
14-Jan-13 Department of Computer Science, University of Virginia

Finally: Practical
Formal Verification of

Large Software Systems

John C. Knight
University of Virginia

and a cast of thousands

University of Virginia 1 14-Jan-13

SEHC'13
5th International Workshop on

Software Engineering in Health Care

Submission Deadline – February 7

University of Virginia 2 14-Jan-13

Motivation
n System characteristics

¨ Very serious consequences of failure
¨ Safety and security are critical concerns
¨ Formal verification highly desirable

n Subject software
¨ Compact
¨ Efficient
¨ Highly functional
¨ Complexity limits formal verification

University of Virginia 3 14-Jan-13

Traditional Formal Verification

n  e.g. Floyd-Hoare verification

Formal
Specification
(Z, Statecharts, etc.)

Implementation
(Program in Java, C, etc.)

Compliance
Proof

Very Difficult
Very Complicated

Very Time Consuming

n  Correctness Proof

University of Virginia 4 14-Jan-13

Refinement

Formal
Specification Implementation

R
ef

in
em

en
t

Proof

R
ef

in
em

en
t

Proof

Severe Limitations
On Developers n  Refinement

n  e.g. B Method

University of Virginia 5 14-Jan-13

Goals Of Echo Verification
n Focus on functional correctness:

¨ No verification of timing
n More practical proof structure

¨ Relevant
n  Benefit from formal verification

¨ Scalable
n  Applicable to larger systems

¨ Accessible
n  Routine usage

¨ Efficient
n  Acceptable time and resource

This Is Strictly a
Pragmatic Issue

University of Virginia 6 14-Jan-13

Echo Concept

Original
Specification Implementation

Conventional
Development

Extracted
Specification

Specification Extraction

Implication
Proof

University of Virginia 7 14-Jan-13

Echo Approach

Original
Specification Implementation

Conventional
Development

Refactored
Implementation

Verification
Refactoring

Annotation

Implementation
Proof

Extracted
Specification Specification

Extraction

Implication
Proof

Verification Argument

Reverse Synthesis

Verification
Refactoring

Refactored
Implementation

University of Virginia 8 14-Jan-13

Prototype Instantiation
n  SPARK Ada implementation
n  PVS specification
n  Stratego transformer

Verification
Refactoring

Specification
Extraction

Annotated
Implementation

SPARK Ada

Extracted
Specification

PVS

Formal
Specification

PVS

SPARK Ada
Verification

Tools

PVS
Theorem
Prover

Stratego/XT
Transformer

University of Virginia 9 14-Jan-13

Practicality
n  Combines existing powerful techniques

¨  Intermediate level representation
¨ Partitioned proof

n  Introduces reverse synthesis
¨ Fills the gap between proofs
¨ Links proof and provides end-to-end argument

n  Permits use of existing implementations
¨ Development decisions minimally restricted

Annotated
Code

Refactoring for Verification
+

Specification Extraction

University of Virginia 10 14-Jan-13

Reverse Synthesis

Refactoring for Verification
¨ Change implementation to reduce complexity
¨ Facilitate verification and proofs
¨ Transform the code instead of transforming the proof

obligations
¨ Human guided, mechanically checked

n  Specification Extraction
¨ Abstract out irrelevant implementation details
¨ Automatically produce synthetic specification

University of Virginia 11 14-Jan-13

Implication Proof
n  Match the extracted specification to the original

specification
n  Implication, not equivalence
n  Implication theorem:

Preoriginal => Preextracted ٨ Postextracted => Postoriginal

n  Proof between two abstract specification models

University of Virginia 12 14-Jan-13

Verification Refactoring

Original
Implementation

Refactored
Implementation

Optimized
Efficient

Hard to verify

Less Optimized
Less efficient

Easier to verify

Semantics-preserving
transformations Mechanical proof

Programmers

Bend The
Program To

Make It
Verifiable

University of Virginia 13 14-Jan-13

Transformation
Library

Transformer

Apply
transformation

CodeTransformed
Code

Mechanically check &
apply transformation

Later
Verification

Original
Specification

Select
transformation

Unable to complete verification

User
Guidance

Metric
Analyzer

No
Yes

Metric
met?

Statically collect &
analyze code properties

Transformation
Proof Checker

Specify & prove
new transformation

Add new
transformation

to library

Verification Refactoring Process

n  Prototype Instantiation
¨  SPARK Ada implementation
¨  PVS Specification

PVS Theorem
Prover

Stratego/XT
Toolset

AdaCore GNAT Metric
Praxis SPARK Examiner

Our Code Analyzer

University of Virginia 14 14-Jan-13

Complexity Metrics
n  A hybrid of metrics for review:

¨  Element metrics
n  Lines of code, number of declarations and statements, size of

subprograms, construct nesting level, etc.
¨  Complexity metrics

n  McCabe cyclomatic complexity, essential complexity, loop nesting
level, etc.

¨  Verification condition metrics
n  Number and size of VCs, machine time to analyze the VCs, etc.

