Formal Synthesis of Efficient
Verified Emulators

Magnus Myreen!

in collaboration with Anthony Fox and Mike Gordon

University of Cambridge

' funded by Defence Science & Technology Laboratory (DSTL), UK

Problem of new hardware

4)

trustworthy
old software

- J

old hardware

new hardware

Problem of new hardware

4) 4)

trustworthy trustworthy
old software old software

- J G J

new hardware

old hardware

Problem of new hardware

4) 4)

trustworthy trustworthy
old software old software

WV VALYV V.
new hardware

- J

old hardware

Problem of new hardware

4) 4)

trustworthy trustworthy
old software old software

- J G J

emulation layer

old hardware

new hardware

Problem of new hardware

4) 4)

trustworthy trustworthy
old software old software

- J G J

emulation layer

old hardware

new hardware

® Re-verification/validation is expensive

® This talk: how to build trustworthy emulators

Emulators

Purpose: recreating an original computer
environment

Goals: recreate hardware or hardware+QS

Emulators

Purpose: recreating an original computer
environment

Goals: recreate hardware or hardware+QS

This talk: emulating ARM programs on 64-bit x86

* emphasis: correctness and efficiency
* focus: self-contained, user-mode programs

Emulator alternatives

Emulators implement

fetch-decode-exec-cycle of foreign architecture

Implementation alternatives:
® fetch-decode-exec-cycle interpretation
® just-in-time compilation

® one-off binary translation

Trustworthy?

m_

ARCHITECTURE

Writing an emulator | REFERENCE
. . . MANUAL
involves implementing: o

i

Intel® 64 and 1A-32 Architectures

Software Developer's Manual

in the language of:

... an error-prone task.

This Talk

|. Construction of trustworthy emulators:
® direct interpretation
® just-in-time compilation
® one-off binary translation

2. Comparison & performance numbers

Direct Interpretation

Specification

® |nstruction set architectures, foreign and native:

q e ||
ntel® 64 and 1A-32 Architectures
Software Developer anua
v

8 ARCHITECTURE
REFERENCE
MANUAL

[)\‘\l » SEAL

| 1,‘:&

® We use Fox [ITP’10] and Sarkar et al. [POPL09]

Formal specification

® Formal models defined as interpreters, e.g.

arm_ next(state) =
let ast = decode(fetch(state),state) in
exec(ast,state)

in the logic of a theorem prover.

Formal specification

® Formal models defined as interpreters, e.g.

arm_ next(state) =
let ast = decode(fetch(state),state) in
exec(ast,state)

in the logic of a theorem prover.

® .. so let’s synthesise verified x86 from the
definition arm_next.

Synthesis of interpreter

® Drawing on experience of proof-producing
synthesis [CC’09, TPHOLs’09,ITP’1 1]

® ARM model difficult to directly synthesise
to efficient x86 code: definition uses

® heterogenous datatypes (AST)

® higher-order functions

Synthesis of interpreter

® Drawing on experience of proof-producing
synthesis [CC’09, TPHOLs’09,ITP’1 1]

® ARM model difficult to directly synthesise
to efficient x86 code: definition uses

® heterogenous datatypes (AST)

® higher-order functions

® Solution: reformulate arm_next.

Reformulation

® |nstead of: decode-then-execute, i.e.

decode :word32 — AST

execute :AST x state — state

Reformulation

® |nstead of: decode-then-execute, i.e.

decode :word32 — AST

execute :AST x state — state
® Use:interpretation via bytecode

translate : word32 — bytecode list

interpret : (bytecode list) x state — state

i.e.arm_next(s) = interpret(translate(...),s)

Bytecode

Bytecode state:

- four new registers:A, B, C,D
- ARM processor state

Bytecode

Bytecode state:
- four new registers:A, B, C,D
- ARM processor state

Bytecode instructions:

- basic operations between A-D registers
(add A,A,B or sub AJA,B or mov A,D etc.)

- operations for reading and updating ARM
state (e.g. mov A,rO or mov r0,A)

- one operation for skipping instructions

Synthesis

We write definition of:

translate : word32 — bytecode list

interpret : (bytecode list) x state — state

in a language which we can easily be compiled by
proof-producing synthesis [CC’09] (explained later)

(Implementing a full translate function is work in progress...)

