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Summary 

THE PROMISE AND PERILS OF MASSIVE DATA 

Experiments, observations, and numerical simulations in many areas of science and business are 
currently generating terabytes of data, and in some cases are on the verge of generating petabytes and 
beyond. Analyses of the information contained in these data sets have already led to major breakthroughs 
in fields ranging from genomics to astronomy and high-energy physics and to the development of new 
information-based industries. Traditional methods of analysis have been based largely on the assumption 
that analysts can work with data within the confines of their own computing environment, but the growth 
of “big data” is changing that paradigm, especially in cases in which massive amounts of data are 
distributed across locations.  

While the scientific community and the defense enterprise have long been leaders in generating 
and using large data sets, the emergence of e-commerce and massive search engines has led other sectors 
to confront the challenges of massive data. For example, Google, Yahoo!, Microsoft, and other Internet-
based companies have data that is measured in exabytes (1018 bytes). Social media (e.g., Facebook, 
YouTube, Twitter) have exploded beyond anyone’s wildest imagination, and today some of these 
companies have hundreds of millions of users. Data mining of these massive data sets is transforming the 
way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. It is 
also transforming how we think about information storage and retrieval. Collections of documents, 
images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and 
retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis 
techniques that go far beyond classical indexing and keyword counting, aiming to find relational and 
semantic interpretations of the phenomena underlying the data.  

A number of challenges in both data management and data analysis require new approaches to 
support the big data era. These challenges span generation of the data, preparation for analysis, and 
policy-related challenges in its sharing and use, including the following: 
 

• Dealing with highly distributed data sources, 
• Tracking data provenance, from data generation through data preparation, 
• Validating data, 
• Coping with sampling biases and heterogeneity, 
• Working with different data formats and structures, 
• Developing algorithms that exploit parallel and distributed architectures, 
• Ensuring data integrity, 
• Ensuring data security, 
• Enabling data discovery and integration, 
• Enabling data sharing, 
• Developing methods for visualizing massive data, 
• Developing scalable and incremental algorithms, and 
• Coping with the need for real-time analysis and decision-making. 

 
To the extent that massive data can be exploited effectively, the hope is that science will extend 

its reach, and technology will become more adaptive, personalized, and robust. It is appealing to imagine, 
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for example, a health-care system in which increasingly detailed data are maintained for each 
individual—including genomic, cellular, and environmental data—and in which such data can be 
combined with data from other individuals and with results from fundamental biological and medical 
research so that optimized treatments can be designed for each individual. One can also envision 
numerous business opportunities that combine knowledge of preferences and needs at the level of single 
individuals with fine-grained descriptions of goods, skills, and services to create new markets.  

It is natural to be optimistic about the prospects. Several decades of research and development in 
databases and search engines has yielded a wealth of relevant experience in the design of scalable data-
centric technology. In particular, these fields have fueled the advent of cloud computing and other parallel 
and distributed platforms that seem well suited to massive data analysis. Moreover, innovations in the 
fields of machine learning, data mining, statistics, and the theory of algorithms have yielded data-analysis 
methods that can be applied to ever-larger data sets. However, such optimism must be tempered by an 
understanding of the major difficulties that arise in attempting to achieve the envisioned goals. In part, 
these difficulties are those familiar from implementations of large-scale databases—finding and 
mitigating bottlenecks, achieving simplicity and generality of the programming interface, propagating 
metadata, designing a system that is robust to hardware failure, and exploiting parallel and distributed 
hardware—all at an unprecedented scale. But the challenges for massive data go beyond the storage, 
indexing, and querying that have been the province of classical database systems (and classical search 
engines) and, instead, hinge on the ambitious goal of inference. Inference is the problem of turning data 
into knowledge, where knowledge often is expressed in terms of entities that are not present in the data 
per se but are present in models that one uses to interpret the data. Statistical rigor is necessary to justify 
the inferential leap from data to knowledge, and many difficulties arise in attempting to bring statistical 
principles to bear on massive data. Overlooking this foundation may yield results that are, at best, not 
useful, or harmful at worst. In any discussion of massive data and inference, it is essential to be aware that 
it is quite possible to turn data into something resembling knowledge when actually it is not. Moreover, it 
can be quite difficult to know that this has happened. 

Indeed, many issues impinge on the quality of inference. A major one is that of “sampling bias.” 
Data may have been collected according to a certain criterion (for example, in a way that favors “larger” 
items over “smaller” items), but the inferences and decisions made may refer to a different sampling 
criterion. This issue seems likely to be particularly severe in many massive data sets, which often consist 
of many subcollections of data, each collected according to a particular choice of sampling criterion and 
with little control over the overall composition. Another major issue is “provenance.” Many systems 
involve layers of inference, where “data” are not the original observations but are the products of an 
inferential procedure of some kind. This often occurs, for example, when there are missing entries in the 
original data. In a large system involving interconnected inferences, it can be difficult to avoid circularity, 
which can introduce additional biases and can amplify noise. Finally, there is the major issue of 
controlling error rates when many hypotheses are being considered. Indeed, massive data sets generally 
involve growth not merely in the number of individuals represented (the “rows” of the database) but also 
in the number of descriptors of those individuals (the “columns” of the database). Moreover, we are often 
interested in the predictive ability associated with combinations of the descriptors; this can lead to 
exponential growth in the number of hypotheses considered, with severe consequences for error rates. 
That is, a naive appeal to a “law of large numbers” for massive data is unlikely to be justified; if anything, 
the perils associated with statistical fluctuations may actually increase as data sets grow in size. 

While the field of statistics has developed tools that can address such issues in principle, in the 
context of massive data care must be taken with all such tools for two main reasons: (1) all statistical tools 
are based on assumptions about characteristics of the data set and the way it was sampled, and those 
assumptions may be violated in the process of assembling massive data sets; and (2) tools for assessing 
errors of procedures, and for diagnostics, are themselves computational procedures that may be 
computationally infeasible as data sets move into the massive scale. 

In spite of the cautions raised above, the Committee on the Analysis of Massive Data believes 
that many of the challenges involved in performing inference on massive data can be confronted usefully. 
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These challenges must be addressed through a major, sustained research effort that is based solidly on 
both inferential and computational principles. This research effort must develop scalable computational 
infrastructures that embody inferential principles that themselves are based on considerations of scale. 
The research must take account of real-time decision cycles and the management of trade-offs between 
speed and accuracy. And new tools are needed to bring humans into the data-analysis loop at all stages, 
recognizing that knowledge is often subjective and context-dependent and that some aspects of human 
intelligence will not be replaced anytime soon by machines. 

The current report is the result of a study that addressed the following charge: 
 

• Assess the current state of data analysis for mining of massive sets and streams of data 
• Identify gaps in current practice and theory, and  
• Propose a research agenda to fill those gaps. 

 
Thus, this report examines the frontiers of research that is enabling the analysis of massive data. 

The major research areas covered are as follows: 
 

• Data representation, including characterizations of the raw data and transformations that are 
often applied to data, particularly transformations that attempt to reduce the representational complexity 
of the data; 

• Computational complexity issues and how the understanding of such issues supports 
characterization of the computational resources needed and of trade-offs among resources; 

• Statistical model-building in the massive data setting, including data cleansing and validation; 
• Sampling, both as part of the data-gathering process but also as a key methodology for data 

reduction; and  
• Methods for including humans in the data-analysis loop through means such as 

crowdsourcing, where humans are used as a source of training data for learning algorithms, and 
visualization, which not only helps humans understand the output of an analysis but also to provide 
human input into model revision. 

CONCLUSIONS 

The research and development necessary for the analysis of massive data goes well beyond the 
province of a single discipline, and one of the main conclusions of this report is the need for a 
thoroughgoing interdisciplinarity in approaching problems of massive data. Computer scientists involved 
in building big-data systems must develop a deeper awareness of inferential issues, while statisticians 
must concern themselves with scalability, algorithmic issues, and real-time decision-making. 
Mathematicians also have important roles to play, because areas such as applied linear algebra and 
optimization theory (already contributing to large-scale data analysis) are likely to continue to grow in 
importance. Also, as just mentioned, the role of human judgment in massive data analysis is essential, and 
contributions are needed from social scientists and psychologists as well as experts in visualization. 
Finally, domain scientists and users of technology have an essential role to play in the design of any 
system for data analysis, and particularly so in the realm of massive data, because of the explosion of 
design decisions and possible directions that analyses can follow.  

The current report focuses on the technical issues—computational and inferential—that surround 
massive data, consciously setting aside major issues in areas such as public policy, law, and ethics that are 
beyond the current scope. 

The committee reached the following conclusions: 
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• Recent years have seen rapid growth in parallel and distributed computing systems, 
developed in large part to serve as the backbone of the modern Internet-based information ecosystem. 
These systems have fueled search engines, electronic commerce, social networks, and online 
entertainment, and they provide the platform on which massive data analysis issues have come to the fore. 
Part of the challenge going forward is the problem of scaling these systems and algorithms to ever-larger 
collections of data. It is important to acknowledge, however, that the goals of massive data analysis go 
beyond the computational and representational issues that have been province of classical search engines 
and database processing to tackling the challenges of statistical inference, where the goal is to turn data 
into knowledge and to support effective decision-making. Assertions of knowledge require control over 
errors, and a major part of the challenge of massive data analysis is that of developing statistically well-
founded procedures that provide control over errors in the setting of massive data, recognizing that these 
procedures are themselves computational procedures that consume resources. 

• There are many sources of potential error in massive data analysis, many of which are due to 
the interest in “long tails” that often accompany the collection of massive data. Events in the “long tail” 
may be vanishingly rare, even in a massive data set. For example, in consumer-facing information 
technology, where the goal is increasingly that of providing fine-grained, personalized services, there may 
be little data available for many individuals, even in very large data sets. In science, the goal is often that 
of finding unusual or rare phenomena, and evidence for such phenomena may be weak, particularly when 
one considers the increase in error rates associated with searching over large classes of hypotheses. Other 
sources of error that are prevalent in massive data include the high-dimensional nature of many data sets, 
issues of heterogeneity, biases arising from uncontrolled sampling patterns, and unknown provenance of 
items in a database. In general, data analysis is based on assumptions, and the assumptions underlying 
many classical data analysis methods are likely to be broken in massive data sets. 

• Massive data analysis is not the province of any one field, but is rather a thoroughly 
interdisciplinary enterprise. Solutions to massive data problems will require an intimate blending of ideas 
from computer science and statistics, with essential contributions also needed from applied and pure 
mathematics, from optimization theory, and from various engineering areas, notably signal processing 
and information theory. Domain scientists and users of technology also need to be engaged throughout the 
process of designing systems for massive data analysis. There are also many issues surrounding massive 
data (most notably privacy issues) that will require input from legal scholars, economists, and other social 
scientists, although these aspects are not covered in the current report. In general, by bringing 
interdisciplinary perspectives to bear on massive data analysis, it will be possible to discuss trade-offs that 
arise when one jointly considers the computational, statistical, scientific, and human-centric constraints 
that frame a problem. When considering parts of the problem in isolation, one may end up trying to solve 
a problem that is more general than is required, and there may be no feasible solution to that broader 
problem; a suitable cross-disciplinary outlook can point researchers toward an essential refocusing. For 
example, absent appropriate insight, one might be led to analyzing worst-case algorithmic behavior, 
which can be very difficult or misleading, whereas a look at the totality of a problem could reveal that 
average-case algorithmic behavior is quite appropriate from a statistical perspective. Similarly, 
knowledge of typical query generation might allow one to confine an analysis to a relatively simple subset 
of all possible queries that would have to be considered in a more general case. And the difficulty of 
parallel programming in the most general settings may be sidestepped by focusing on useful classes of 
statistical algorithms that can be implemented with a simplified set of parallel programming motifs; 
moreover, these motifs may suggest natural patterns of storage and access of data on distributed hardware 
platforms. 

• While there are many sources of data that are currently fueling the rapid growth in data 
volume, a few forms of data create particularly interesting challenges. First, much current data involves 
human language and speech, and increasingly the goal with such data is to extract aspects of the semantic 
meaning underlying the data. Examples include sentiment analysis, topic models of documents, relational 
modeling, and the full-blown semantic analyses required by question-answering systems. Second, video 
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and image data are increasingly prevalent, creating a range of challenges in large-scale compression, 
image processing, computational vision, and semantic analysis. Third, data are increasingly labeled with 
geo-spatial and temporal tags, creating challenges in maintaining coherence across spatial scales and time. 
Fourth, many data sets involve networks and graphs, with inferential questions hinging on semantically 
rich notions such as “centrality” and “influence.” The deeper analyses required by data sources such as 
these involve difficult and unsolved problems in artificial intelligence and the mathematical sciences that 
go beyond near-term issues of scaling existing algorithms. The committee notes, however, that massive 
data itself can provide new leverage on such problems, with machine translation of natural language a 
frequently cited example. 

• Massive data analysis creates new challenges at the interface between humans and computers. 
As just alluded to, many data sets require semantic understanding that is currently beyond the reach of 
algorithmic approaches and for which human input is needed. This input may be obtained from the data 
analyst, whose judgment is needed throughout the data analysis process, from the framing of hypotheses 
to the management of trade-offs (e.g., errors versus time) to the selection of questions to pursue further. It 
may also be obtained from crowdsourcing, a potentially powerful source of inputs that must be used with 
care, given the many kinds of errors and biases that can arise. In either case, there are many challenges 
that need to be faced in the design of effective visualizations and interfaces and, more generally, in 
linking human judgment with data analysis algorithms. 

• Many data sources operate in real time, producing data streams that can overwhelm data 
analysis pipelines. Moreover, there is often a desire to make decisions rapidly, perhaps also in real time. 
These temporal issues provide a particularly clear example of the need for further dialog between 
statistical and computational researchers. Statistical research has rarely considered constraints due to real-
time decision-making in the development of data analysis algorithms, and computational research has 
rarely considered the computational complexity of algorithms for managing statistical risk. 

• There is a major need for the development of “middleware”—software components that link 
high-level data analysis specifications with low-level distributed systems architectures. Much of the work 
on these software components can borrow from tools already developed in scientific computing instances, 
but the focus will need to change, with algorithmic solutions constrained by statistical needs. There is also 
a major need for software targeted to end users, such that relatively naive users can carry out massive data 
analysis without a full understanding of the underlying systems issues and statistical issues. However, this 
is not to suggest that the end goal of massive data analysis software is to develop turnkey solutions. The 
exercise of effective human judgment will always be required in data analysis, and this judgment needs to 
be based on an understanding of statistics and computation. The development of massive data analysis 
systems needs to proceed in parallel with a major effort to educate students and the workforce in 
statistical thinking and computational thinking. 
 

