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Emulators
Purpose: recreating an original computer   
environment

Goals: recreate hardware or hardware+OS

• emphasis: correctness and efficiency

• focus: self-contained, user-mode programs

This talk: emulating ARM programs on 64-bit x86



Emulator alternatives

• fetch-decode-exec-cycle interpretation

• just-in-time compilation

• one-off binary translation

Emulators implement

fetch-decode-exec-cycle of foreign architecture

Implementation alternatives:



Trustworthy?

Writing an emulator 
involves implementing:

in the language of:

... an error-prone task.



This Talk

1.  Construction of trustworthy emulators:

• direct interpretation

• just-in-time compilation

• one-off binary translation

2.  Comparison & performance numbers



Direct Interpretation



Specification
• Instruction set architectures, foreign and native:

• We use Fox [ITP’10] and Sarkar et al. [POPL’09]



Formal specification

• Formal models defined as interpreters, e.g.

arm_next(state) = 
  let ast = decode(fetch(state),state) in
    exec(ast,state)   

in the logic of a theorem prover.
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• Formal models defined as interpreters, e.g.

arm_next(state) = 
  let ast = decode(fetch(state),state) in
    exec(ast,state)   

in the logic of a theorem prover.

• ... so let’s synthesise verified x86 from the 
definition arm_next.



Synthesis of interpreter

• Drawing on experience of proof-producing 
synthesis [CC’09,  TPHOLs’09, ITP’11]

• ARM model difficult to directly synthesise 
to efficient x86 code: definition uses

• heterogenous datatypes (AST)

• higher-order functions



Synthesis of interpreter

• Drawing on experience of proof-producing 
synthesis [CC’09,  TPHOLs’09, ITP’11]

• ARM model difficult to directly synthesise 
to efficient x86 code: definition uses

• heterogenous datatypes (AST)

• higher-order functions

• Solution: reformulate arm_next.



Reformulation

• Instead of: decode-then-execute, i.e.

decode : word32 → AST

execute : AST x state → state 

• Use: interpretation via bytecode

translate : word32 → bytecode list

interpret : (bytecode list) x state → state 

i.e. arm_next(s) = interpret(translate(...),s)
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- ARM processor state



Bytecode
Bytecode state:

- four new registers: A, B, C, D
- ARM processor state

Bytecode instructions:

- basic operations between A-D registers 
  (add A,A,B or sub A,A,B or mov A,D etc.)
- operations for reading and updating ARM
  state (e.g. mov A,r0 or mov r0,A)
- one operation for skipping instructions



Synthesis

translate : word32 → bytecode list

interpret : (bytecode list) x state → state

We write definition of:

in a language which we can easily be compiled by
proof-producing synthesis [CC’09] (explained later)

(Implementing a full translate function is work in progress...)



Example emulation
• Fib for even numbers in C and ARM

m = 0;
n = 1;
repeat {
  m += n;
  n += m;
  k -= 2; 
} (k == 0);

  mov r0,#0
  mov r1,#1
L:
  add r0,r1
  add r1,r0
  subs r2,#2
  bne L

• Emulates fib(200,000,000) in 48 seconds

• x86-complied C runs in 0.1 seconds (500x faster)



Just-in-time compilation



Just-in-time compilation

• try to perform fetch-and-decode only once

• QEMU design principle (animation next slide...)

Idea: partial evaluation



JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compiler

    call COMPILER(40)

Foreign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run
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Block translation

L:
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  add r1,r0
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  bne L

block in 
foreign code

equivalent
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optimised 
bytecode

implementation
in 64-bit x86

  mov A,r0
  mov B,r1
  add A,B
  mov r0,A
  inc pc,4
  mov A,r1
  mov B,r0
  add A,B
  mov r0,A
  inc pc,4
  ...
  skip 4
  ...
  inc pc,4

  mov A,r0
  mov B,r1
  add A,B
  mov r0,A
  mov A,r1
  mov B,r0
  add A,B
  mov r0,A
  ...
  skip 3
  ...
  inc pc,16

  mov eax,r8
  mov ebx,r9
  add eax,ebx
  mov r8,eax
  ...

block correct, 
but step-by-step

instruction 
equivalence lost



New translations

list_translate : word32 list → bytecode list

optimize : bytecode list → bytecode list

compile : (bytecode list) x env → x86 instructions

New translations to synthesise:

where env is information of where previously 
compiled code is located.