Example emulation

® Fib for even numbers in C and ARM

m= 0; mov ra,#0
n =1; mov rl,#1
repeat { L:
m += n; add ro,rl
n += m; add rl1,ro0
k -= 2; subs r2,#2
} (k == 0); bne L

® Emulates fib(200,000,000) in 48 seconds
® x86-complied C runs in 0.1 seconds (500x faster)

Just-in-time compilation

Just-in-time compilation

ldea: partial evaluation

® try to perform fetch-and-decode only once

® QEMU design principle (animation next slide...)

JIT animation

Foreign code: Native code: JIT compiler

-3 40: mov ro,#o =3 call COMPILER(4@)
44: mov rl,#1

48: add ro,ri
52: add ri1,r0
56: subs r2,#2
60: bne 48

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: —> [BIINee1]>1lG

=3 40: mov ro,#0 call COMPILER(40)
44: mov rl,#1
48: add ro,ri
52: add ri1,r0
56: subs r2,#2
60: bne 48

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: —> [BIINee1]>1lG

=3 40: mov r@,#0 | T mov r8,1
44: mov rl,#1 g mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 call COMPILER(48)
60: bne 48 1 | L: call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: —> [BIINee1]>1lG

=3 40: mov r@,#0 mov r§,1
44: mov rl,#1 mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 call COMPILER(48)
00: bne 48 L: call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: JIT compiler

=3 40: mov r@,#0 == mov rg,l
44: mov rl,#1 mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 call COMPILER(48)
00: bne 48 L: call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: JIT compiler

=3 40: mov r@,#0 mov r§,1
44: mov rl,#1 mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 =3 call COMPILER(48)
00: bne 48 L: call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: JIT compiler

4Q: mov ro,#0 mov r8,1

44: mov rl,#1 mov r9,2

48: add ro,ri sub rl0,2

52: add ri1,r@ je L

56: subs r2,#2 =3 call COMPILER(48)
00: bne 48 L: call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: —> [IINee1a]>11G

4Q: mov ro,#0 mov r8,1

44: mov rl,#1 mov r9,2

48: add ro,ri sub rl0,2

52: add ri1,r@ je L

56: subs r2,#2 call COMPILER(48)
00: bne 48 L: call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: —> [IINee1a]>11G

4Q: mov ro,#0 mov r8,1
44: mov rl,#1 mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 jmp G
00: bne 48 L: call COMPILER(64)
T G: add r8,r9
add r9,r8
sub rl0,?2
jne G
call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: —> [IINee1a]>11G

4Q: mov ro,#0 mov r8,1
44: mov rl,#1 mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 jmp G
00: bne 48 L: call COMPILER(64)
G: add r8,r9
add r9,r8
sub rl0,?2
jne G

call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: JIT compiler

4Q: mov ro,#0 mov r8,1
44: mov rl,#1 mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 jmp G
00: bne 48 L: call COMPILER(64)
=3 G: add r8,r9
add r9,r8
sub rl0,?2
jne G

call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: JIT compiler

4Q: mov ro,#0 mov r8,1
44: mov rl,#1 mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 jmp G
=3 60: bne 48 L: call COMPILER(64)
G: add r8,r9
add r9,r8
sub rl0,?2
— jne G

call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: JIT compiler

4Q: mov ro,#0 mov r8,1
44: mov rl,#1 mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 jmp G
00: bne 48 L: call COMPILER(64)
=3 G: add r8,r9
add r9,r8
sub rl0,?2
jne G

call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: JIT compiler

4Q: mov ro,#0 mov r8,1
44: mov rl,#1 mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 jmp G
00: bne 48 L: call COMPILER(64)
G: add r8,r9
add r9,r8
sub rl0,?2
jne G

— call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

JIT animation

Foreign code: Native code: —> [IINee1a]>11G

4Q: mov ro,#0 mov r8,1
44: mov rl,#1 mov r9,2
48: add ro,ri sub rl0,2
52: add ri1,r@ je L
56: subs r2,#2 jmp G
00: bne 48 L: call COMPILER(64)
G: add r8,r9
add r9,r8
sub rl0,?2
jne G

call COMPILER(64)