As part of the study that led to this report, the Committee on the Analysis of Massive Data 
developed a taxonomy of some of the major algorithmic problems arising in massive data analysis. It is 
hoped that that this proposed taxonomy might help organize the research landscape and also provide a 
point of departure for the design of the middleware called for above. This taxonomy identifies major tasks 
that have proved useful in data analysis, grouping them roughly according to mathematical structure and 
computational strategy. Given the vast scope of the problem of data analysis and the lack of existing 
general-purpose computational systems for massive data analysis from which to generalize, there may 
certainly be other ways to cluster these computational tasks, and the committee intends this list only to 
initiate a discussion. The committee identified the following seven major tasks: 
 

1.  Basic statistics, 
2.  Generalized N-body problem, 
3.  Graph-theoretic computations, 
4.  Linear algebraic computations, 
5.  Optimization, 

PREPUBLICATION DRAFT – Subject to Further Editorial Correction 
5 



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

6.  Integration, and 
7.  Alignment problems. 
 
For each of these computational classes, there are computational constraints that arise within any 

particular problem domain that help to determine the specialized algorithmic strategy to be employed. 
Most work in the past has focused on a setting that involves a single processor with the entire data set 
fitting in random access memory (RAM). Additional important settings for which algorithms are needed 
include the following: 

 
• The streaming setting, in which data arrive in quick succession, and only a subset can be 

stored; 
• The disk-based setting, in which the data are too large to store in RAM but fit on one 

machine’s disk; 
• The distributed setting, in which the data are distributed over multiple machines’ RAMs or 

disks; and 
• The multi-threaded setting, in which the data lie on one machine having multiple processors 

that share RAM. 
 

Training students to work in massive data analysis will require experience with massive data and 
with computational infrastructure that permits the real problems associated with massive data to be 
revealed. The availability of benchmarks, repositories (of data and software), and computational 
infrastructure will be a necessity in training the next generation of “data scientists.” The same point, of 
course, can be made for academic research: significant new ideas will only emerge if academics are 
exposed to real-world massive data problems. 

Finally, the committee emphasizes that massive data analysis is not one problem or one 
methodology. Data are often heterogeneous, and the best attack on a problem may involve finding sub-
problems, where the best solution may be chosen for computational, inferential, or interpretational 
reasons. The discovery of such sub-problems might itself be an inferential problem. On the other hand, 
data often provide partial views onto a problem, and the solution may involve fusing multiple data 
sources. These perspectives of segmentation versus fusion will not be in conflict often, but substantial 
thought and domain knowledge may be required to reveal the appropriate combination. 

One might hope that general, standardized procedures might emerge that can be used as a default 
for any massive data set, in much the way that the Fast Fourier Transform is a default procedure in 
classical signal processing. However, the committee is pessimistic that such procedures exist in general. 
That is not to say that useful general procedures and pipelines will not emerge; indeed, one of the goals of 
this report has been to suggest approaches for designing such procedures. But it is important to emphasize 
the need for flexibility and for tools that are sensitive to the overall goals of an analysis; massive data 
analysis cannot, in general, be reduced to turnkey procedures that consumers can use without thought. 
Rather, the design of a system for massive data analysis will require engineering skill and judgment, and 
deployment of such a system will require modeling decisions, skill with approximations, attention to 
diagnostics, and robustness. As much as the committee expects to see the emergence of new software and 
hardware platforms geared to massive data analysis, it also expects to see the emergence of a new class of 
engineers whose skill is the management of such platforms in the context of the solution of real-world 
problems. 

PREPUBLICATION DRAFT – Subject to Further Editorial Correction 
6 



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

 
 
 
 
 

1 
Introduction 

THE CHALLENGE 

Although humans have gathered data since the beginning of recorded history—indeed, data 
gathered by ancestral humans provides much of the raw material for the reconstruction of human 
history—the rate of acquisition of data has surged in recent years, with no end in sight. Expectations have 
surged as well, with hopes for new scientific discoveries pinned on emerging massive collections of 
biological, physical, and social data, and with major areas of the economy focused on the commercial 
implications of massive data. 

Although it is difficult to characterize all of the diverse reasons for the rapid growth in data, a few 
factors are worth noting. First, many areas of science are in possession of mature theories that explain a 
wide range of phenomena, such that further testing and elaboration of these theories requires probing 
extreme phenomena. These probes often generate very large data sets. An example is the world of particle 
physics, where massive data (e.g., petabytes per year for the Large Hadron Collider; 1 petabyte is 1015 
bytes) arises from the new accelerators designed to test aspects of the Standard Model of particle physics. 
Second, many areas of science and engineering have become increasingly exploratory, with large data 
sets being gathered outside the context of any particular theory in the hope that new phenomena will 
emerge. Examples include the massive data arising from genome sequencing projects (which can 
accumulate terabytes (1012 bytes) of data for each project) as well as the massive data expected to arise 
from the Large Synoptic Survey Telescope, which will be measured in petabytes. Rapid advances in cost-
effective sensing mean that engineers can readily collect massive amounts of data about complex systems, 
such as those for communication networks, the electric grid, and transportation and financial systems, and 
use that data for management and control. Third, much human activity now takes place on the Internet, 
and this activity generates data that has substantial commercial and scientific value. In particular, many 
commercial enterprises are aiming to provide personalized services that adapt to individual behaviors and 
preferences as revealed by data associated with the individual. Fourth, connecting these other trends is the 
significant growth in the deployment of sensor networks that record biological, physical, and social 
phenomena at ever-increasing scale, and these sensor networks are increasingly interconnected.  

In general, the hope is that if massive data could be exploited effectively, science would extend 
its reach, and technology would become more adaptive, personalized, and robust. It is appealing to 
imagine, for example, a health-care system in which increasingly detailed data are maintained for each 
individual—including genomic, cellular, and environmental data—and in which such data can be 
combined with data from other individuals and with results from fundamental biological and medical 
research, so that optimized treatments can be designed for each individual. One can also envision 
numerous microeconomic consequences of massive data analysis where preferences and needs at the level 
of single individuals are combined with fine-grained descriptions of goods, skills, and services to create 
new markets. In general, what is particularly notable about the recent rise in the prevalence of “big data” 
is not merely the size of modern data sets, but rather that their fine-grained nature permits inferences and 
decisions at the level of single individuals. 

It is natural to be optimistic about the prospects. Several decades of research and development in 
databases and search engines has yielded a wealth of relevant experience in the design of scalable data-
centric technology. In particular, these fields have fueled the advent of cloud computing and other parallel 
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and distributed platforms that seem well suited to massive data analysis. Moreover, innovations in the 
fields of machine learning, data mining, statistics, and the theory of algorithms have yielded data-analysis 
methods that can be applied to ever-larger data sets. When combined with arguments that simple 
algorithms can work better than more sophisticated algorithms on large-scale data (see, e.g., Halevy et al., 
2009), it is natural to be bullish on big data.1 

While not entirely unwarranted, such optimism overlooks a number of major difficulties that arise 
in attempting to achieve the goals that are envisioned in discussions of massive data. In part these 
difficulties are those familiar from implementations of large-scale databases—involving finding and 
mitigating bottlenecks, achieving simplicity and generality of the programming interface, propagating 
metadata, designing a system that is robust to hardware failure, and exploiting parallel and distributed 
hardware—all at an unprecedented scale. But the goals for massive data go beyond the storage, indexing, 
and querying that have been the province of classical database systems (and classical search engines), 
instead focusing on the ambitious goal of inference. Inference is the problem of turning data into 
knowledge, where knowledge often is expressed in terms of variables (e.g., a patient’s general state of 
health, or a shopper’s tendency to buy) that are not present in the data per se, but are present in models 
that one uses to interpret the data. Statistical principles are needed to justify the inferential leap from data 
to knowledge, and many difficulties arise in attempting to bring these principles to bear on massive data. 
Operating in the absence of these principles may yield results that are not useful at best or harmful at 
worst. In any discussion of massive data and inference, it is essential to be aware that it is quite possible 
to turn data into something resembling knowledge but which actually is not. Moreover, it can be quite 
difficult to know that this has happened. 

Consider a database where the rows correspond to people and the columns correspond to 
“features” that are used to describe people. If the database contains data on only a thousand people, it may 
suffice to measure only a few dozen features (e.g., age, gender, years of education, city of residence) to 
make the kinds of distinctions that may be needed to support assertions of “knowledge.” If the database 
contains data on several billion people, however, we are likely to have heightened expectations for the 
data, and we will want to measure many more features (e.g., latest magazine read, culinary preferences, 
genomic markers, travel patterns) to support the wider range of inferences that we wish to make on the 
basis of the data. We might roughly imagine the number of features scaling linearly in the number of 
individuals. Now, the knowledge we wish to obtain from such data is often expressed in terms of 
combinations of the features. For example, if one lives in Memphis, is a male, enjoys reading about 
gardening, and often travels to Japan, what is the probability that the person will click on an ad about life 
insurance? The problem is that there are exponential numbers of such combinations of features and, in 
any given data set, a vast number of these combinations will appear to be highly predictive of any given 
outcome by chance alone. 

As this scenario suggests, a naive appeal to a “law of large numbers” for massive data is unlikely 
to be justified. If anything, we should expect the perils associated with statistical fluctuations to increase 
as data sets grow in size. Of course, if we do not ask new questions as the data grow in size, but are 
content to more precisely answer old questions, then statistical error rates may not grow as the data scale. 
But that is not the perspective that underlies the current interest in massive data. 

The field of statistics aims to provide a mathematical understanding of inference, quantifying the 
degree of support that data offer for assertions of knowledge as well as providing a basis for evaluating 
actions that are proposed on the basis of these assertions. The field has developed tools not only for 
computing estimates and evaluating hypotheses, but also for assessing the error rates of such procedures. 
One example of such a tool is “cross-validation,” whereby one holds out a certain fraction of the data (the 
“held-out data”), runs the estimation procedure on the rest of the data (the “training data”), and tests on 
the held-out data. This accords well with the intuitive notion that an assertion can be viewed as 
“knowledge” if it applies not merely to the data at hand, but also to additional data. A difficulty, however, 
is that if one runs such a procedure many times on a fixed set of held-out data, for example, with many 

1 This report uses the terms “big data” and “massive data” interchangeably to refer to data at massive scale.  
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combinations of features, then many combinations will appear to be highly supported by both the training 
data and the held-out data, again by chance alone. 

There are many additional issues that impinge on the quality of inference. A major issue is that of 
sampling bias. Data may have been collected according to a certain criterion (for example, in a way that 
favors “larger” items over “smaller” items), but the inferences and decisions we wish to make may refer 
to a different sampling criterion. This issue seems likely to be particularly severe in many massive data 
sets, which often consist of many subcollections of data, each collected according to a particular choice of 
sampling criterion and with little control over the overall composition. Another major issue is provenance. 
Many systems involve layers of inference, where “data” are not the original observations but are the 
products of an inferential procedure of some kind. This often occurs, for example, when there are missing 
entries in the original data. In a large system involving interconnected inferences, it can be difficult to 
avoid circularity. Circularity can introduce additional biases and amplify noise. 

Many of these issues can be addressed in principle. For example, there are sophisticated statistical 
tools that can assess the errors in error-assessment procedures. But in the context of massive data, care 
must be taken with all such tools, for two main reasons:  
 

1. These tools are all based on assumptions and they can fail when the assumptions are not met. 
Such assumptions include various assertions regarding sampling, stationarity, independence, and so on. 
Unfortunately, massive data sets are often collected in ways that seem most likely to break these 
assumptions.  

2. Tools for assessing errors of procedures and for diagnostics are themselves computational 
procedures that make demands on the computing infrastructure. These demands may be infeasible for 
massive data sets, even when the underlying procedure is feasible. 
 

Having aimed to temper some of the optimism that is often found in contemporary discussions of 
massive data, the committee does not want to align itself with an unduly pessimistic stance. The 
committee believes that many of the issues involved in performing inference on massive data can be 
confronted usefully, giving rise to an engineering discipline that is based solidly on both inferential and 
computational principles. But this will necessitate a major, sustained research effort that will require due 
attention to both the opportunities and the perils of massive data. It is necessary to develop scalable 
computational infrastructures that embody inferential principles that themselves are based on 
considerations of scale. Researchers will need to worry about real-time decision cycles and the 
management of trade-offs between speed and accuracy. While inference is increasingly used to power 
“data products” that are generated by machines—advanced search engines, movie recommender systems, 
news story and advertisement selection, and so on—there is also a need to develop tools for bringing 
humans into the data-analysis loop at all stages, because knowledge is often subjective and context-
dependent, and there are aspects of human intelligence that (for the foreseeable future) are beyond the 
capability of machines. 

This effort goes well beyond the province of a single discipline, and one of the main conclusions 
of this report is the need for a thoroughgoing interdisciplinarity in approaching problems of massive data. 
The major roles that computer scientists and statisticians have to play has already been alluded to above, 
and the committee emphasizes that the computer scientists involved in building big data systems must 
develop a deeper awareness of inferential issues, while statisticians must concern themselves with 
scalability, algorithmic issues, and real-time decision-making. Mathematicians also have important roles 
to play, with areas such as applied linear algebra already contributing to large-scale data analysis and 
likely to continue to grow in importance. But while the focus in much applied mathematical work has 
historically been on the control of small numerical errors, in massive data analysis, small numerical errors 
are likely to be dominated by statistical fluctuations and biases, and new paradigms need to be considered. 
This report also highlights the transdisciplinary domain of optimization theory, which already plays a 
major role in modern data analysis, but which also needs further shaping so as to meet the particular 
context of massive data. Also, as mentioned above, the role of human judgment in massive data analysis 
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is essential, and contributions are needed from social scientists and psychologists as well as experts in 
visualization. Finally, domain scientists and users of technology also have an essential role to play in the 
design of any system for data analysis, and particularly so in the realm of massive data, with the explosion 
of design decisions and possible directions that analyses can follow. 

The focus in this report is on the technical issues—computational and inferential—that surround 
massive data. The committee recognizes that this focus is restrictive; there are also major issues to 
consider in areas such as public policy, law, and ethics. In particular, issues of privacy and the ownership 
of data are of major concern, and there are few established cultural or legal frameworks in place to deal 
with such issues. Privacy is especially important in the context of massive data because of the potential 
for finding associations across sets of data. Given this potential, should it be acceptable for a cell-phone 
company to make available tracking data for a large number of customers for academic research without 
restrictions or controls? Would it be acceptable for law-enforcement purposes? For map-makers or the 
news media? What if the phone data were correlated with other information to give a picture of the 
owners’ patterns of activities?  

The companion to data privacy is data ownership. If Google were to go out of business, who 
owns all the stored email data? If Google’s email service were sold off as a separate business to an 
overseas entity, who owns that data, and what country’s laws apply? If InstaBook were to decide to sell 
all of the user-posted pictures in their system and also declare copyright ownership of them, is that 
acceptable, and do the people who posted the data have any recourse? If a government pays for plot maps 
of all properties in its jurisdiction, are these maps public or private? Can mapping companies use them for 
free? Can they be kept from taxpayers of the jurisdiction? Many transit agencies now track their buses in 
real time. Does the public own that data? Can services access it for free to show arrival times for future 
buses and other useful information? 

