup 1 Setup 2
Verification Stage Defects | Defects Defects | Defects
J Caught Left Caught Left
Initial state 15 15
Verification refactoring 4 11 4 11
Implementation proof in SPARK 2 9 10 1
Implication proof in PVS 8 1 0 1
o benign
14-Jan-13 University of Virginia

19

" I
Structural Matching Hypothesis

m High-level structure of a specification retained in the
implementation:

Specification: contains design information

Implementation: often similar in structure, at least partially
m Save design effort
m More maintainable

m e.g.Zschema m==) A system operation

m e.g. model-based specifications: states & operations
type state is

PVS record Ada
. . a: Integer;

state: TYPE = [# a: int, b: int #] |:> b Integer:

foo(st: state) : state) gers

end record;

procedure foo(st: in out state);
-—# derives st from st;

14-Jan-13 University of Virginia 20

Proof by Parts

m Implementation |, Specification S: T => S
pre(S) => pre(I) A post(I) => post(S)
Weakens the pre-condition
Decreases non-determinism

m Rely on reverse synthesis:
Break into two proofs
Make implication proof between two abstract specifications

m Rely on structural matching hypothesis:
Pairs of matching elements: types, states, operations
Implication lemma for each distinct element

14-Jan-13 University of Virginia

21

» I
Evaluation

m Target: The Tokeneer ID Station

Hypothetical secure enclave protection software
» Defined by NSA as security challenge problem
= Developed by Praxis High Integrity Systems

z
Developers Specification

& (117 pages)
> |

SPARK Ada
Implementation P
(9939 lines) ‘?\Q\;:}ﬂ

m Scenario: f’\gl\',z(|)

¥ {/
Public available artifacts (developed by others) <= \%tég%)
Non-trivial application \erifiers
Several thousand lines long
In a domain requiring high assurance
Focus on functional proof

14-Jan-13 University of Virginia 22

" I
Tokeneer Proof

m Proof: correctness of functionality:
Different from Praxis’ correctness by construction proof

m Structural matching hypothesis:

Upon review:
m Source code structure resembled specification closely

Skeleton extraction:
m Structure match ratio 74.7%

m Verification refactoring:
Sufficiently similar to proceed without major refactoring

m Specification extraction:
5622 lines of PVS extracted automatically

14-Jan-13 University of Virginia

" I
Tokeneer Proof

m Implementation Proof

Pre- / post-condition annotations, freedom from run-time exceptions

SPARK toolset: Over 2600 VCs generated, 95% VCs discharged
automatically

m Implication Proof
Matching elements identified straightforwardly
m Can be partly automatically suggested by names
Over 300 implication lemmas
m Most TCCs discharged automatically
10% of the lemmas discharged automatically
90% required straightforward human intervention
m expansion of function definitions
m introduction of type predicates
m application of extensionality
m efc.
m Complete Proof
|ldentified mismatches that were documented design decisions

14-Jan-13 University of Virginia 24

" I
Conclusion

m Formal verification that works:
Large programs
Realistic development environments
m Verification refactoring to deal with:
Unworkably large verification conditions
Rigid development process
m Complexity metrics to guide refactoring:
Select transformations
Determine when the program was likely to be amenable to proof

m Defect detection:
Fairly straightforward
Demonstrated by seeded errors

m Makes formal verification easier but not easy

14-Jan-13 University of Virginia 25

'—
Questions?

14-Jan-13 University of Virginia

26