* blocks of foreign code is translated into native code
e eventually only native code is run

Block translation

block in equivalent optimised implementation
foreign code bytecode bytecode in 64-bit x86
L:

add ro,ril

add ri1,r0

subs r2,#2

bne L

Block translation

block in equivalent optimised implementation
foreign code bytecode bytecode in 64-bit x86
L: mov A,r@
add ro,rl mov B,rl
add rl,ro@ add A,B
subs r2,#2 mov r@,A
bne L inc pc,4
mov A,rl
mov B, ro
add A,B
mov r@,A
inc pc,4
skip 4

inc pc,4

foreign code

L:

block in

add ro,ril
add ri1,r0
subs r2,#2
bne L

Block translation

 —

equivalent
bytecode

mov
mov
add
mov
inc
mov
mov
add
mov
1nc

A,ro
B,rl
A,B

ro, A
pc,4
A,rl
B,ro
A,B

ro, A
pc,4

skip 4

1Nnc

pc,4

 ——

optimised implementation

bytecode in 64-bit x86

mov A,rQ
mov B,rl
add A,B

mov r@,A
mov A,rl
mov B,r@
add A,B

mov r@,A

skip 3

1nc pc,16

foreign code

L:

block in

add ro,ril
add ri1,r0
subs r2,#2
bne L

Block translation

 —

equivalent

bytecode —
mov A,r0
mov B,rl
add A,B
mov rQ,A
inc pc,4
mov A,rl
mov B,r0
add A,B
mov r@,A
inc pc,4

skip 4

inc pc,4

optimised
bytecode

mov A,rQ
mov B,rl
add A,B

mov r@Q,A
mov A,rl
mov B,r@
add A,B

mov ro,A "Q::?,

inc pc,l16

 ——

implementation

in 64-bit x86

_

block correct,
but step-by-step
Instruction
equivalence lost

\

J

foreign code

L:

block in

add ro,ril
add ri1,r0
subs r2,#2
bne L

Block translation

 —

equivalent
—
bytecode

mov A,r0
mov B,rl
add A,B

mov rQ,A
inc pc,4
mov A,rl
mov B,r0
add A,B

mov r@,A
inc pc,4

skip 4

inc pc,4

optimised
bytecode

mov A,rQ
mov B,rl
add A,B

mov r@,A
mov A,rl
mov B,r@
add A,B

mov ro,A "Q::?,

1nc pc,16

 ——

implementation

in 64-bit x86

mov eax,ra8
mov ebx,r9
add eax,ebx
mov r8,eax

-

block correct,
but step-by-step
Instruction
equivalence lost

\

J

New translations

New translations to synthesise:

list translate : word32 list — bytecode list
optimize : bytecode list — bytecode list

compile : (bytecode list) x env — x86 instructions

where env is information of where previously
compiled code is located.

Produce JIT compiler following Myreen [POPL | 0]

Problem

Invariant:

® executing the generate x86 code has the effect
of emulating some steps of the ARM code.

Problem

Invariant:

® executing the generate x86 code has the effect
of emulating some steps of the ARM code.

® precise invariant relates ARM code (in
memory) with generated x86 code.

® ... what about self-modification?

Memory of

emulated code:

40
44
48 :
52:

ldr r8,[r9],#4
str r8,[rl0],#4
subs rll

bne 40

memcpy

Incorrect
generated code:

L: mov
add
mov
add
dec
jne

r8,[ra]
r9, 4
[rl0],r8
rlo,4
ril

L

Memory of

emulated code:

40
44
48 :
52:

ldr r8,[r9],#4
str r8,[rl0],#4
subs rill

bne 40

memcpy

Incorrect
generated code:

L: mov
add
mov
add
dec
jne

r8,[ra]
r9, 4
[rl0],r8
rlo,4
ril

L

™

_

store instruction

~

modifies memory of

emulated code

memcpy

Memory of Incorrect
emulated code: generated code:
4Q0: ldr r8,[r9],#4 L: mov r8,[r9]
44: str r8,[rl0],#4 add r9,4
48: subs riil mov [rl@],r8
52: bne 40 add r10,4 \kit\
/\ dec ril ~N
jne L store instruction
4) .
emulated code may modifies memory of
change as a result _ emulated code