Such thorny issues of privacy and ownership will need to be resolved as society continues to 
collect data on individuals and their activities. It is easy to see why such topics merit a full study of their 
own by a committee with a broad set of expertise. 

While these issues will not be addressed in this report, the committee does hope to see them 
addressed in complementary studies. Two comments may help to connect this report to future reports that 
focus on privacy and other issues of public policy. First, the committee believes that it is impossible to 
achieve absolute levels of privacy while exploiting the data that arise from human activity. There will 
necessarily have to be a trade-off, one which is based on an assessment of the relative value of privacy 
when compared with the possible gains from data analysis. For society to agree on the terms of this trade-
off, it will be necessary to understand exactly what are the possible gains from data analysis. This latter is 
part of the focus of this report. Second, the focus of this report on computation and inference not only 
aims to understand what can be achieved from data analysis, but what cannot be achieved (cf. the earlier 
discussion of statistical errors above). In the context of privacy considerations, it may be desirable that 
certain inferences cannot be obtained reliably; thus, a clear understanding of computation and inference 
will help feed an understanding of mechanisms for achieving privacy. 

WHAT HAS CHANGED IN RECENT YEARS? 

In 1995 the National Research Council’s Committee on Applied and Theoretical Statistics held a 
workshop to examine the challenges and promises of the ability to process massive data. The workshop 
was documented in Massive Data Sets: Proceedings of a Workshop (NRC, 1996). Comparing the 
situation depicted in that report with the current situation allows three areas to be highlighted where 
changes have been particularly noteworthy. 

First, there has been a qualitative leap in the amount of data regarding human interests and 
activities, much of it generated voluntarily via human participation in social media. Crowdsourcing is also 
a new phenomenon, as are massive multiplayer online games. With the rise of such human-oriented data 
sources comes a number of technical challenges. For example, social data are often relational, taking the 
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form of networks that link people and objects along a variety of dimensions. Moreover, such data are 
often fragmentary and subject to a variety of sampling biases. There are also issues of willful 
misrepresentation and governmental restrictions on access. Finally, human-oriented data often involves 
natural language and other representations with a rich underlying semantics, and the inferential problems 
of interest often involve reasoning about underlying causes and human intentions. 

Second, distributed computing systems have become a reality, with major implications for the 
collection and processing of massive data. The 1995 workshop clearly recognized that existing algorithms 
for data analysis would not scale to the kinds of data set sizes that were beginning to accrue, even 
accounting for the ongoing increase in central processing unit speed, and solutions were sought in parallel 
and distributed processing systems. Such systems have begun to emerge, driven by a variety of 
technological and economic factors, and have opened up new vistas and new challenges. In particular, 
cloud computing now allows access to very large computing infrastructures through a network on an as-
needed basis. This has led to new trade-offs involving storage, networking, and processing. It is also 
important to emphasize that the issue is not solely that of distributed computing, but also of distributed 
data. Mobile platforms have proliferated, and data often originate on small devices that have bandwidth 
limitations that limit or preclude data movement. Moreover, the inferential goals for data analysis often 
involve bringing together multiple data sources that may have been collected independently. For example, 
as already noted, social media often provide partial and fragmentary perspectives on individuals, and 
many questions of interest can only be answered if these perspectives are brought into register. In general, 
many new challenges have arisen involving computational frameworks that are capable of integrating 
data across spatial, representational, and administrative domains. 

Third, many issues involving the geo-temporal nature of data have come to the forefront. For 
example, a significant fraction of the data on the Internet is in the form of video streams, a trend that is 
accelerating. Moreover, a growing number of social media and mobile technologies are generating geo- 
and time-tagged data. Computer networks generate massive data streams. Scientific data often take the 
form of time series. In such cases, even if an individual time frame does not involve a massive data set, 
the temporal sequence can quickly overwhelm storage and computing resources. Indeed, it is common in 
such cases to develop streaming algorithms that attempt to process the data on the fly, avoiding storage. 
However, the inferential goals associated with such data often involve the discovery and indexing of 
temporally extended behaviors, and this generally requires some form of storage. It is also the case that 
many instances of streaming data require real-time or near-real-time processing; examples include the 
online auctions run for ad placement in search engines and early alert systems for disease outbreaks. This 
requirement creates new algorithmic challenges where answer quality needs to be traded off against 
answer timeliness. Finally, many data sets are also indexed by spatial coordinates (an issue emphasized in 
the 1996 NRC report). This creates new algorithmic challenges where answer quality and timeliness 
needs to be traded off against the geographic granularity of the answer. The overall issue is often that of 
coping with massive spatio-temporal and geo-temporal data. 

Another way to contrast the situation in 1995 with the current situation is to compare the areas of 
science and technology that were thought to be impacted by massive data issues. Table 1.1 provides a 
partial listing of these areas, focusing on scientific and engineering fields. Many of the differences 
depicted in this table can be attributed to the rapid growth in social media, mobile devices, and sensor 
networks during the past decade and a half. 
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TABLE 1.1 Scientific and Engineering Fields Impacted by Massive Data 

Area Affected in 1995  Area Affected in 2012 Noteworthy Use Cases 

Physical sciences Physical sciences Astronomy, particle physics 

Climatology Climatology  

Signal processing  Signal processing  

Medicine Medicine Imaging, medical records 

Artificial intelligence Artificial intelligence Natural language processing, computer vision 

Marketing Marketing Internet advertising, corporate loyalty 
programs 

N/A Political science Agent-based modeling of regime change  

N/A Forensics Fraud detection, drug/human/CBRNe 
trafficking 

N/A Cultural studies Human terrain assessment, land use, cultural 
geography 

N/A Sociology Comparative sociology, social networks, 
demography, belief and information diffusion 

N/A Biology Genomics, proteomics, ecology 

N/A Neuroscience fMRI, multi-electrode recordings 

N/A Psychology Social psychology 
NOTE: CBRNe, chemical, biological, radiological, nuclear, enhanced improvised explosive devices; fMRI, 
functional magnetic resonance imaging; N/A, not applicable. 

ORGANIZATION OF THIS REPORT 

The statement of task for the study that led to this report reads as follows: 
 

The study will carry out the following tasks: 

• Assess the current state of data analysis for mining of massive sets and streams of data, 
• Identify gaps in current practice and theory, and  
• Propose a research agenda to fill those gaps. 

 
A primary audience for this report is the community of researchers who need to be adept at 

analyzing massive data. Because, as will be seen, this is an inherently multidisciplinary subject, the report 
assumes the reader has (or is willing to develop) an understanding of topics in computer science 
(including databases and distributed systems), statistics, and optimization. Another important audience 
consists of the research organizations, especially federal funding agencies, which are building capabilities 
for the analysis of massive data. The report’s identification of research challenges should help those 
organizations target their programs.  

Chapter 2 provides an overview of some of ways in which massive data are currently arising in 
various scientific and technological fields. Focusing on systems and computer architecture issues, it 
discusses general trends and then turns to several examples: Earth and planetary science, astronomy, 
biological and medical research, large numerical simulations, telecommunications and networking, social 
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network analysis, and national security. Chapter 3 pursues the systems perspective further, discussing 
recent developments in parallel and distributed systems, databases, and streaming architectures. 

Chapter 4 addresses issues surrounding the temporal nature of data, serving to highlight the fact 
that many massive data sets arise as temporal streams and that many interesting inferential questions 
revolve around the detection of temporal trends, changes, and patterns. Moreover, it is often the case that 
real-time responses are needed. 

In Chapter 5, a more general discussion of data representation is provided, including some of the 
ways in which massive data arrive in raw form and the transformations that are often applied to data, 
particularly transformations that attempt to reduce the representational complexity of the data. 

Chapter 6 turns to a formal treatment of some of the computational complexity issues that arise in 
the setting of massive data analysis. The discussion focuses on computational resources and the 
theoretical characterization of trade-offs among these resources. 

Chapter 7 and 8 focus on inferential issues. Chapter 7 addresses statistical model-building in the 
massive data setting, discussing several of the stages in the inferential pipeline, including data cleansing 
and validation. In Chapter 8 sampling is discussed, focusing on the data-gathering process but also 
making links to Chapter 5, where sampling is a key methodology for data reduction.  

Chapter 9 treats some of the issues that arise when humans are included in the data-analysis loop. 
This includes crowdsourcing, where humans are used as a source of training data for learning algorithms, 
as well as visualization, which not only helps humans to understand the output of an analysis, but also 
allows human input into model revision. 

Chapter 10 attempts to bring several of the strands of the report together into a proposal for a 
taxonomy of some of the major algorithmic problems arising in massive data analysis. The committee 
hopes that the ideas in this section will serve to organize the research landscape and also provide a point 
of departure for the design of “middleware” that links high-level inferential goals to the algorithms and 
hardware needed to achieve those goals.  

In accordance with the study’s statement of task, Chapters 2 through 10 identify gaps in current 
theory and practice, and Chapters 3 through 10 propose a number of elements of a research agenda. 
Finally, Chapter 11 presents the committee’s primary conclusions. 
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2 
Massive Data in Science, Technology, Commerce, National Defense, 

Telecommunications, and Other Endeavors 

WHERE IS MASSIVE DATA APPEARING? 

Experiments, observations, and numerical simulations in many areas of science nowadays 
generate terabytes of data and, in some cases, are on the verge of generating many petabytes. This rapid 
growth heralds an era of “data-centric science,” which requires new paradigms addressing how data are 
captured, processed, discovered, exchanged, distributed, and analyzed. While traditional methods of 
analysis have largely focused on analysts being able to develop and analyze data within the confines of 
their own computing environment, the growth of big data is changing that paradigm for many disciplines, 
especially in cases in which massive amounts of data are distributed across locations. The distributed and 
heterogeneous nature of the data provides substantial challenges for many disciplines in the physical and 
life sciences and also in commerce, medicine, defense, finance, telecommunications, and other industries. 

The fact that scientific data sets across a wide range of fields are multiplying is an important 
driver for modern science. Analyses of the information contained in these data sets have already led to 
major breakthroughs in fields ranging from genomics to astronomy and high-energy physics, 
encompassing every scale of the physical world. Yet much more remains, and the great increase in scale 
of the data creates complex challenges for traditional analysis techniques. 

It is not only experimental measurements that are growing at a rapid pace. As stated in Szalay 
(2011, p. 34): “The volume of data produced by computer simulations (used in virtually all scientific and 
engineering disciplines today) is also increasing at an even faster rate. Intermediate simulation steps must 
often be preserved for future reuse because they represent substantial computational investments. The 
sheer volume of these data sets is only one of the challenges that scientists must confront.” Data analyses 
in some other disciplines (e.g., environmental sciences, wet laboratories in life sciences) are challenged to 
work for thousands of distinct, complex data sets with incompatible formats and inconsistent metadata.  

While the scientific community and the defense industry have long been leaders in generating 
large data sets, the emergence of e-commerce and massive search engines has led other sectors to 
confront the challenges of massive data. For example, Google, Yahoo!, Microsoft, and other Internet-
based companies have data that is measured in exabytes (1018 bytes). The availability and accessibility of 
these massive data sets is transforming society and the way we think about information storage and 
retrieval. 

Social media (e.g., Facebook, YouTube, Twitter) have exploded beyond anyone’s wildest 
imagination, and today some of these companies have hundreds of millions of users. Social-media-
generated texts, images, photos, and videos comprise an unexpected and rapidly growing corpus of data. 
Data mining of these massive data sets is transforming the way we think about crisis response, marketing, 
entertainment, cybersecurity, and national intelligence. New algorithms that assess these data in ways 
other than counting hits on key words, such as the analysis of social relationships, involves large graph 
analyses and requires new scalable algorithms.  

Understanding and characterizing typical Web behavior dynamically (since the time scale of 
changes on the Internet is in minutes) presents remarkable challenges. In this cyber-oriented world, 
behavior that does not fit the patterns is often related to malware or denial-of-service attacks. Recognizing 
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these in time, estimating the impact on human behavior, and responding is a new and emerging challenge 
that has few parallels in science. 

Capturing and indexing the Internet has created whole sets of new industries. Some of the world’s 
largest companies are trading in information and have built their business model on appropriately 
customized advertisements. Interpreting user behavior and providing just-in-time advertisements 
customized to the users’ profiles require very sophisticated data management capabilities and efficient 
algorithms. Service-sector companies specializing in Internet-based auctions, like eBay or Amazon, have 
developed sophisticated analytics capabilities. Almost all Web-based companies today are capturing user 
actions, even if they do not immediately analyze them. This confluence of technologies has created a 
whole new industry, one based inherently on massive data.  

CHALLENGES TO THE ANALYSIS OF MASSIVE DATA 

A number of challenges exist in both data management and data analysis that require new 
approaches to support the “big data” era. These challenges span generation of the data, preparation for 
analysis, and policy-related challenges in its sharing and use. Initiatives in research and development that 
are leading to improved capabilities include the following: 
  

• Dealing with highly distributed data sources, 
• Tracking data provenance, from data generation through data preparation, 
• Validating data, 
• Coping with sampling biases and heterogeneity, 
• Working with different data formats and structures, 
• Developing algorithms that exploit parallel and distributed architectures, 
• Ensuring data integrity, 
• Ensuring data security, 
• Enabling data discovery and integration, 
• Enabling data sharing, 
• Developing methods for visualizing massive data, and 
• Developing scalable and incremental algorithms. 

 
As data volumes increase, the ability to perform analysis on the data is constrained by the 

increasingly distributed nature of modern data sets. Highly distributed data sources present challenges due 
to diverse natures of the technical infrastructures, creating challenges in data access, integration, and 
sharing. The distributed nature also creates additional challenges due to the limitations in moving massive 
data through channels with limited bandwidth. In addition, data produced by different sources are often 
defined using different representation methods and structural specifications. Bringing such data together 
becomes a challenge because the data are not properly prepared for data integration and fusion, and the 
technical infrastructures lack the appropriate information infrastructure services to support analysis of the 
data if it remains distributed. Statistical inference procedures often require some form of aggregation that 
can be expensive in distributed architectures, and a major challenge involves finding cheaper 
approximations for such procedures. Finally, security and policy issues also limit the ability to share data. 
Yet, the ever-increasing generation of data from medicine, physical science, defense, and other industries 
require that analysis be performed on data that are captured and managed across distributed databases. 

In addition to challenges posed by the distributed nature of most massive data, the increase of 
data can also limit, in other ways, the amount of analysis that can be performed. For example, some data 
require high-performance computational infrastructures for data preparation before analysis can even 
begin, and access to such capabilities may be limited. An example would be an Earth science 
investigation that requires first converting the data to a common spatial grid. In cases where the analysis 
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depends on such an expensive pre-processing step, the usefulness of the massive data is enhanced if the 
data-collection system is engineered to collect data of high quality in forms that are ready for analysis 
without the pre-processing.  