Produce JIT compiler following Myreen [POPL’10]



Problem

• executing the generate x86 code has the effect 
of emulating some steps of the ARM code.

• precise invariant relates ARM code (in 
memory) with generated x86 code.

• ... what about self-modification?

Invariant:
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40: ldr r8,[r9],#4
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52: bne 40
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   add r9,4
   mov [r10],r8
   add r10,4
   dec r11
   jne L

Memory of 
emulated code:

Incorrect 
generated code:
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memcpy

40: ldr r8,[r9],#4
44: str r8,[r10],#4
48: subs r11
52: bne 40

L: mov r8,[r9]
   add r9,4
   mov [r10],r8
   add r10,4
   dec r11
   jne L

Memory of 
emulated code:

Incorrect 
generated code:

store instruction 
modifies memory of 

emulated code
emulated code may 
change as a result

generated code can 
become out-of-date

need different inv 
or runtime checks



Timings and trade-offs

• assume no self-modification (fast code)

• insert checks, erase out-of-date code (slower) 

Invariant options:

Fib example:

fib(200,000,000) using JIT runs in 0.7 seconds

(directly x86-complied C runs only 7x faster)



Binary translation



One-off translation

Why not whole-program translation 
instead of per-block translation?

Can be done ahead of time (once only)



One-off translation

Why not whole-program translation 
instead of per-block translation?

Can be done ahead of time (once only)

Difficulties:

• what to do about self-modification?

• what is code, what is data?

• where do pointer jumps go?



Obvious route

program in 
foreign code

equivalent
bytecode

optimised 
bytecode

implementation
in 64-bit x86

Requires a more expressive bytecode, and 
more complicated verified compiler...



Obvious route

program in 
foreign code

equivalent
bytecode

optimised 
bytecode

implementation
in 64-bit x86

Requires a more expressive bytecode, and 
more complicated verified compiler...

Better approach: translation validation can 
produce better code and is easier to implement.



Producing good code

• Ideal translation:

• Translation validation can prove these equiv.

   mov r0,#0
   mov r1,#1
L: add r0,r1
   add r1,r0
   subs r2,#2
   bne L

   mov eax,0
   mov ebx,1
L: add eax,ebx
   add ebx,eax
   sub ecx,2
   jne L

ARM x86



Translation validation

Part 1: decompilation

   mov r0,#0
   mov r1,#1
L: add r0,r1
   add r1,r0
   subs r2,#2
   bne L

f(r2) = g(0,1,r2)

g(r0,r1,r2) = 
  let r0 = r0 + r1 in
  let r1 = r1 + r0 in
  let r2 = r2 - 2 in
    if r2 = 0 then (r0,r1,r2) 
    else g(r0,r1,r2)
      

Function:

Theorem relating f with code
{ R0 r0 * R1 r1 * R2 r2 * PC p }
 p: arm_code
{ let (r0,r1,r2) = f(r2) in
    R0 r0 * R1 r1 * R2 r2 * PC (p+24) }



Translation validation

Part 2: proof-producing synthesis

To synthesise (x86) code for f:

1. generate code for f (without proof)
2. decompile generate code into f ’
3. automatically prove f = f ’



Result: certificate thm

{ R0 r0 * R1 r1 * R2 r2 * PC p }
 p: arm_code
{ let (r0,r1,r2) = f(r2) in
    R0 r0 * R1 r1 * R2 r2 * PC (p+24) }

Theorem: behaviour of ARM is f:

{ EAX a * EBX b * ECX c * EIP p }
 p: x86_code
{ let (a,b,c) = f(c) in
    EAX a * EBX b * ECX c * EIP (p+20) }

Theorem: behaviour of x86 is f:



Fib example

fib(200,000,000) runs in 0.1 seconds

(matches speed of directly x86-complied C)

Translation validation:

Caveat: translation validation not always applicable



Concluding remarks



Comparison
Different approaches:

direct interpretation: simple invariant

JIT compilation: complicated invariant

one-off binary translation: simple if applicable

‣ fib(200,000,000) in 48 seconds

‣ fib(200,000,000) in 0.7 seconds

‣ fib(200,000,000) in 0.1 seconds



Summary

This project is still work in progress.

Aim: construct different verified emulators 
for ARMv4 running on 64-bit x86.