- A/

memcpy

Memory of Incorrect
emulated code: generated code:
4Q0: ldr r8,[r9],#4 L: mov r8,[r9]
44: str r8,[rl0],#4 add r9,4
48: subs riil mov [rl@],r8
52: bne 40 add r10,4 \kit\
dec rill ~N
p /\ N jne L store instruction
emulated code may modifies memory of
change as a result N emulated code
N o 4)

generated code can

become out-of-date
_ Y,

memcpy

Memory of Incorrect
emulated code: generated code:{ .
need different inv
4Q: ldr r8,[r9],#4 L: mov r8,[r9] or runtime checks
44: str r8,[rlQ],#4 add r9,4 %A J
48: subs riil mov [rl@],r8
52: bne 40 add rl10,4 \
dec rill ~
/\ jne L store instruction
g A modifies memory of
emulated code may
emulated code
change as a result \-
- < 4)

generated code can

become out-of-date
_ Y,

Timings and trade-offs

Invariant options:

® assume no self-modification (fast code)

® insert checks, erase out-of-date code (slower)

Fib example:
fib(200,000,000) using JIT runs in 0.7 seconds

(directly x86-complied C runs only 7x faster)

Binary translation

One-off translation

Why not whole-program translation
instead of per-block translation?

Can be done ahead of time (once only)

One-off translation

Why not whole-program translation
instead of per-block translation?

Can be done ahead of time (once only)

Difficulties:

e what to do about self-modification?
e what is code, what is data!?

* where do pointer jumps go?

Obvious route

program in equivalent optimised implementation
— — —

foreign code bytecode bytecode in 64-bit x86

Requires a more expressive bytecode, and
more complicated verified compiler...

Obvious route

program in equivalent optimised implementation
foreign code

bytecode bytecode in 64-bit x86

Requires a more expressive bytecode, and
more complicated verified compiler...

Better approach: translation validation can
produce better code and is easier to implement.

Producing good code

® |deal translation:

ARM x86
mov r@,#0 mov eax,?
mov rl,#1 mov ebx,1
L: add ro,rl L: add eax,ebx
add rl,ro add ebx,eax
subs r2,#2 sub ecx,Z
bne L jne L

® Translation validation can prove these equiv.

Translation validation

Part |: decompilation £(r2) = 2(0.1.r2)
g(rO,rl,r2) =
letrO=r0+rl in
mov r@,#0 Function: letrl =rl +r0in
letr2 =r2-2in
. Ecd)\dl Eé’ﬁ if r2 = 0 then (rO,rl,r2)

subs r2,#2
bne L

/ | O,rl,r2
add ri,r@ \ else g(r0,rl,r2)

Theorem relating f with code

{ROrO*RI rl *R2r2*PCp}
p:arm_code
{let (rO,r1,r2) = f(r2) in

RO rO * RI rl *R2 r2 * PC (p+24) }

Translation validation

Part 2: proof-producing synthesis

To synthesise (x86) code for f:

|. generate code for f (without proof)
2. decompile generate code into f’
3. automatically prove f =

Result: certificate thm

Theorem: behaviour of ARM is f:

{ROrO*RIlrl *R2r2*PCp}
p:arm_code
{let (rO,r1,r2) = f(r2) in

RO rO * RI rl *R2 r2 * PC (p+24) }

Theorem: behaviour of x86 is f:

{ EAX a*EBX b*ECX c*EIP p }
p: x86 code
{ let (a,b,c) = f(c) in
EAX a * EBX b * ECX ¢ * EIP (p+20) }

Fib example

Translation validation:

fib(200,000,000) runs in 0.1 seconds

(matches speed of directly x86-complied C)

Caveat: translation validation not always applicable

Concluding remarks

Comparison

Different approaches:

direct interpretation: simple invariant
fib(200,000,000) in 48 seconds

JIT compilation: complicated invariant
fib(200,000,000) in 0.7 seconds

one-off binary translation: simple if applicable
fib(200,000,000) in O.] seconds

Summary

Aim: construct different verified emulators
for ARMv4 running on 64-bit x86.

This project is still work in progress.