However, rather than having data pre-processed for all scenarios, and thus taking up substantial 
storage, ad hoc investigations may require that data be processed, and thus sufficient computing 
infrastructures must be in place to support such ad hoc analysis. This can be desirable scientifically, 
because understanding of what data are needed may become clearer as an investigation proceeds. In order 
to support this evolutionary cycle, software systems that handle massive data must be inherently 
information-driven. That means that their content should be based on explicit information models that 
capture rich semantics that improve the provenance and understanding of the data. This in turn makes it 
easier to correlate distributed data sets, thus improving the ability to effectively search large collections of 
data without requiring changes and updates to the software (and hardware) as the data model evolves and 
changes during the scientific process. 

Finally, challenges exist in better visualizing massive data sets. While there have been advances 
in visualizing data through various approaches, most notably geographic information system-based 
capabilities, better methods are required to analyze massive data, particularly data sets that are 
heterogeneous in nature and may exhibit critical differences in information that are difficult to 
summarize. This topic is discussed in Chapter 9. 

TRENDS IN MASSIVE DATA ANALYSIS1 

While improvements in computer hardware have enabled today’s explosion in data, the 
performance of different architectural components increases at different rates. Central processing unit 
(CPU) performance has been doubling every 18 months, following Moore’s Law. The capacity of disk 
drives is doubling at a similar rate, somewhat slower than the original Kryder’s Law prediction (Walter, 
2005), driven by higher density platters. On the other hand, the disks’ rotational speed has changed little 
over the past 10 years. The result of this divergence is that while sequential input/output (I/O) speeds 
slowly increase with density, random I/O speeds have changed only moderately. Due to the increasing 
difference between the sequential and random I/O speeds of disks, only sequential disk access is 
possible—if a 100-terabyte (TB) computational problem requires mostly random access patterns, it 
cannot be done. Finally, network speeds, even in the data center, are unable to keep up with the increases 
in the amount of data. Said differently, with petabytes (PB) of data, we cannot move the data to where the 
computing is; instead, we must bring the computing to the data. More discussion of hardware and 
software for managing massive data is found in Chapter 3. 

The typical analysis pipeline of a data-intensive scientific problem starts with a low-level data 
access pattern during which outliers are filtered out, aggregates are collected, or a subset of the data is 
selected based on custom criteria. The more CPU-intensive parts of the analysis happen during 
subsequent passes. Such analyses are currently often implemented in research environments in small 
clusters of linked commodity computers (e.g., a “Beowulf cluster”) that combine compute-intensive, but 
storage- and I/O-poor, servers with network-attached storage. These clusters can handle problems of a 
few tens of terabytes, but they do not scale above 100 TB because they are constrained by the very high 
costs of petabyte-scale enterprise storage systems. Furthermore, as these traditional systems grow to meet 
modern data analysis needs, we are hitting a point where the power and space requirements for these 
systems exceed what is available to individual investigators and small research groups.  

Existing supercomputers are not well suited for data-intensive computations either, because while 
they maximize CPU cycles, they lack I/O bandwidth to the mass storage layer. Moreover, most 
supercomputers lack disk space adequate to store petabyte-size data sets over the multi-month periods that 
are required for a detailed exploratory analysis. Finally, commercial cloud computing platforms are not 

1 The first four paragraphs of this section follow Szalay (2011). 
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the answer either, at least not today. The data movement and access fees are excessive compared to 
purchasing physical disks, the I/O performance they offer is substantially lower (e.g., 20 megabytes per 
second), and the amount of provided disk space (often in the range of, say, 10-50 gigabytes) is woefully 
inadequate for massive data.  

Based on these observations, it appears that there is an unmet need today for capabilities to enable 
data-intensive scientific computations: an inexpensive yet efficient product for data-intensive computing 
in academic environments that is based on commodity components. The current situation is not scalable 
and not maintainable in the long run. This situation is analogous to the one that led to the development of 
the Beowulf cluster. 

As data sets are growing at, or faster than, Moore’s Law, they are growing at least as fast as 
computing power increases. This trend tends to limit analytical techniques to those that scale, at most, 
linearly with the number of data points (N), although those that scale as N log N are also acceptable 
because the log N factor can be made up through parallelism. It becomes increasingly difficult to tackle 
computationally challenging data analyses using existing algorithmic tools, and there is a need to develop 
new tools that target near-linear computational complexity. 

The large-data analytics and e-commerce companies have spent substantial resources on creating 
a hardware/software framework with performance that scales well with massive data. The typical 
approach is to create large data centers consisting of hundreds of thousands of low-end computers 
managed with an extreme economy of scale. Their main features include the following: 
 

• Centralization of large-scale infrastructure, 
• Data sizes at the petabyte to exabyte scale, 
• Architectures that are highly fault-tolerant, and 
• Computing is collocated with the data for large-scale analytics.  

 
While large businesses in the past have used relational databases, these do not scale well to such 

extreme sizes. Industries dealing with big data are reacting to data that is more distributed, heterogeneous, 
and generated from a variety of sources. This is leading to new approaches for data analysis and the 
demand for new computing approaches. Various innovative data management solutions have emerged, 
many of which are discussed in Chapter 3. These models work well in the commercial setting, where 
enormous resources are spent on harvesting and collecting the data through actions such as Internet 
crawling, aerial photos for geospatial information systems, or collecting user data in search engines. Some 
of the technical trends that have been occurring to address the data challenges include the following: 
 

• Distributed systems (access, federation, linking, etc.), 
• Technologies (MapReduce algorithms, cloud computing, Workflow, etc.), 
• Scalable infrastructures for data- and compute-intensive applications, 
• Service-oriented architectures, 
• Ontologies, models for information representation, 
• Scalable database systems with different underlying models (relation to triple stores), 
• Federated data security mechanisms, and 
• Technologies for moving large data sets.  

 
Many of these technologies are being used to drive toward more systematic approaches.  
As discussed in the examples below, many groups are setting up tools that support pipeline or 

workflow approaches to data analysis. Rather than constructing one large database, the general concept is 
to enable analysis by bringing together a variety of tools that allow for capture, preparation, management, 
access, and distribution of data. This collection of tools is configured as a series of steps that constitute a 
complex workflow for generating and distributing data sets. Such a pipeline may also extract data from 
operational databases and systems and put that data into environments where it can be prepared and fused 
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with other data sets and staged into systems that support analysis. Challenges include co-utilization of 
services, workflow discovery, workflow sharing, and maintaining information on metadata, information 
pedigree, and information assurances as data moves through the workflow. 

Several multi-organizational groups are addressing the big-data issue and helping to bring the 
required scientific expertise and attention to this important problem. Examples are the groups that 
organize the Extremely Large Databases workshop series,2 those working in the database research 
community, and those that have produced open source technologies such as Hadoop (see Chapter 3). As 
the state of research in data-intensive systems is focusing on new ways to process data, these groups are 
leveraging open-source technologies and similar approaches to handle the orchestration of data-
processing algorithms and the management of massive amounts of heterogeneous data. A major challenge 
in the big-data area is in evaluating ways in which distributed data can be analyzed and in which scientific 
discoveries can be made. Many of the aforementioned technologies, such as Hadoop, and also the 
proposed SciDB database infrastructure for science data management, have been co-developed across 
several organizations (both research laboratories and industry) and deployed across organizational 
boundaries to support analysis of massive data sets. The challenge is both one of developing appropriate 
systems as well as creating novel methods to support analysis, particularly across highly distributed 
environments.  

In many ways, the big-data problem is simplified when data are centrally stored. However, 
modern data sets often remain distributed because of technical, social, political, and economic reasons, 
increasing the challenge to efficiently analyze the data and driving the need to build virtual data systems 
that integrate assets from multiple organizations. In this emerging paradigm, these virtual systems require 
elasticity, separation of concerns, scalability, distribution, and information-driven approaches.  

Cloud computing is offering an attractive means to acquire computational and data services on an 
“as needed” basis, which addresses the need for elasticity. This option requires, however, that systems are 
architected to take advantage of such an infrastructure, which is not often the case. Many systems must be 
rethought from first principles in order to better exploit the possibilities of cloud computing. For example, 
systems that decouple data storage, data management, and data processing are more likely to rapidly take 
advantage of elastic technology paradigms like cloud computing because they are more suited to 
leveraging the generic services that cloud computing can readily provide.  

EXAMPLES 

Earth and Planetary Observations 

In the physical sciences domain, there is an increasing demand for improving the throughput of 
data generation, for providing access to the data, and for moving systems towards greater distribution, 
particularly across organizational boundaries. Earth, planetary, and astrophysics missions, for example, 
have all seen an order-of-magnitude increase in data over the past decade, rising from hundreds of 
gigabytes in some cases to well into the tens to hundreds of terabytes range. The Square Kilometer Array 
project, as an example, is predicted to produce hundreds of terabytes a second!3 Studies released by each 
of these disciplines in their decadal reports suggest that this trend will continue. Many Earth and planetary 
missions have instruments that will continue to generate observations of massive size that will 
substantially increase the scientific archives worldwide. Climate research also continues to grow at a 
rapid pace as climate models and satellite observations grow and are needed to support new discovery. 
NASA’s Earth Science enterprise, for example, now manages data collections in the several-petabyte 

2 See the Extremely Large Databases website at http://www.xldb.org. 
3 This unprecedented increase will require innovation beyond our current understanding of computation and 

storage over the next ten years to achieve the project’s ambitious requirements and science goals. Background on the 
Square Kilometer Array project may be found at http://www.skatelescope.org. 
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range. In planetary science, the amount of data returned from robotic exploration of the solar system 
between 2002 and 2012 was 100 times the amount of data collected from the previous four decades. 
Astrophysics has seen similar increases, and all of these disciplines have experienced a continued increase 
in the geographic distribution of the data. 

As already noted, the increase of data within these science environments has, in many cases, led 
to the construction of data “pipelines” that acquire data from instruments, process and prepare that data 
for scientific use, capture the data into well-engineered data management systems, and then provide ad 
hoc services for data distribution and analysis. Such infrastructures have required advanced computing 
capabilities that often span multiple institutions and support well-orchestrated information services.  

While, traditionally, many of these workflows are constructed for each instrument or mission, 
there is an increasing interest in performing analysis across data sets that may span different instruments 
or missions, even from different disciplines. This type of data integration and inter-comparison is not 
limited to just observational data sets. Within the climate research community, effort is underway to 
prepare observational data so that it can be inter-compared against the output of climate models. 
However, within the climate discipline, as with others, data from different institutions, systems, and 
structures use different standards and measurements, and this lack of standardization makes such analysis 
difficult, due to the heterogeneity. 

Astronomy4 

Astronomy is a good example for studying how the data explosion happened and how long it 
might continue. In this realm, successive generations of exponentially more-capable sensors, at the same 
cost, are the reason for the data explosion (all being traceable to advances in semiconductor technology 
and, ultimately, to Moore’s Law). New generations of inexpensive digital cameras come out every 6 
months, and satellites have ever-higher resolution and more pixels. Even old telescopes are getting new 
instruments that collect more data. For example, the Dark Energy Survey is building a huge array of 
charge-coupled devices (CCDs) to be placed on an older telescope in Chile.  

However, not every domain of science has such growth areas. One could argue that optical 
astronomy will soon reach the point when increasing the size of collector arrays will become impractical, 
and the atmospheric resolution will constrain the reasonable pixel size, causing a slow-down in data 
collection. But time-domain astronomy is emerging, and by taking images every 15 seconds, even a single 
telescope (e.g., the Large Synoptic Survey Telescope) can easily generate data that can reach 100 PB in a 
decade.  

New instruments and new communities emerge to add to the big-data movement. Radio 
astronomy, with focal plane arrays on the horizon, is likely to undergo a paradigm shift in data collection, 
resembling the time when CCDs replaced photographic plates in optical telescopes. Amateur astronomers 
already have quite large, cooled CCD cameras. When a community of 100,000 people starts collecting 
high-resolution images, the aggregate data from amateur astronomers may easily outgrow the professional 
astronomy community.  

Biological and Medical Research 

A substantial amount of analysis is being performed using data collected by medical information 
systems, most notably patient electronic health records. This information represents a wealth of data both 
to improve individual healthcare decisions as well as to improve the overall healthcare delivery 
enterprise. The U.S. Food and Drug Administration, for example, is building an active drug safety 
surveillance system utilizing data from de-identified medical record databases. Medical researchers are 

4 This section is adapted from Szalay (2011).  
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gathering together to share information about interventions and outcomes in order to perform 
retrospective analysis, and insurance companies continue to mine data to improve their own models. 

The genomics revolution is proceeding apace, with the cost of sequencing a single human 
genome soon to drop below $1,000. As the cost decreases, it becomes feasible to sequence multiple 
genomes per individual, as is being envisaged in tumor genomics initiatives. Overall, data volumes in 
genomics are growing rapidly. The Short Read Archive at the National Center for Biological Information 
is soon expected to exceed a petabyte. As more and more high-throughput sequencers are deployed, not 
just in research but also in hospitals and other medical facilities, we will see an even faster data growth in 
genomic information.  

Neuroscience is increasingly using functional magnetic resonance imaging, where each session 
can easily result in tens of terabytes of data. Longitudinal studies of hundreds of patients generate data 
measured in petabytes today. Studies of the cardiovascular systems are creating multiscale simulations 
from the molecular scale to those of the human circulation system. The European Human Brain Project is 
setting out to integrate everything we know about the brain in massive databases and detailed computer 
simulations. And ultra-high-resolution microscopy is also generating very large data sets in cell biology. 

Large Numerical Simulations5 

Numerical simulations are becoming another new way of generating enormous amounts of data. 
This has not always been the case. Traditionally, these large simulations (such as gravitational N-body 
simulations in astrophysics or large simulations of computational fluid dynamics) have been analyzed 
while the simulation was running, since checkpointing and saving the snapshots was overly expensive. 
This fact traditionally limited the widespread use of simulation data. 

Even when a few snapshots have been saved and made public, downloading large files over slow 
network connections made the analysis highly impractical once simulations reached the terabyte range. 
The Millennium simulation in astrophysics has changed this paradigm by creating a remotely accessible 
database with a collaborative environment, following the example of the Sloan Digital Sky Survey 
SkyServer. The Millennium database drew many hundreds, if not thousands, of astronomers into 
analyzing simulations as easily as if it were publicly available observational data. 

