Formal Derivation of Security

!'_ Protocols

Anupam Datta Ante Derek
John C. Mitchell Dusko Pavlovic

Stanford University Kestrel Institute
HCSS April 15, 2004

‘_H Contributions

s Protocol derivation

= Build security protocols by combining parts
from standard sub-protocols.

s Proof of correctness

= Prove protocols correct using logic that
follows steps of derivation.

i Outline

= Derivation System [CSFWO03]
= Motivating examples
= Main concepts

= Benefits
s Compositional Logic [CSFWO01,CSFWO03]
= Formalizing Composition [MFPS03]
= Formalizing Refinements [CSFW04]

s Conclusions and Future Work

‘_H Example

= Construct protocol with properties:
» Shared secret
» Authenticated
» Identity Protection
= DoS Protection

= Design requirements for IKE, JFK,
IKEv2 (IPSec key exchange protocol)

* Component 1

Diffie Hellman

A > B: @
B > A: ¢b

» Shared secret (with someone)
= A deduces:
Knows(Y, g@) o (Y = A) V Knows(Y,b)
Authenticated
» Identity Protection
DoS Protection

& Component 2

Challenge-Response

A - B:mA
B —»> A: n,sigg{m, n, A}
A — B: sig,{m, n, B}

s Shared secret
= Authenticated

= A deduces: Received (B, msgl) A Sent (B,
msg2)

» Identity Protection
= DoOS Protection

* Composition

ISO-9798-3

A B: g A

B— A: @b sigg{g? g° A}
A —> B: SigA {gal gbl B}

Shared secret: gab
Authenticated
Identity Protection
DoS Protection

* Refinement

Encrypt Signatures

A—B: g A
B — A: gbl EK {SigB {gal gbl A}}
A — B: E {sigy{g? g° B}}

= Shared secret: gab
» Authenticated

» Identity Protection
= DOS Protection

i Transformation

Use cookie: JFK core protocol

A B: g A

B — A: gb, hash.{g® g?}

A — B: @3, @b, E {sig,{9?, g° B}}, hash{g" g%}
B— A: g E{sigg{g? g° A}}

= Shared secret: gab
» Authenticated

» Identity Protection
= DO0S Protection

‘_H Derivation Framework

= Protocols are constructed from:
= components
by applying a series of:

= composition, refinement and transformation
operations.

= Properties accumulate as a derivation
proceeds.

= Examples:

« STS, ISO-9798-3, JFKi, JFKr, IKE, GDOI, Kerberos,
Needham-Schroeder,...

‘_H Benefits and Directions

= Modular analysis of protocols.

= Organization of protocols into
taxonomies.

= Underpin protocol design principles and
patterns.

= Protocol synthesis.

* Outline

= Derivation System

= Compositional Logic [CSFwo01,CSFW03]
= Main idea
= Syntax, semantics and proof system

s Formalizing Composition
s Formalizing Refinements
= Conclusions and Future Work

Protocol Logic: Main idea

= Alice’s information
= Protocol
= Private data
= Sends and receives

Example: Challenge-Response

m, A

>

n, Sigg{m, n, A}

SigA {ml n, B}

= Alice reasons: if Bob is honest, then:
= only Bob can generate his signature. [protocol independent]

= if Bob generates a signature of the form sigg{m, n, A},
= he sends it as part of msg 2 of the protocol and
= he must have received msg1l from Alice. [protocol specific]

= Alice deduces: Received (B, msgl) A Sent (B, msg2)

‘_H Execution Model

= Protocol
= "Program” for each protocol role

= Initial configuration
= Set of principals and key
= Assignment of >1 role to each principal

x Run e
new x send{x}g Position in run
T T e ;
recv{x} recvizZ}g
B —»—3%—»> —T—»—» —r- @

new z send{z};

Formulas true at a position in run

= Action formulas
a ::= Send(P,m) | Receive (P,m) | New(P,t)
| Decrypt (P,t) | Verify (P,t)
= Formulas
¢ ::=a | Has(P,t) | Fresh(P,t) | Honest(N)
| Contains(ty, t,) | =¢ | o1~ ¢, | X 0
| 00 | 00
= Example
After(a,b) = ¢(b A ofa)

Modal Formulas

m After actions, postcondition
[actions | p ¢ where P = (princ, role id)

« If P does ‘actions’, starting from initial state, then ¢ holds in
resulting state

n Before/after assertions
¢ [actions]p v

= If ¢ holds in some state, and P does ‘actions’, then y holds
in resulting state

‘_H Diffie-Hellman: Property

= Formula
= [new a] ,Fresh(A, g?)