¨  Specification structure metrics
n  Summary of the architectures of the original and the extracted

specifications, visually inspected and evaluated match-ratio

n  Indicate likely difficulty of proofs
n  Interpretation of the metrics is subjective

University of Virginia 15 14-Jan-13

Example – AES
n  Original AES implementation

¨  Various optimization
n  Unrolled loops, 32-bit word packing, pre-computed tables, inlined

functions
¨  SPARK tools ran out of resources

n  Generated VCs too complex

n  Verification refactoring
¨  Human guided process
¨  50 transformations in 8 categories

n  AES specific transformations
¨  Adjusting data structures
¨  Reversing table lookups

n  Refactored code annotated and verified

University of Virginia 16 14-Jan-13

AES Verification Results
n  Implementation Proof

¨  Annotation: pre- / post-conditions, loop invariants
¨  SPARK toolset: 306 VCs, 87% VCs discharged automatically in minutes
¨  Trivial human guidance on remaining VCs

n  Length of the VCs remained completely manageable

n  Specification Extraction
¨  Automatically extracted using architectural and direct mapping
¨  Showed great similarity in structure to the original specification

n  Implication Proof
¨  Easily constructed due to structure similarity
¨  201 TCCs, all discharged automatically or subsumed in seconds
¨  Implication theorem required straightforward human intervention

n  32 major lemmas, each proved interactively in a few minutes

n  Complete Verification Argument

University of Virginia 17 14-Jan-13

Refactoring and Defect Detection
n  Software defects revealed by failure of proof

n  Stages to expose defects:
¨  Application of refactoring

n  Inconsistency with transformation template
¨  Implementation proof

n  Inconsistency between code and annotations
n  Detected by the SPARK tools
n  Defect in either or both

¨  Implication Proof
n  Unprovable lemma in PVS theorem prover
n  Defective code with corresponding defective annotation
n  Annotation not complete or strong enough

University of Virginia 18 14-Jan-13

Evaluation of Defect Detection
n  Evaluation using seeded defects

¨ 15 seeded defects into AES
n  Simple but reflect common errors
n  Randomly change numeric value, array index, operator,

variable, statement, function call

n  Annotation for defective code
¨ Describe actual functional behavior

n  e.g. misunderstanding of the specification
¨ Describe desired functional behavior

n  e.g. implementation error

University of Virginia 19 14-Jan-13

Defect Detection Results

Verification Stage
Defects
Caught

Defects
Left

Defects
Caught

Defects
Left

Initial state 15 15

Verification refactoring 4 11 4 11

Implementation proof in SPARK 2 9 10 1

Implication proof in PVS 8 1 0 1

n  Setup 1: Annotation according to code
n  Setup 2: Annotation according to specification

Setup 1 Setup 2

benign

Structural Matching Hypothesis
n  High-level structure of a specification retained in the

implementation:
¨  Specification: contains design information
¨  Implementation: often similar in structure, at least partially

n  Save design effort
n  More maintainable

n  e.g. Z schema A system operation
n  e.g. model-based specifications: states & operations

University of Virginia 20 14-Jan-13

state: TYPE = [# a: int, b: int #]
foo(st: state) : state

type state is
 record
 a: Integer;
 b: Integer;
 end record;

procedure foo(st: in out state);
--# derives st from st;

PVS Ada

Proof by Parts
n  Implementation I, Specification S: I => S

¨  pre(S) => pre(I) ˄ post(I) => post(S)

¨  Weakens the pre-condition
¨  Decreases non-determinism

n  Rely on reverse synthesis:
¨  Break into two proofs
¨  Make implication proof between two abstract specifications

n  Rely on structural matching hypothesis:
¨  Pairs of matching elements: types, states, operations
¨  Implication lemma for each distinct element

University of Virginia 21 14-Jan-13

University of Virginia 22 14-Jan-13

Evaluation
n  Target: The Tokeneer ID Station

¨  Hypothetical secure enclave protection software
§  Defined by NSA as security challenge problem
§  Developed by Praxis High Integrity Systems

Z
Specification
(117 pages)

SPARK Ada
Implementation

(9939 lines)

Developers

Verifiers

PVS
Specification
(2336 lines)

n  Scenario:
¨  Public available artifacts (developed by others)
¨  Non-trivial application
¨  Several thousand lines long
¨  In a domain requiring high assurance
¨  Focus on functional proof

University of Virginia 23 14-Jan-13

Tokeneer Proof
n  Proof: correctness of functionality:

¨  Different from Praxis’ correctness by construction proof

n  Structural matching hypothesis:
¨  Upon review:

n  Source code structure resembled specification closely
¨  Skeleton extraction:

n  Structure match ratio 74.7%

n  Verification refactoring:
¨  Sufficiently similar to proceed without major refactoring

n  Specification extraction:
¨  5622 lines of PVS extracted automatically

University of Virginia 24 14-Jan-13

Tokeneer Proof
n  Implementation Proof

¨  Pre- / post-condition annotations, freedom from run-time exceptions
¨  SPARK toolset: Over 2600 VCs generated, 95% VCs discharged

automatically
n  Implication Proof

¨  Matching elements identified straightforwardly
n  Can be partly automatically suggested by names

¨  Over 300 implication lemmas
n  Most TCCs discharged automatically

¨  10% of the lemmas discharged automatically
¨  90% required straightforward human intervention

n  expansion of function definitions
n  introduction of type predicates
n  application of extensionality
n  etc.

n  Complete Proof
¨  Identified mismatches that were documented design decisions

University of Virginia 25 14-Jan-13

Conclusion
n  Formal verification that works:

¨  Large programs
¨  Realistic development environments

n  Verification refactoring to deal with:
¨  Unworkably large verification conditions
¨  Rigid development process

n  Complexity metrics to guide refactoring:
¨  Select transformations
¨  Determine when the program was likely to be amenable to proof

n  Defect detection:
¨  Fairly straightforward
¨  Demonstrated by seeded errors

n  Makes formal verification easier but not easy

University of Virginia 26 14-Jan-13

Questions?