The emerging challenge in this area is scalability. The Millennium has 10 billion particles. The 
raw data is about 30 TB, but the 1-TB database does not contain the individual dark matter particles, only 
the halos, subhalos, and the derived galaxies. Newer simulations are soon going to have a trillion 
particles, where every snapshot is tens of terabytes, so the data problem becomes much worse. At the 
same time, there is an increasing demand by the public to get access to the best and largest simulations; it 
is inevitable that the Millennium model is going to proliferate. There may be a need for a virtual 
observatory of simulations that can provide adequate access and the ability to do analysis, visualization, 
and computations of these large simulations remotely. This need cuts across all disciplines, as simulations 
are becoming more commonplace in all areas of physical science, life sciences, economics, and 
engineering. 

As data become increasingly unmovable, the only way to analyze them is “in place.” Thus, new 
mechanisms are needed to interact with these large simulations, because it is not feasible to simply 
download raw files. For interactive visualizations, it would be easier to send a high-definition, three-
dimensional video stream to every interested scientist in the world than it would be to move even a single 
snapshot of a multi-petabyte simulation from one place to another.  

New and interesting paradigms for interacting with large simulations are emerging. 
In a project related to isotropic turbulence, data are accessed via a Web service where users can 

submit a set of about 10,000 particle positions and times and then retrieve the interpolated values of the 
velocity field at those positions. This can be considered as the equivalent of placing small “virtual 

5 This section is adapted from Szalay (2011). 
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sensors” into the simulation instead of downloading all the data or significant subsets of it. The service is 
public and is typically delivering about 100 million particles per day worldwide. Several papers appearing 
in the top journals have used this facility.  

Telecommunications and Networking 

Managing a modern globe-spanning highly reliable communications network requires extensive 
real-time network monitoring and analysis capabilities. Network monitoring and analysis is used for tasks 
such as securing the network from intruders and malefactors, rapid-response troubleshooting to network 
events, and trend prediction for network optimization. 

Large telecommunication providers such as AT&T and Verizon offer a wide range of 
communication services, ranging from consumer (mobile voice and data, wired broadband, television 
over Internet protocol, and plain old telephone service) to business (data centers, virtual private networks, 
multiprotocol label switching, content caching, media broadcast), to a global long-haul communications 
backbone. Each of these services contains many interacting components, and understanding network 
issues generally requires that data about the interacting components be correlated and analyzed. Further, 
the global network contains tens of thousands of network elements distributed worldwide. 

In addition to the large volumes of data involved, the major problem in telecommunications and 
networking data analysis is the complexity of the data sets (hundreds to thousands of distinct data feeds) 
and the requirement for real-time response. Monitoring the health of tens of thousands of backbone 
routers generates large data sets, but backbone routers are only one component of the global end-to-end 
communications network. Many user applications—for example, streaming music to a smartphone—
require the correct and efficient operation of dozens of different network elements. Troubleshooting a bad 
connection requires that dozens of data feeds be monitored and correlated. 

Responding to network events, such as misbehaving routers, stalled routing convergence 
algorithms, and so on, or to network intruders, requires fast response; delays result in customer 
dissatisfaction, or worse. Therefore, all of the hundreds of data feeds must be managed in a real-time 
warehouse, which can provide timely answers to troubleshooting queries. The technology for such real-
time warehousing is still being developed. 

Social Network Analysis 

Social network analysis is the science of understanding, measuring, and predicting behavior from 
a relational or structural perspective. Using a blend of graph-theoretic and nonparametric statistical 
techniques, researchers in this area take data, such as phone data or observations indicative of 
interpersonal connections, and identify who are the key actors and key groups within and across 
networks, also identifying special patterns and important pathways. Traditional data sets focused on 
information within groups—such as who worked with whom or who is friends with whom—or between 
groups, such as which countries are allied or which organizations supplied goods to which others. The 
network in those traditional investigations might be a simple one- or two-mode network (i.e., a network 
with nodes that fall into just one or two classes), and the links were often binary. Often the data was from 
a small contained group.  

Today the field of social network analysis has exploded, and data often takes the form of meta-
networks in which information about who, what, where, how, why, and when are linked using multi-
mode, multi-link, multi-level networks. (See, e.g., Carley, 2002.) The links are probabilistic, and the 
nodes have states that may change over time. The size of networks of interest are often larger than in the 
past, such as the entire citation network in the web-of-science or the network of phone calls in all 
countries over a period of 12 months. The availability of, and interest in, such massive network data has 
increased as social media sites have become more prevalent; as data records for public functions (such as 
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home sales records and criminal activity reports) have increasingly been made public; and as various 
corporations make such data available, at least in anonymized form (such as phone records, Internet 
movie databases, and the web-of-science). 

Massiveness for network data arises on several fronts. First, the number of nodes in data of 
interest has grown from hundreds to several million or billion. Second, the number of classes of nodes 
that need to be included in a single analysis has grown. For example, web-of-science data has authors, 
topics, journals, and institutions, with each of these “nodes” having multiple attributes. Third, the data are 
often collected through time and/or across regions. For example, Twitter, Lexis-Nexis, AIS, and various 
sensor feeds all have networks embedded in space and time. In particular, social media contain meta-
network data that is massive and still growing. 

Each source of massiveness presents the following technical challenges:  
 

• The increase in the number of nodes whose data are being analyzed means that many of the 
traditional algorithms must be replaced by ones that scale better. This has been easy for metrics that rely 
only on measures associated with individual nodes and their direct links to other nodes—i.e., on local 
information for each node. For example, degree centrality, the number of links to/from a node, scales 
well, and it also can be readily adapted to streaming data. However, algorithms that do not scale well are 
those (such as betweenness) that rely on examining paths through an entire network or on local 
simulations that use multi-mode, multi-link data. In general, many single-node algorithms that include 
key node identification and grouping algorithms either scale well, are already parallelized, or have 
heuristic-based approximation approaches (Pfeffer and Carley, 2012). The main challenges here are rapid 
re-estimation given streaming data, estimating emergence and degradation of a node’s position over time 
given dynamic data with missing information, comparison of multiple networks, and enumeration of 
motifs of interest. 

• Multi-mode data are challenging in that there are few metrics, and new ones are needed for 
each application. To be sure, a set of metrics exists for two-mode networks; however, most of the massive 
data is n-mode. From a massive data perspective, the key challenge is that the search paths tend to 
increase exponentially with the number of node classes (i.e., modes). Improved metrics, scalable multi-
mode clustering algorithms, improved sets of interpretations, and improved scaling of existing metrics are 
the core challenges.  

• For temporal data there are two core challenges: incremental assessment and 
atrophication/emergence. Incremental assessment requires new algorithms to be defined that reflect social 
activity, which can be rapidly computed as new data become available. Even newly developed 
incremental algorithms are still exponential with network size; more importantly, it is not clear that the 
existing metrics (e.g., betweenness), even if sufficiently scalable incremental algorithms were to be 
developed, are meaningful in truly massive networks. Other challenges center around the problem of 
identifying points of atrophication and emergence, where portions of the network are fading away or 
emerging. The identification of simple temporal trends is not particularly a challenge, as Fourier analysis 
on standard network metrics provides guidance and scales well. With temporal data such as email and 
Twitter, not all nodes (the people who send information) are present in every time period. Understanding 
whether this lack of presence represents missing data due to sampling, temporary absence, or to a node 
actually leaving the network is a core challenge. 

 
Thus, the harder problems that are particularly impacted by massive data include (1) identifying 

the leading edge in a network as it is being activated (e.g., who is starting to contract a disease or where is 
a revolution spreading), (2) identifying what part of the network is contributing to anomalous behavior, 
and (3) updating metrics as data changes. Geo-temporal network data presents still further challenges, due 
in part to the infrastructure constraints that inhibit transmitting and sharing geo-images and the lack of 
large-scale, well-validated, spatial data for locations of interest in network analyses. However, even if 
these technical and data problems were solved, dynamic geo-enabled network analysis would still be 
problematic due to the lack of a theoretical foundation for understanding emergence in spatially 
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embedded networks. A major problem in this area is diffusion. Well-validated spatial and social network 
models exist for the spread of distinct entities such as disease, ideas, beliefs, technologies, and goods and 
services. However, these models often do not make consistent predictions; that is, spatial and social 
network models disagree, and they typically do not operate at the same scale. Having an integrated 
spatial-social-network model for the diffusion of each type of entity is critical in many areas. The increase 
in geo-temporal tagged network data is, for the first time, making it possible to create, test, and validate 
such models; however, current mathematical and computational formulations of these models do not scale 
to the size of the current data 

Much current network analysis is done on individual standalone single-processor machines. 
However, that is changing. There are a few tools (e.g., the Organizational Risk Analyzer (ORA) toolkit) 
that have parallelized the algorithms and make use of multi-processors. In addition, there are Hadoop 
versions for some of the basic algorithms,6 thus enabling utilization of cloud computing. Many diffusion 
routines can now be run on Condor clusters. In general, there is a movement to distributed computing in 
this area; and although the trend will continue, the existing technologies for network analysis in this area 
are in their infancy. New tools are appearing on a regular basis, including special tools for 
supercomputers, tools that take advantage of special processors, chips with built-in network calculations, 
and algorithms that utilize the memory and processors in the graphics display.  

Social networking—the use of a social media site to build, maintain, review, and disseminate 
information through connections—is a growing trend. Such sites include Twitter, Facebook, LinkedIn, 
and YouTube, and they are a growing source of massive data. In general, social media are being applied 
as a means to gather, generate, and communicate data in a rapid fashion. They are used in marketing by 
companies to announce products and collect consumer feedback and also by companies to discern other 
companies’ secrets. They are used by groups to organize social movements, protests, track illegal activity, 
record the need for social services (e.g., pothole filling and snow removal), provide feedback on quality of 
restaurants, hotels, services, and safety of areas, and so on. Most technologies applied to such social 
media do little more than collect data—sometimes providing simple visualizations—and simply count the 
frequency of messages, key words, hashtags, etc. Truly making use of this data requires scalable 
clustering techniques, real-time ontology abstraction, and on-the fly thesauri creation for extracting the 
complete network associated with a topic of interest. 

Social network analysis technologies can be used to assess social media data, while social 
network theory can be used to address how people will connect via social media and how it will change 
the nature of their interactions. However, many challenges remain. Social network analysis has 
traditionally focused on small, complete networks (i.e., fewer than 100 members, in which all members 
were contacted), where interaction can be face-to-face, and all data come from one time period. To 
exploit social media data, techniques have to be expanded to handle large networks (e.g., thousands or 
millions of nodes), where the data is sampled rather than complete (so there may be sampling biases in 
what data are captured), and for which the data are typically dynamic and the dynamics are of interest. 
Hence, issues of missing data, link inference, bias, forecasting, and dynamics are now of great interest. 
Also, network metrics are highly sensitive to missing and erroneous data, and so alternative metrics, 
confidence intervals on existing metrics, and procedures for inferring missing data are all needed. 
Advances in these areas are occurring rapidly. An emerging challenge, however, is how one can cross-
identify the same person in multiple social media. This is particularly important for tracking criminal 
activity, terrorists, or pedophiles. 

Social media are still evolving. As they mature, the shape of the technology itself will be 
different, and new users that will have grown up with them will be the dominant group. As such, cultural 
norms of usage will emerge. Changes in security and privacy options on social media sites are liable to 
make such cross-identification even more challenging than it is currently. Because the technology is a 
major source for collecting and processing massive data, the needs and challenges facing data analysis are 
likely to change as the technology matures. 

6 See, for example, X-Rime, available at http://xrime.sourceforge.net. 

PREPUBLICATION DRAFT – Subject to Further Editorial Correction 
23 

                                                      



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

Some of the common questions of analysis with respect to social networks include the following: 
 

• Effective marketing with social media. How can companies and governments measure the 
effectiveness of their social media campaigns, assess change in the resulting culture, and understand when 
the message changes what people do? 7 What new scalable social network tools, techniques, and measures 
are needed for identifying (1) key actors for spreading messages, (2) early adopters, (3) the rate of spread, 
and (4) the effectiveness of the spread, given the nature of social media data, to track crises and identify 
covert activity?8 

• Sentiment assessment monitoring and control. How can one measure, assess, forecast, and 
alter social sentiment using diverse social media? What new scalable social-network techniques are 
needed for assessing sentiment, identifying sources of sentiment, tracking changes in groups and 
sentiment simultaneously, determining whether the opinion leaders across groups are the same or 
different, and so on? (Pfeffer et al., Forthcoming). 

• Social change in images. A vast amount of the data in social media sites is visual—videos 
and photographs. How can this data be assessed, measured, and monitored in a scalable fashion so as to 
allow social change to be tracked and individuals identified through a fusion of verbal and visual data? 
(Cha et al., 2007). 

• Geo-temporal network analysis. An illustrative problem is the assessment, by area within a 
city and time period, of the Twitter network during disasters in order to rapidly identify needs and 
capabilities. Currently there are few geo-network metrics; however, the increasing prevalence of geo-
tagged data is creating the need for new metrics that scale well and support drill-down analysis on three 
dimensions at once—space, time, and size of group. Current clustering algorithms scale well on a single 
dimension, but scalable algorithms are needed that cluster in space and time. Finally, most spatial 
visualization techniques take the form of heat maps, which are often too crude to visually convey nuances 
in the data. But if the fullness of big data is exploited, then the overlay of points on a map becomes 
confusing, so new visual analytic techniques are needed (Joseph et al., 2012). 

 
The sheer size and complexity of data about social networks, cultural geography, and social 

media is such that systems need to be designed to meet three goals: automation, ease of use, and 
robustness. Analysts simply do not have the time to capture and run even basic analyses in a time-
sensitive fashion. Hence, the data-collection and analysis processes need to be automated so that 
information extraction can operate independently, and basic statistics identifying key actors and groups 
can be continually updated. Transparency must be maintained, and the analysts must be able to check 
sources for any node or link in an extracted network. An increasing number of jobs require tracking 
information using social network data, and an increasing number of activities that individuals engage in 
can be discerned from information on the individual’s social network, particularly when multiple 
networks, multiple types of nodes, and multiple relations can be overlain on one another.  

National Security 

The rise of the Internet has enormously increased the volumes of data potentially relevant to 
counterterrorism, counter-proliferation, network security, and other problems of national security. Many 
problems in national defense involve flows of heterogeneous, largely unstructured data arriving too 
rapidly to be aggregated in their entirety for off-line analysis. 

As an example, consider the problem of computer network defense, or cyberdefense. Network-
based attacks on computer systems pose threats of espionage and sabotage of critical public infrastructure. 
If one can observe network traffic, one may wish to know when an attack is underway, who is conducting 

7 See, e.g., Minelli et al. (2013). 
8 See, e.g., De Choudhury et al.(2010), Wakita and Tsurumi (2007), and Morstatter et al. (2013). 
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the attack, what are the targets, and how a defense may be mounted. Both real-time and post-hoc 
(forensic) capabilities are of interest. The metadata associated with the traffic—e.g., entity X 
communicated with entity Y at time T using protocol P, etc.—can be regarded as a dynamic graph or 
arrival process whose analysis may be useful. 