= Explanation
=« Modal form: [actions] » ¢
= Actions: [newa] ,
= Postcondition: Fresh(A, g?2)

i Challenge Response: Property

= Modal form: ¢ [actions |, v

= precondition: Fresh(A,m)

=« actions: [Initiator role actions],

= postcondition:

Honest(B) > ActionsInOrder(

send(A, {A,B,m}),
receive(B, {A,B,m}),
send(B, {B,A,{n, sigg {m, n, A}}}),
;eceive(A, {B,A,{n, sigg {m, n, A}}})

‘_H Proof System

= Sample Axioms:

= Reasoning about knowledge:
= [receive m], Has(A,m)
= Has(A, {m,n}) o Has(A, m) A Has(A, n)
= Reasoning about crypto primitives:
= Honest(X) A &ODecrypt(Y, enc{m}) o X=Y
= Honest(X) A OVerify(Y, sigy{m}) o
3 m’ (&>Send(X, m’) A Contains(m’, sigy{m})

= Soundness Theorem:
Every provable formula is valid

* Outline

= Derivation System

s Compositional Logic

s Formalizing Composition [MFPS03]
= Formalizing Refinements

m Conclusions and Future Work

‘_H Central Issues

s Additive Combination:

=« Accumulate security properties of
combined parts, assuming they do not
interfere
= In logic: before-after assertions

s Non-destructive Combination:

« Ensure combined parts do not interfere
= In logic: invariance assertions

Proof steps (Intuition)

= Protocol independent reasoning
=« Has(A, {m,n}) o Has(A, m) A Has(A, n)
= Still good: unaffected by composition

= Protocol specific reasoning

= if honest Bob generates a signature of the form
sigg{m, n, A},
= he sends it as part of msg 2 of the protocol and
= he must have received msgl from Alice”

= Could break: Bob’s signature from one protocol could be
used to attack another

Protocol-specific proof steps use invariants

‘_H Invariants

= Reasoning about honest principals
= Invariance rule, called “honesty rule”

= Preservation of invariants under
composition

= If we prove Honest(X) o ¢ for protocol 1 and
compose with protocol 2, is formula still true?

‘_H Honesty Rule

= Definition
= A basic sequence of actions begins with
receive, ends before next receive
s Rule

[Iy o For all B € BasicSeq(Q). o [Bly ¢
Q » Honest(X) o ¢

= Example

CR » Honest(X) o
(Sent(X, m,) o Recd(X, m,))

‘_H Composing protocols

FI
A A
- I o
DH P Honest(X) o ...
I |- Secrecy [|- Authentication
['ur” |- Secrecy ['uI™ |- Authentication

\/

['uI” |- Secrecy A Authentication [additive]

DH e CR D I'UI'" [nondestructive]
I

ISO P Secrecy A Authentication

i Composition Rules

= Invariant weakening rule
Cl-ol.lrv
ror|- ¢l w
= Sequential Composition
Cl-o[S]lepy T|-y [T]p0
I|-¢[ST]p0
= Prove invariants from protocol
QI QPTI
QeQ P T

* Outline

= Derivation System

s Compositional Logic

s Formalizing Composition

= Formalizing Refinements [CSFwo04]
m Conclusions and Future Work

‘_H Protocol Templates

= Protocols with function variables instead
of specific cryptographic operations
(Higher-order extension of protocol logic)

= Idea: One template can be instantiated
to many protocols

= Advantages:
= proof reuse
= design principles/patterns

‘_H Example

Challenge-Response Template

A —- B:m
B - A: n, F(B,A,n,m)
A — B: G(AB,n,m)

\ 4

A —- B:m
B —» A: n,Egz(n,m,B)
A — B: Ez(n,m)

A —- B:m
B —» A:n,Hg(n,m,B)
A — B: Hg(n,m,A)

A > B:'m
B — A: n,sigg(n,m,A)
A — B: sig,(n,m,B)

