
Formal Models of AIM 
John Launchbury 

Oregon Graduate Institute 
March 14, 2001 

 

1. AIM Overview 
The AIM chip is a crypto-processor produced by Motorola. AIM can encrypt and decrypt 
data on multiple interleaved channels, using independent algorithms and keys for each 
channel. Internally, AIM contains two 
custom cryptography units: the PCE 
designed for block ciphers, and the CCE 
for stream ciphers. In addition, there is a 
general-purpose processor that handles 
channel setup and key management. AIM 
also contains extensive protection and 
anti-tamper features. One exciting feature 
of the AIM design is its mathematically 
assured separation kernel (MASK). The 
design of MASK is based upon a 
mathematical model, which, it can be proved, ensures that separate cryptography 
processes cannot observe or influence one another, and hence that different channels are 
truly independent. 
 
The PCE block cipher unit contains four parallel execution components: a permutation 
unit; a non-linear function unit; a linear function unit; and a general-purpose arithmetic-
logic unit. These are programmed directly in a microcode in which pipeline delays and 
unit parallelism are written explicitly. Our goal in this AIM-modeling project is to 
explore methods for introducing abstraction and additional mathematical insight to the 
structure of microcode programs that are destined both for the PCE and CCE. This short 
note is designed to provide an overview of the project. 

2. AIM Microcode 
We have built a semantic model of the PCE. The model provides a precise yet abstract 
description of the behavior of the AIM microcode. Building the model involved gathering 
information (verbally and in documentation form) about the AIM chip and about the PCE 
unit in particular. After a detailed analysis of the PCE unit's operational behavior we 
expressed the model as an executable interpreter simulating the core functionality of the 
PCE unit. As the project proceeds, we plan to modify the interpreter to refine the design 
of the semantics and to model more of the functionality of the PCE unit. 

Key and process
management

PCE
(block
cipher
unit)

CCE
(stream
cipher
unit)

Input
channel

Output
channel



 
The permutation unit of the PCE is a wide multi-way switch where each output bit can be 
driven by any input bit. However, programming the permutation unit by directly 
specifying each output bit one-by-one loses all information regarding why the particular 
permutation is correct. We designed a small domain-specific language for specifying the 
structure of permutations. The language enables clean and brief descriptions to be written 
that are amenable to peer review. The language also has a formal semantics that is used to 
calculate the appropriate configuration of the permutation unit that meets the description. 
This configuration is written to a file in a form expected by the AIM development 
environment. 
 
Most recently, we have gone further, and studied the nature of interactions between the 
permutation unit and the non-linear function unit. This is particularly relevant for 
constructing implementations for S-boxes. Again we are capturing the semantics of these 
interactions at a higher level than previously, and now are able to describe S-box 
functionality almost as compactly as the permutations themselves. 

3. CCE Semantic Model 
The AIM chip contains a separate programmable component, the CCE, designed for 
stream ciphers. The CCE architecture is based on programmable decision trees, yet the 
cryptoalgorithms are expressed in terms of boolean functions provided by the user. The 
mapping between these boolean functions and the decision trees are far from obvious. We 
plan to express the boolean functions using BDDs and then, by applying heuristics, 
attempt to find close to optimal variable orderings. We have a hypothesis that variable 
orderings which reduce the size of a BDD representation of a boolean function also 
reduce the size of decision trees required to implement the function. If valid, this 
technique will provide the core of a compilation technique for generating configurations 
for the CCE unit. 

4. Verification of Microcode Implementations 
We plan to go beyond description of the AIM PCE and CCE units, and explore 
microcode generation and verification. We have co-developed Cryptol, a domain-specific 
language for describing cryptoalgorithms, which we use to provide specifications of 
crypto-algorithms. Our plan now is to compare crypto algorithms implemented as PCE 
microcode against the specifications of these algorithms. Our verification experiments 
will be based around a combination of theorem proving and model checking, the latter 
exploiting BDDs and other SAT algorithms. 
 
The Cryptol DSL is able to generate C-code implementations of crypto algorithms. It is 
interesting to consider what is involved in writing a code generator for Cryptol that 
produces AIM PCE microcode. Many parts of this are straightforward. One challenge, 
however, is to find effective ways to exploit the permutation unit in conjunction with the 
linear and non-linear function units, as these implementation details are inappropriate in 
very high-level algorithm specifications. 


	Formal Models of AIM
	John Launchbury Oregon Graduate Institute
	March 14, 2001
	1. AIM Overview
	2. AIM Microcode
	3. CCE Semantic Model
	4. Verification of Microcode Implementations