To cope with such problems, advances are needed across the board, from statistics to computer 
system architecture, but three areas can be highlighted. First, streaming algorithms that can process data 
in one pass with limited memory are clearly important. Second, for data at rest, transactional databases 
are generally not needed, but highly usable systems for hosting and querying massive data, including data 
distributed across multiple sites, will be essential. The MapReduce framework, discussed in Chapter 3 of 
this report, is perhaps a good first step. Third, better visualization tools are also needed to conserve the 
scarce and valuable time of human analysts.  

Two areas in national security that are particularly impacted by massive data are the potential 
capability for the remote detection of weapons of mass destruction and improved methods of cyber 
command and control. Although many details of national security problems are classified, approaches to 
these problems often parallel current efforts in academia and industry. 
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3 
Scaling the Infrastructure for Data Management 

 
 

Very-large-scale data sets introduce many data management challenges. Two notable ones are 
managing the complexity of the data and harnessing the computational power required to ingest and 
analyze the data. Tools for analyzing massive data must be developed with an understanding of the 
developing capabilities for management of massive data. 

SCALING THE NUMBER OF DATA SETS 

Increasing the number of data sets brought to bear on a given problem increases the ability to 
address the problem, at least in principle. Sets that add rows (e.g., adding more patient records in a health 
care data set) to existing data tables can increase their statistical power. Sets that add columns (e.g., 
adding the patient’s smoking history to each patient record) can enable new applications of the data. In 
the healthcare domain, cross-collection data mining can enable exciting advances in personalized 
medicine. Another example is in the finance domain, where an ability to evaluate loans across multiple 
banks (e.g., as mortgages are bought and sold) is more powerful than an analysis that is limited to the 
records of just one bank. 

Unfortunately, scaling the number of data sets is very difficult in practice due to heterogeneity in 
data representations and semantics, data quality, and openness. These aspects are explored below. 

Data Representation and Semantics 

Data sets managed by different (sub)organizations tend to have disparate representations and 
semantics. These attributes are described by metadata, which is critical for ensuring that the data can be 
effectively interpreted. Metadata consists of both structural and discipline-specific metadata. The 
structural metadata describes the structures of the data and its organization. The discipline-specific 
metadata describes the characteristics or uniqueness of the data for a particular discipline. 

Many disciplines are working toward defining rich semantic models that can help in data 
searching and understanding. Ideally, data representation standards would permit improvisation; for 
example, a standard might stipulate a set of structured fields with a free-form key/value map that 
accommodates unforeseen information. Such an approach can interpolate between the current extremes of 
restrictive up-front standardization versus free-form chaos. Rich semantics allows tools to be developed 
that can effectively exploit relationships, thus enabling improved discovery and navigation, and several 
standards and technologies are emerging. However, current capabilities are still highly dependent on 
defining well-formed models and structures up-front. It may be important to consider how to evolve data 
standards over time so that as patterns are recognized in free-form entries, they can be gradually folded 
into the structured portion of the representation. 

An alternative to requiring extensive metadata up-front is to aim for more of a “data co-
existence” approach, sometimes referred to as a “dataspace.” A good description of that concept is 
captured in the following Wikipedia entry: 
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[Dataspaces provide] base functionality over all data sources, regardless of how integrated they 
are. For example, a [system] can provide keyword search over all of its data sources, similar to 
that provided by existing desktop search systems. When more sophisticated operations are 
required, such as relational-style queries, data mining, or monitoring over certain sources, then 
additional effort can be applied to more closely integrate those sources in an incremental [“pay-as-
you-go”] fashion. Similarly, in terms of traditional database guarantees, initially a dataspace 
system can only provide weaker guarantees of consistency and durability. As stronger guarantees 
are desired, more effort can be put into making agreements among the various owners of data 
sources, and opening up certain interfaces (e.g., for commit protocols).1  

 
In a sense, this approach postpones the labor-intensive aspects of data fusion until they are 

absolutely needed. 

Data Quality and Provenance 

Real-world data sets vary in quality, due to a range of factors, including imperfect data collection 
instruments, human data entry errors, data fusion mistakes, and incorrect inferences. When dealing with a 
large number of data sets from diverse sources, systematic recording and tracking of data-quality 
metadata are very important. Unfortunately, in full generality that goal appears to be extremely 
challenging. 

A less daunting but still very ambitious goal is to track the provenance of data elements—that is, 
their origin, movement, and processing histories. Provenance is also useful for purposes other than 
reasoning about quality, such as in propagating data updates efficiently, and to attribute data properly in 
scientific publications. Provenance capture, representation, and querying are active research topics in the 
communities dealing with scientific workflow, file systems, and databases. The three communities’ 
approaches emphasize different priorities among various trade-offs (e.g., the trade-off between capture 
overhead and query expressiveness). None of these approaches have reached significant levels of 
adoption in practice. Currently, provenance is managed with one-off approaches and standards—for 
example, in planetary science research, each observation is tagged with the time, location, and platform 
from which it originated—and there is little systematic support for propagating provenance metadata with 
data wherever it travels. 

Representation and propagation of constrained forms of data-quality metadata, such as confidence 
scores and error bars, is also an active area of research, although to date most work in that area has 
concentrated on theoretical issues. There could be an opportunity to consider how more formal statistical 
notions of uncertainty might be incorporated. Overall, there has been little work on scalable systems for 
the management of uncertain data. 

Openness 

Non-public data sets require great care when being shared across organizations. To maximize the 
pool of data that can be shared openly, technologies are needed that fuse open data while protecting 
proprietary data and preserving anonymity requirements. Data being shared that has been derived from 
private data (e.g., statistics created by aggregating private data points) is especially problematic, due to 
data leakage issues (accidental leakage as well as “harvesting” by malicious parties). 

1 The Dataspaces entry is available at http://en.wikipedia.org/wiki/Dataspaces, accessed May 8, 2013. 
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SCALING COMPUTING TECHNOLOGY THROUGH DISTRIBUTED AND PARALLEL 
SYSTEMS 

Massive data processing, storage, and analysis will require support from distributed and parallel 
processing systems. Because the processing speed of microelectronics is not increasing as rapidly as it 
used to, modern central processing units (CPUs) are instead becoming highly parallel. That is the only 
way to continue the performance improvements in large-scale processing that are demanded by 
applications.  

In order to enable performance improvements in processing, input/output (I/O) and storage must 
also become parallelized and distributed. Amdahl’s law—a rule of thumb that has been valid for nearly 50 
years—states that a balanced system needs one bit of I/O per CPU cycle, and thus improvements in 
processing speed must be matched by improvements in I/O. And high I/O performance necessitates a 
heavy use of local (on-chip) data storage, so that storage is as distributed and parallel as is processing. 

The reason that single-threaded computation is still so common is that parallel and distributed 
systems are difficult to configure and maintain, and parallel and distributed software is difficult to write. 
The end of the ever-faster CPU era has led to once-exotic technologies becoming commonplace and to 
new parallel programming and data management systems that are easier to use. This section outlines 
recent trends in parallel and distributed computing and I/O. 

Hardware Parallelism 

“Hardware parallelism” is defined here as the presence in a system of many separate computing 
elements that operate simultaneously. In some cases the elements perform highly specialized tasks and, as 
a result, can do so very quickly with many elements operating in parallel. A long-standing example of 
hardware parallelism is integrated circuits for signal processing that can perform Fast Fourier Transforms 
as a hardware operation. More recent developments are motivated by problems in network management 
and by the hardware developed to accelerate computer graphics. 

Specialized networking equipment, such as very-high-speed network monitoring and firewall 
gear, commonly makes use of specialized hardware known as field programmable gate arrays (FPGAs) 
and ternary content addressable memory (TCAM). FPGAs are customizable integrated circuits that can be 
configured for high performance on special-purpose tasks. A TCAM is akin to a cache memory, but 
TCAM chips allow the user to specify tie-breaking rules in the case of multiple matches. For example, 
TCAMs store subnetwork address ranges of interest and the FPGAs perform specialized tasks, such as 
regular expression matching on the packet content and routing (perhaps to a host for monitoring) based on 
the results of the TCAM and other analyses. FPGAs have also found use in data warehouse analytics 
engines, performing filtering and other tasks on data streaming from disk.  

Another recent development in hardware parallelism is motivated by the graphics processing 
units (GPUs) developed to accelerate computer graphics. GPUs are highly parallel processors, originally 
developed for high-end graphics applications and computer games. Various vendors (NVIDIA, ATI, 
IBM) have developed such platforms, which are increasingly used for applications requiring very high 
floating-point performance. (Many of the world’s top 500 computers are hybrid machines consisting of a 
large array of traditional CPUs and GPUs.) A typical GPU card can outperform a CPU by up to an order 
of magnitude, depending on the application, and the performance of a typical high-end graphics card 
exceeds a teraflop. Sorting performance is also spectacular, exceeding the rate of 1 billion records per 
second on some benchmarks. The performance per unit power dissipated is also significantly better with 
GPUs than with traditional processors, an issue that is becoming increasingly important for the total cost 
of ownership of high-end computing systems. 

The main disadvantage in applying GPUs to large-scale data-intensive problems is the rather 
limited memory (typically 2-3 gigabytes (GB), up to 6 GB currently) attached to the cards. While data 
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access for the on-board memory is very fast, over 100 GB/s, moving data in and out of the cards can be a 
bottleneck. 

Also, GPU programming is still rather complicated, requiring special environments (e.g., CUDA, 
OpenCL). Due to the single-instruction/multiple-data nature of the hardware, special attention must be 
paid to laying out the data to match the configuration of the low-level hardware. The situation is getting 
better every year, as more and more algorithms are ported to the GPU environment, and increasingly 
sophisticated debugging environments are emerging. Much of the Linear Algebra PACKage library 
(LAPACK) has been ported, the Fastest Fourier Transform in the West (FFTW) library for performing 
discrete Fourier transforms is part of the basic CUDA library, and many graph algorithms have also been 
successfully ported to GPUs. 

The hardware is quickly evolving. Upcoming GPU cards will support more generic memory 
access, better communication with the host, more flexible task switching, and preemptive multitasking, 
making them increasingly comparable in programmability to traditional multicore architectures. There are 
many current efforts to integrate GPUs with databases and stream processing systems. 

Multicore CPUs 

Over the past decade, conventional server-class CPUs have gained internal parallelism in two 
ways: by growing the number of cores (independent execution engines) per chip or per package and by 
increasing the number of operations a core can execute per cycle, largely by means of parallel operations 
on short vectors of data. Both trends increase the challenge of making good use of the available 
computational resources in real applications. Tools for automatically parallelizing and vectorizing 
applications are not currently very effective. 

To date, the growth in the number of cores per chip has been somewhat restrained by market 
forces, in particular the need to retain good performance on non-parallel code. But the industry is well 
aware that higher peak performance, and higher performance per watt, can be achieved by integrating a 
much larger number of cores running at lower speeds. Whether massively multicore CPUs will soon play 
a major role in data analysis is hard to predict, but their eventual arrival now seems all but inevitable 
(Asanovic et al., 2006). 

Flash Memory 

The rapid proliferation in flash memory is another very relevant trend. As noted in a recent 
publication on the topic, 
 

Traditionally, system designers have been forced to choose between performance and safety when 
building large-scale storage systems. Flash storage has the potential to dramatically alter this 
trade-off, providing persistence as well as high throughput and low latency. The advent of 
commodity flash drives creates new opportunities in the data center, enabling new designs that are 
impractical on disk or RAM infrastructure (Balakrishnan et al., 2012, p. 1). 

 
To date, flash memory has been used as a fast alternative for disk storage, but it appears to be a 

promising technology for lowering power requirements while maintaining high reliability and speed for 
large-scale data systems.  

Data Stream Management Systems 

Data stream management systems (DSMS) have emerged as a significant research topic over the 
past decade, with many research systems (Stream, Niagara, Telegraph, Aurora, Cougar) and commercial 
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systems (Streambase, Coral8, Aleri, InfoSphere Streams, Truviso) having been developed. A DSMS runs 
a collection of standing queries on one or more input streams. The source streams are generally real-time 
reports of live phenomena. Examples include stock ticker and other financial streams, feeds from sensor 
networks (for example, highway monitoring), Web click-streams, video streams, streams of data from 
scientific experiments (for example, astronomical or high-energy physics observations), and 
communications network traffic monitoring. These feeds are processed, correlated, and summarized by 
the DSMS on a continual basis for immediate action or further analysis. 

There are two main methods for writing a query set for a DSMS. The first method uses a highly 
structured query language, often a variant of SQL (Structured Query Language), such as Contextual 
Query Language, CQL, which was developed for Stream. Another class of common stream query 
language incorporates regular expression-matching features to perform complex event detection. These 
stream languages differ from conventional SQL in that they generally require queries to use windowing 
constructs to limit the scope of the data used to compute any output record. For example, a stream query 
might ask, “for each five minute period, report the number of distinct source Internet protocol addresses 
of packets flowing through this network interface.” 

The second method for specifying a query set to a DSMS uses a graphical “boxes-and-arrows” 
approach. Boxes represent data-processing tasks (or data sources), and arrows represent data flow. The 
programmer selects and customizes the boxes, then connects them with arrows to develop a data 
processing specification—often through a graphical user interface (e.g., Streambase, Infosphere Streams). 
The motivation for the boxes-and-arrows method of programming is that many stream analyses are 
difficult to express in an SQL-like language (e.g., time-series analysis for financial applications, facial 
recognition in video streams). However, a DSMS query set expressed using a structured query language is 
generally easier to write and maintain, and it can be more readily optimized.  

There is not a rigid boundary between language-based and “boxes and arrows” data stream 
systems, as one can generally incorporate special-purpose operators into a language-based DSMS, and 
structured language programming tools have been developed for “boxes and arrows” DSMSs (e.g., 
Streambase, InfoSphere Streams). 

If the DSMS is programmed using a declarative query language, the query analyzer will convert 
the textual queries into a collection of stream operators so that in either case a collection of interconnected 
stream operators is presented to the query optimizer. A directed graph of stream operators presents special 
opportunities for the query optimizer because a large and long-running system is presented to 
optimization. A stream query system presents many opportunities for multi-query optimization, ranging 
from scan sharing to identifying and merging common execution subtrees, which are not normally 
available in a database management system (DBMS). The well-structured and explicit nature of the data 
flow in a data stream system can enable highly effective optimizations for parallel and distributed stream 
systems. 

For example, GS Tool from AT&T Labs Research will analyze its query set to determine an 
optimal hash partitioning of the packet stream from the network interfaces that it monitors. The output of 
a high-speed interface, such as 10 Gigabit Ethernet, is normally split into multiple substreams. Very-high-
speed links (e.g., the optical transmission rate OC-768) are normally split into eight 10-Gigabit Ethernet 
streams by specialized networking equipment, at the direction of the query optimizer. The InfoSphere 
Streams system makes many optimizations to the query graph to optimize parallel and distributed 
processing: splitting streams to enable parallelism of expensive operators, coalescing query operators into 
processing elements to minimize data copying, and allocating processing element instances to cluster 
nodes to maximize parallelism while minimizing data copy and network transmission overhead. 