ISO-9798-2

SKID3

ISO-9798-3

ction-Instantiation Method(1)

‘-H Abstra

s Characterizing protocol concepts

= Ste

p 1: Under hypotheses about function

variables and invariants, prove security

pro
= Ste

perty of template
n 2: Instantiate function variables to

cry

ptographic operations and prove

hypotheses.
= Benefit:

= Pro

of reuse

Example

Challenge-Response Template
A —- B:m

B - A: n, F(B,A,n,m)
A — B: G(AB,n,m)

oStep 1:
eHypothesis: Function F(B,A,n,m) can be computed only by B
eProperty: Mutual authentication

oStep 2:

eInstantiate F() to signature, keyed hash, encryption (ISO-
9798-2,3, SKID3)

eSatisfies hypothesis => Guarantees mutual authentication

‘-H Abstraction-Instantiation Method(2)

= Combining protocol templates

If protocol P is a hypotheses-respecting
instance of two different templates, then it
has the properties of both.

= Benefits:
=« Modular proofs of properties
« Formalization of protocol refinements

i Refinement Example Revisited

Encrypt Signatures
A—>B: g A
B — A: gbl EK {SigB {gal gbl A}}
A — B: Ey {sig,{g?, g® B}}

Two templates:

=« Template 1: authentication + shared secret
(Preserves existing properties; proof reused)

= Template 2: identity protection (encryption)
(Adds new property)

i More examples...

= Authenticated Key Exchange:
= Template for JFKi, ISO-9798-3.
=« Template for JFKr, STS, IKE, IKEv2

s Key Computation:

« Template for Diffie-Hellman, UM, MTI/A,
MQV

= Combining these templates

‘_H Synthesis: STS-MQV

_ _protect okie sym;nsetric
DH authent|cate_: STS identities STSP cook STSPH hash > RFK
l V l J/ l
MTI/A |——>| MTI, > MTl, F——2MTl o, ——2{MT e
UM —>| UM, [—> UM, UM_p, — UM
MQV [——> MQV, [———I|MQV, ., [——>MQVpy, ZIMQV g

* Outline

= Derivation System

s Compositional Logic

s Formalizing Composition

= Formalizing Refinements

= Conclusions and Future Work

‘_H Conclusions

s Protocol Derivation System:

= Systematizes the practice of building protocols
from standard sub-protocols. Useful for:
« Modular protocol analysis
= Underpinning protocol design principles and patterns
= Organizing related protocols in taxonomies
= Protocol synthesis

= Protocol Logic:
= Correctness proofs follow derivation steps.
= Rigorous treatment of composition, refinement.

‘_H Work in Progress

= Derivation System:
=« Development of taxonomies
= Tool support based on especs
= Protocol Logic:
» Formalization of transformations
= Automation of proofs

i Publications

= A. Datta, A. Derek, J. C. Mitchell, D. Pavlovic.
= Abstraction and Refinement in Protocol Derivation [CSFW04]
= Secure Protocol Composition [MFPS03]

= A Derivation System for Security Protocols and its Logical
Formalization [CSFWO03]

= N. Durgin, J. C. Mitchell, D. Pavlovic.

= A Compositional Logic for proving Security Properties of
Protocols [CSFWO01,]JCS03]

= C. Meadows, D. Pavlovic.

= Deriving, Attacking and Defending the GDOI Protocol
= Web page:
http://www.stanford.edu/~danupam/logic-derivation.html

	Formal Derivation of Security Protocols
	Contributions
	Outline
	Example
	Component 1
	Component 2
	Composition
	Refinement
	Transformation
	Derivation Framework
	Benefits and Directions
	Outline
	Protocol Logic: Main idea
	Example: Challenge-Response
	Execution Model
	Formulas true at a position in run
	Modal Formulas
	Diffie-Hellman: Property
	Challenge Response: Property
	Proof System
	Outline
	Central Issues
	Proof steps (Intuition)
	Invariants
	Honesty Rule
	Composing protocols
	Composition Rules
	Outline
	Protocol Templates
	Example
	Abstraction-Instantiation Method(1)
	Example
	Abstraction-Instantiation Method(2)
	Refinement Example Revisited
	More examples…
	Synthesis: STS-MQV
	Outline
	Conclusions
	Work in Progress
	Publications