Cluster Batch (Grid) Systems 

A cluster of high-performance servers can offer powerful computing resources at a moderate 
price. One way to take advantage of the computational resources of a cluster of servers is to use grid 
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software. Examples of grid systems are Sun Grid and Load Sharing Facility. A typical grid system allows 
users to submit collections of jobs for execution, and the jobs are queued by the grid job manager, which 
schedules them for execution on nodes in the cluster. The job manager performs load balancing among 
the cluster nodes and shares compute resources among the users. A grid system can use a storage area 
network to create a local file system for a user’s job, or it can use a cluster file system. 

A cluster file system is a common solution to the challenge of accessing massive distributed data. 
Such a system provides location-transparent access to data files to the servers on the cluster. The 
discussion that follows distinguishes between two types of cluster file systems, those which are POSIX 
compliant (or nearly so), and those which are not.2 

A POSIX-compliant cluster file system is attractive to programmers because it provides a 
traditional interface for data access while requiring minimal reworking of a code base to take advantage 
of a cluster’s resources. POSIX-compliant cluster file systems are often built on top of a storage area 
network, typically one or more racks of hard drives attached to a high-speed network such as Fibre 
Channel. 

A high-performance cluster file system such as Sun Microsystems’ Quick File System (QFS) 
separates metadata processing from disk block access. A metadata server manages one or more file 
systems, maintaining directories and I-nodes (perhaps on separate and specialized storage device such as 
an array of solid-state drives) and serving file metadata requests to the compute clients on the cluster. The 
clients access the actual data by direct access to the disks of the storage area network. File reliability and 
availability is typically provided by using the redundant array of independent disks (RAID) technology. 

Although a POSIX-compliant cluster file system is intended to be a transparent replacement for a 
local file system, the complexities of implementing a distributed file system generally result in some gaps 
in compliance. These gaps generally occur where complex synchronization would be involved, e.g., file 
locks and concurrent file access by processes on different servers.  

The difficulties of providing POSIX-compliance in a very-large-scale cluster have motivated the 
development of non-POSIX-compliant file systems, for example the Google file system and the Hadoop 
distributed file system (HDFS). The discussion below is based on the Google file system (Ghenawat et 
al., 2003), but HDFS is similar. 

The Google file system is designed to support distributed analysis tasks, which primarily make 
scans of very large files. The underlying assumptions of the Google file system are as follows: 
 

• Files are very large and contain well-defined records. 
• Files are usually updated by processes which append well-defined records. The sequential 

ordering of the appended records is not critical, and many processes may be appending records 
concurrently. 

• Analysis processes generally make large sequential scans of the data files. 
• Actual files are stored in the local file systems of servers configured into one or more racks in 

a data center. 
 

As with QFS and similar systems, the Google file system separates the metadata server from the 
data servers. The metadata server keeps a hot spare in sync by logging all metadata operations to the hot 
spare before responding to client requests. A single metadata server might coordinate a file system 
distributed over thousands of nodes, so minimizing the number of metadata requests is critical. Therefore 
the file block size is very large—64 megabytes (as compared to 4 kilobytes typical on a local file system). 

To minimize the overhead and complexity of metadata-server failure recovery, the Google file 
system makes only weak guarantees about the correctness of the data written into a file. Duplicate records 
might be written into the file, and the file might contain garbage areas. The clients that use the Google file 

2 POSIX refers to the Portable Operating System Interface standards developed by the Institute of Electrical and 
Electronics Engineers and International Organization for Standardization to ensure compatibility between software 
and operating systems. 
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system must make provisions for these problems: records should contain consistency information (e.g., 
checksums), and analysis clients must filter out duplicate records. File availability is ensured using 
replication; a file block is, by default, replicated to three storage hosts, although critical or frequently 
accessed files might have a higher degree of replication. 

An interesting aspect of the Google file system is that a single server with a hot spare controls 
thousands of file server nodes. This type of control system can be highly reliable because any single 
server is unlikely to fail. Instead, provisions are made for recovering from failures among the thousands 
of file servers—a failure among thousands of nodes is far more likely. Synchronization is achieved using 
lightweight mechanisms such as logging and the use of file leases. Heavyweight synchronization 
mechanisms such as Paxos are reserved for the file lock mechanism. 

MapReduce 

MapReduce is a style of distributed data analysis that was popularized by Google for its internal 
operations (see Dean and Ghemawat, 2004). Hadoop is an open-source version of MapReduce. 
MapReduce takes its name from a pair of functional programming constructs, map and reduce. A map 
invocation applies a function to every element of a list, while a reduce invocation computes an aggregate 
value from a list. 

As used in a MapReduce system, the map phase will organize a collection of compute nodes to 
divide up a data source (e.g., one or more files) and apply the map’ed function to every record in the 
file(s). The result is the value of the function on the record, as well as a hash value. In the reduce phase, 
the map results are reshuffled among the compute nodes, using the result hash to ensure that common 
records get sent to the same node. The reduce node combines records with the same hash into an 
aggregate value. 

As stated, MapReduce would not seem to provide a powerful programming construct. However, 
in the context of a large cluster, a MapReduce system provides a couple of critical services: 
 

1. The master server that organizes the MapReduce computation hands out portions of the 
computation to participating nodes and monitors their progress. If a node fails, or is slow to finish, the 
master will hand the unit of work to another node. 

2. The master server will ideally have a map of data locations (especially if the Google file 
system or the HDFS is used), node locations, and the network interconnecting them. The master server 
can attempt to assign processing close to the data (same server or same rack), distribute work evenly 
among servers, coordinate among concurrent jobs, and so on. 
 

By providing reliability and basic optimizations, MapReduce (or Hadoop) greatly simplifies the 
task of writing a large-scale analysis on distributed data for many types of analyses. 

The abstraction offered by a single MapReduce job is rather constrained and low-level, relative to 
the needs of applications that are moving to MapReduce-based platforms. Such applications range from 
Web data management to genomics to journalism. As a result, there are numerous efforts to layer more 
flexible and high-level abstractions on top of MapReduce. Examples include machine-learning libraries 
(e.g., Mahout), structured query languages (e.g., Jaql, Hive, Pig Latin), and workflow managers (e.g., 
Cascading, Oozie). 

For some application scenarios, using a MapReduce job as a building block is not considered a 
good fit in terms of system performance considerations such as latency and throughput. Hence, there are 
several projects creating variations on MapReduce. One group of projects offers a general directed-
acyclic-graph (DAG) processing model (e.g., Dryad, Hyracks, Nephele). Another group caters to 
applications that require iterative processing of a data set, such as many machine learning algorithms 
(e.g., HaLoop, Spark). Lastly, there are projects such as Mesos, which aim to separate cluster 
management and scheduling concerns from the particulars of a given data-processing framework (e.g., 
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MapReduce, general DAGs, iterative processing), and permit multiple such frameworks to coexist on the 
same cluster. 

Cloud Systems 

The computational demand of a particular user can be highly variable over time. Efforts to make 
more efficient use of resources include grid and cloud computing systems. These systems make a 
collection of resources available to a user and allow increases or decreases in resource allocation. Cloud 
computing can be attractive because the overhead of managing a large and complex system can be 
outsourced to specialists. 

Amazon started offering cloud computing services in 2006. With its Elastic Compute Cloud, 
users can specify an operating system and application disk image to be loaded on virtual servers ranging 
from low-end to high-end. The Simple Storage Service (S3) provides rentable persistent storage. Large-
scale distributed applications can run on the Amazon cloud. For example, Apache Hadoop is designed to 
use Elastic Compute Cloud servers accessing data stored in S3. The success of Amazon’s cloud service 
has encouraged the development of other cloud computing offerings. For example, Microsoft offers the 
Azure cloud service, providing compute and persistent storage services similar to those provided by 
Amazon. 

Parallel and Distributed Databases 

A database is a system that provides facilities for reliably storing data and later retrieving it using 
a convenient program. For the purposes of this discussion, it is assumed that the database is relational—
i.e., that its records consist of a particular set of fields each with a specific data type, and all records in a 
table have the same set of fields. It is further assumed that the database provides an SQL interface for 
accessing the data. Most commercial and open-source databases fit this description. These databases 
might also provide extensions for storing and querying semi-structured data (e.g., Extensible Markup 
Language, XML) and might support an extended query language; for example, one that supports recursive 
queries. However these extensions are not necessary for this discussion. 

Most commercial and open-source databases are parallelized in the sense that they can use 
multiple compute cores to evaluate a query when executed on a multi-core server. One method of 
parallelization is to use multiple threads for performing expensive tasks, such as sorting or joining large 
data sets. Another method of parallelization takes advantage of the nature of the programs that a query in 
a language such as SQL will generate. An SQL query is converted into a collection of query operators 
connected into a rooted DAG (the query graph); the edges of the graph indicate data flow among the 
query operators. If the query operators operate in a pipelined fashion (continually accepting input and 
producing output), multiple query operators can execute in parallel, in a manner similar to the inter-
operator parallelism exploited by data stream systems. Parallelizing database processing has been an 
active research topic for several decades. 

Very-large-scale parallel database systems are generally spread over a collection of servers using 
a shared-nothing architecture—that is, there is no cluster file system to provide a shared state. The tables 
in a shared-nothing database are horizontally partitioned, and the partitions are distributed among the 
database servers. Each of the database servers can run a parallelized database in the sense of taking 
advantage of all available cores.  

A table can be partitioned among the database servers in many ways. Two common choices are 
round-robin (new data are spread evenly among the servers) and hash (data are spread among the servers 
based on a hash of one or more fields of the table). Different tables can be partitioned using different 
techniques. Critical or frequently accessed tables can be stored two or more times using different 
partitioning for each copy. The servers in a shared-nothing database cooperate to evaluate a query. Recall 
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that a query is transformed into a rooted DAG of query operators. The root of the DAG produces the 
query result, while the leaves access database tables. Subtrees of the query plan that operate on single 
tables are sent to the database servers, which compute the partial result represented by the subtree 
executing on the table partition local to the database server. The partial results generally need to be 
combined to form a result, whether for aggregation (which is similar to the reduce phase of a MapReduce 
program), or to join the result of the subtree with data from another subtree. This data transfer is 
represented by an operator commonly called shuffle. A complex query can involve a large query graph 
with many shuffle operators. 

A shared-nothing parallel database can take many steps to optimize query evaluation. Some of the 
available techniques are as follows: 
 

• Modify the way that one or more tables are partitioned among the database servers. For 
example, if tables R and S are frequently joined on key k, than one possible optimization is to partition 
both R and S on k, using the same hash function, to avoid a data shuffle when processing the join. 

• If the result of two subtrees is to be joined, shuffle the results of the subtree that produces less 
data to the matching locations of the data from the other subtree result. 

• Pipeline the operators to avoid the need to store very large partial results. 
 

A database generally collects extensive statistics about the data that it manages and the queries 
that it processes to guide these and other optimizations. Shared-nothing databases were first developed in 
the 1980s (the Gamma and Grace research prototypes and the Teradata commercial DBMS), and 
extensive research has been performed on parallel database optimization. DeWitt and Stonebraker (2008) 
found that for data analysis tasks for which a relational database is well-suited, a shared-nothing relational 
database significantly outperforms a MapReduce program implemented using Hadoop. However, they 
also found that tuning parallel databases is often a difficult task requiring specialized expertise, whereas 
MapReduce systems are more readily configured to give good performance. Modern shared-nothing 
parallel databases include Teradata, Netezza, Greenplum, and extensions to Oracle and DB2. 

However, a relational DBMS is not suitable for many analysis tasks. One well-known problem is 
that relational DBMSs are not well structured for managing array data—which are critical for many 
analyses. While the ability of modern databases to optimize storage layout and query evaluation plans 
makes array management with a database an attractive idea, the query optimization for array data is 
difficult, and the relational model is based on sets, not ordered data. Several efforts to incorporate array 
data into the relational model have appeared in the research literature, but without lasting effect. The 
open-source project SciDB is developing a parallel shared-nothing database system designed to support 
array data. This system supports parallelism by chunking large arrays and distributing them among the 
database servers. 

A NoSQL database is loosely defined as being a data store that provides fewer consistency 
guarantees than a conventional database and/or a database that stores non-relational data, such as 
documents or graphs. NoSQL databases attempt to improve scaling by providing only weak or eventual 
consistency guarantees on the stored data, eliminating much of the complexity and overhead of the 
traditional strong consistency provided by conventional databases, which is especially marked in a 
distributed setting. Examples of NoSQL databases include MongoDB (document store), Neo4j (graphs), 
Bigtable, and Cassandra. 

Parallel Programming Languages and Systems 

Developing parallel and/or distributed programs is notoriously difficult, due to the problems in 
finding resources, distributing work, gathering results, recovering from failures, and understanding and 
avoiding rare conditions. A variety of tools have been developed to reduce the burden of developing 
parallel and distributed programs, for example, the Message Passing Interface and Remote Method 
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Invocation in Java. However, parallel programming with these intermediate-level tools is still difficult 
because the programmer is forced to specify many details of how the parallelism is managed. Simple 
access to parallel programming seems to require languages that are at least partly functional (e.g., 
MapReduce) or declarative (e.g., SQL). 

One method for achieving simple user parallelism is to create languages whose primitives 
perform expensive operations on very-large data structures. Large matrix operations, such as 
multiplication or inversion, are expensive but readily parallelizable. Languages such as Matlab, S, Splus, 
and R, for which the basic data structure is a matrix, may therefore be promising aids to parallelism. R is 
the open-source version of S-plus, and it has attracted the most development effort. Open-source efforts 
include Multicore-R and R/parallel, which add a parallelized Apply construct to the language. Revolution 
Analytics produces a commercial version of R with a variety of extensions to support large-scale data 
analysis, for example, external memory versions of commonly used statistical analyses, and parallelized 
versions of looping functions such as “foreach” and “apply,” as well as multicore implementations of 
matrix operators. Ricardo interfaces R to Hadoop through Jaql and uses Jaql to run parallelized data 
analysis queries before loading the results into R for local analysis (Das et al., 2010). 

Some new programming languages are designed to readily support parallel programming. For 
example, F# is a functional language derived from OCaml, but with simplified syntax. While F# supports 
an imperative programming style, its nature encourages a functional style.  

TRENDS AND FUTURE RESEARCH 

The clear trend for large-scale data analysis is to make increasing use of multicore parallel and 
distributed systems. The method for achieving enhanced performance through parallelism will depend on 
the nature of the data and the application. The largest analyses will be performed in large data centers 
running specialized software such as Hadoop over HDFS to harness thousands of cores to process data 
distributed throughout the cluster. Other large and centrally maintained facilities might run streaming 
analysis systems that reduce massive qualities of real-time data into a more manageable high-level data 
product. 

However, actual analysts need to explore these data sets for them to be useful. One option is a 
grid-style environment in which users submit batch jobs to a large cluster and sometime later retrieve a 
result. While this result might be highly reduced, e.g., a plot in a graphical user interface, it might also be 
a processed data set delivered to the analysts’ workstation (or cluster). Even inexpensive personal 
computers currently provide four high-performance cores and access to a powerful GPU. The local 
workstation will provide parallelized tools for exploring and analyzing the local data set.  

While large server farms provide immense computing power, managing them is expensive and 
requires specialized technical expertise. Therefore the trend of outsourcing large computing tasks to cloud 
services such as Amazon’s SC2 is likely to continue. One roadblock to using cloud services for massive 
data analysis is the problem of transferring the large data sets. Maintaining a high-capacity and wide-scale 
communications network is very expensive and only marginally profitable.  

Software systems tend to develop greater power and performance until the complexity of the 
system exceeds human (or organizational) ability to manage it. Parallel databases allow naive users to 
compose and execute complex programs over petabytes of data. Similarly, MapReduce removes enough 
of the complexity of writing very-large-scale distributed programs that a large user group can access the 
power of a large cluster. Hadoop overlays further reduce the complexity of large-scale data analysis. 

However, using and maintaining large parallel and distributed systems remains difficult for the 
following reasons: 
 

• While parallel databases are readily queried by casual users, they are very hard to tune, and 
data loading remains a bottleneck. 
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• Although modern systems and languages have made parallel programming much easier than 
previously, they remain significantly more difficult than serial programs. 

• While modern systems and languages abstract away many of the difficulties of parallel and 
distributed programming, debugging remains difficult. 

• Architecting, building, and maintaining a large cluster requires specialized expertise. 
• Understanding the performance of parallel and distributed programs and systems can be 

extremely difficult. Small changes to program phasing, data layout, and system configuration can have a 
very large effect on performance. Very large systems are typically accessed by a user community; the 
effect of the interaction of multiple parallel programs compounds the problem of understanding 
performance. 
 

Achieving greater use of the power of parallel and distributed systems requires further 
innovations that simplify their use and maintenance. Many very-large data systems need to store very-
large amounts of historical data, but also provide real-time or near-real-time alerting and analytics. 
However, systems designed for real-time response tend to have a very different architecture than 
historical, batch-oriented large-data systems. A typical response to these needs is to build two separate 
and loosely coupled systems. For example, a streaming system might provide real-time alerting, while 
historical analyses are made on a batch-oriented system. Transparently bridging real-time systems with 
large-data systems remains a research issue. 

Similarly, data integration and data quality assurance are difficult problems which, in spite of 
tools such as Clio (Haas et al., 2005) or IBM’s InfoSphere Information Analyzer, are generally bespoke, 
labor-intensive tasks. A significant direction of future research is the development of simple but powerful 
data-integration and data-quality tools that use machine learning techniques to automate these tasks. 
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4 

Temporal Data and Real-time Algorithms 

INTRODUCTION 

Temporal data are associated with real-time acquisition and prediction of either human-generated 
data (e.g., Web traffic) or physical measurements (e.g., speech and video data). Temporal information 
sources are very relevant to the challenges of analyzing massive data because many massive streams of 
data exhibit real-time properties. Thus, real-time algorithms for managing temporal streams comprise a 
broadly useful foundation on which to create new analysis capabilities. This chapter focuses on the 
current solutions for and the specific challenges that time imposes on tasks such as data acquisition, 
processing, representation, and inference. It illuminates the challenges of dynamic data, and it will also 
touch on the hardware infrastructure required for storing and processing temporal data. 

An example of the changes wrought by time upon massive data sets for human-generated data is 
the “click-through rate” estimation problem in online advertising systems. Millions of new data elements 
are accumulated every day, and the number of dimensions (number of discrete click-through paths) may 
grow by a few thousand per day. However, old dimensions, also referred to as coordinates, also disappear, 
such as when a proper noun that was frequent in the past is no longer used. For example, a new word like 
“iPad” adds a dimension, while a specific typewriter that is no longer manufactured may disappear from 
the relevant data, eliminating a dimension. Natural sequences such as speech and audio signals exhibit 
similar characteristics, although the dimension does not grow as rapidly. A notable example here is 
speech excerpts collected from mobile devices. Here the sheer number of utterances, their variability 
(e.g., accents and dialects), and the vocabulary size pose serious challenges in terms of storage, 
representation, and modeling. Last, but not least, is the domain of real-time imaging streams from 
satellites, surveillance cameras, street-view cameras, and automated navigation machines (such as 
unmanned cars and small aerial surveillance vehicles), whose collective data is growing exponentially. 

DATA ACQUISITION 

The initial phase of a temporal data analysis system is the acquisition stage. While in some cases 
the data are collected and analyzed in one location, many systems consist of a low-level distributed 
acquisition mechanism. The data from the distributed sources must generally be collected into one or 
more data analysis centers using a real-time, reliable data feeds management system. Such systems use 
logging to ensure that all data get delivered, triggers to ensure timely data delivery and ingestion, and 
intelligent scheduling for efficient processing. For social media, data are often analyzed as they are 
collected, and the raw data are often not archived due to lack of storage space and usage policies. 

Real-time massive data analysis systems generally use some type of eventual consistency, which, 
as the term implies, means that eventually the data arrive to all servers. Eventual consistency is often used 
in large-scale distributed systems to minimize the cost of distributed synchronization. Eventual 
consistency is also appropriate for real-time data analysis, because generally one does not know when all 
relevant data have arrived. Failures and reconfigurations are common in very-large-scale monitoring 
systems, so, in general, one cannot determine whether a data item is missing or merely late. Instead, the 
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best strategy is generally to do as much processing as possible with the data that are available, and 
perhaps recompute answers as additional data come in. 

Large-scale real-time analysis systems not only collect a data stream from many sources, they 
also typically collect many data streams and correlate their results to compute answers. Different data 
streams typically are collected from different sources, and they often use different data-feed delivery 
mechanisms. As a result, different data streams typically exhibit different temporal latencies—one might 
reflect data within 1 minute of the current time, another within 10 minutes of the current time. Differing 
latencies in data streams, combined with the uncertainty associated with determining when all data up to 
time t for a stream have been collected, makes it difficult to produce definitive results for a query without 
a significant delay. The problem of determining when a collection of data streams can produce a 
sufficiently trustworthy answer up to time t is called temporal consistency. The theory and practice of 
temporal consistency of streams is at its infancy.1 

Large real-time data analysis systems will often collect many real-time data streams and compute 
many higher-level data products (materialized views) from them. Many data-ingest and view-update tasks 
must compete for limited system resources. Conventional real-time scheduling theories (such as hard, 
firm, or soft real-time scheduling) are not appropriate, because tasks that miss deadlines either break the 
system (hard real-time), are discarded (firm real-time), or are ignored (soft real-time). The recent theory 
of bounded-tardiness scheduling (Leontyev and Anderson, 2010) provides the most appropriate way to 
model a real-time data analysis system. Tasks can miss their deadline without breaking the system or 
being discarded, but their tardiness in completion after their deadline is bounded. Most conventional real-
time scheduling algorithms, such as earliest-deadline first, are bounded-tardiness algorithms. 

Massive real-time data warehouses also need to cope with the breakage of one or more temporal 
feeds. Such a breakage might be the failure of a server at the feed side, an unannounced change in 
schema, and so on. When the feed source recovers, its past stream needs to be ingested and all transitively 
dependent data products updated. This task places a huge load on a temporal massive data warehouse, 
throwing it into temporary overload and creating the need for a graceful recovery of the affected tables 
without degrading the timeliness of updates to the other tables in the warehouse. The problem becomes 
more pronounced when a stream warehouse system needs to store a long history of events, e.g., years or 
decades, and is continuously loaded. Moreover, such stream warehouses also need to cope with the need 
of providing both immediate time alerts and long-range aggregated statistics. There is thus a tension in 
such systems between timely serving needs and the synchronization latency, which is necessary for 
maintaining consistency.  

In some online transaction processing systems, fast real-time synchronization can become an 
issue (Kopetz, 1997). When data integrity is a mandatory requirement, the state-of-the art systems use 
some variation of the Paxos algorithm. Paxos is actually a family of protocols for determining consensus 
in a network of unreliable processors; consensus is the process of agreeing on the result among a group of 
computing units, which is difficult when the units or their communication medium experience temporal 
failures. However, the Paxos family of algorithms was designed for maintaining consistency in small- to 
medium-scale distributed data warehousing systems, and scaling Paxos-based and other consistency 
preserving storage mechanisms is currently a critical open issue. In practice, implementing a consistent 
distributed real-time system in a massive computing environment with frequent transactions requires 
special technical expertise. As described in the President’s Council of Advisors on Science and 
Technology report Designing a Digital Future (PCAST, 2010), the challenge in building large-scale 
temporal systems is that they must be robust to hardware failures as well as software bugs. For example, 
because a modern central processing unit (CPU) has a failure rate of about one fatal failure in 3 years, a 
cluster of 10,000 CPUs would be expected to experience a failure every 15 minutes on average. A 
temporal system for massive data must maintain a consistent, temporally coherent view in spite of this. 
As a real-world example, the Paxos algorithm lies at the heart of Google’s cluster servers for real-time 

1 For an initial keynote paper that suggests a formal treatment of stream consistency see, Golab and Johnson 
(2011). 
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transactions and services. Despite the fact that the Paxos algorithm, which was invented more than 20 
years ago, is well understood and analyzed, a 1-year effort by one of the world’s experts in the field of 
distributed processing was still necessary to implement the algorithm on Google’s cluster system at a 
speed that will sustain the required transaction rate as well as survive a burst of failures.2 

DATA PROCESSING, REPRESENTATION, AND INFERENCE 

The next stage in time-aware data analysis includes building an abstract representation of the data 
and then using it for inference. Methods for abstract data representation include coding and sketching. 
The coding sub-phase is based on either perceptual codes, which are often lossy, or lossless source coding 
techniques. Lossless source codings are naturally suitable for encoding temporal streams because they are 
often based on Markov models, efficiently represented as a context tree.3 The context modeling is 
combined with a backend stage, which is based on arithmetic coding. Coding systems are typically 
designed under the assumption that only a constant space is available. While this assumption is 
asymptotically valid, recent advances in flash-based memory architectures may greatly enhance the 
current state-of-the-art algorithms. 

To cope with the computational needs that real-time and long-range temporal queries impose, 
analytic tools for summarizing temporal data streams are a must. A common and very effective 
summarization tool is called sketching. There are several types of sketching representations, broken down 
into two broad categories: those that retain data in its native format (e.g., sliding windows, a technique for 
randomly sub-sampling time series) and those that use some derived format (e.g., random projections of 
one or more data coordinates, histograms of underlying distribution). Combinations of these two types of 
representation are also used. Chapter 6 contains more discussion of sketching.  

Many data sources have an inherent periodic component or a natural time scale, and natural time-
aware representations include averaged snapshots or windows of data over time, e.g., averaged over every 
basic time scale (such as a day) or repeated for many periods of time. See the tutorial by Garofalakis et 
al.4 for a number of examples of representation types and techniques. One key mathematical feature 
(albeit not a necessary feature) of any time-aware representation method is that it be linear; the 
representation of changes over time in the data are easily reflected and easily computed in changes to the 
original representation. 

Going past the representation phase, which can be the sole stage of a real-time system, the core of 
many temporal data streams is a learning and inference engine. There has been an immense amount of 
work on online algorithms that are naturally suitable for time-aware systems.5 Most online algorithms 
impose constant or at least sublinear memory assumptions, similar to data-streams algorithms. However, 
to cope with non-stationarity effects (changes in the distribution of the input stream) and to achieve high 
accuracy, more computationally demanding and space-consuming approaches are needed. One notable 
and promising approach is mixed online and batch learning by follow-the-regularized-leader (FTRL) 
algorithms, an overview of which is given in the book by Cesa-Bianchi and Lugosi.6 To date, however, 
there have been few implementations of large-scale massive data analysis systems based on FTRL. 

In addition to the use of temporal data to form accurate predictions, the processing of temporal 
data often gives rise to specialized inference problems such as change-point detection. When the input 

2 For further details see Chandra et al. (2007). 
3 See Eindhoven University of Technology, The Context-Tree Weighting Project, available at 

http://www.sps.ele.tue.nl/members/F.M.J.Willems/RESEARCH_files/CTW/ResearchCTW.htm. 
4 M. Garofalakis, J. Gehrke, and R. Rastogi, “Querying and Mining Data Streams: You Only Get One Look. A 

Tutorial,” presented at the 28th International Conference on Very Large Data Bases (VLDB 2002), August 20-23, 
2002, available at http://www.cse.ust.hk/vldb2002/program-info/tutorial-slides/T5garofalalis.pdf, accessed June 16, 
2012. 

5 Cesa-Bianchi and Lugosi (2006) provides a broad in-depth description of online algorithms. 
6 Ibid. 
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data rate exceeds the computing capabilities of online learning and prediction algorithms, one needs to 
resort to methods that provide approximate representations. This paradigm is often referred to as the data-
stream approach. Data-stream algorithms provide temporal tools for representing and processing input 
data that comes at a very high rate. The high-rate input stresses the communication, storage, and 
computing infrastructure to the point that it is difficult, if not impossible, to transmit the entire input, 
compute complex functions over large portions of the input stream, and store and capture temporally the 
entire input stream. Numerous effective fast algorithms exist for extracting statistical quantities such as 
median, mean, quantiles, and histograms and, more generally, for answering queries of the data set or 
multiple data sets. In the past 10 years, there have been a number of stream-based data management 
systems developed to address these questions. One such example is the Stanford Data Stream 
Management System. Theory and applications of streaming data have developed to the point where a 
whole book has been dedicated to the subject (Muthukrishnan, 2005). However, the fusion of stream 
approaches with efficient statistical inference for general models remains a major research challenge. This 
fusion poses significant challenges because state-of-the-art learning algorithms are not designed to cope 
with partial summaries and snapshots of temporal data. 

SYSTEM AND HARDWARE FOR TEMPORAL DATA SETS 

The discussion thus far has focused on software, analysis, and algorithmic issues and challenges 
that are common to massive temporal data. Massive temporal data also pose high demands on the 
hardware and systems infrastructure. Such systems need to employ a very large distributed file systems 
such as Google’s file system (GFS) and tens of data-acquisition machines to funnel the data to thousands 
of processors using very fast interconnects. This type of architecture has a very high throughput but is 
very difficult to replicate and expensive to maintain, requiring a good complement of reliability engineers. 
Massive temporal systems cannot be deployed by boutique-size data warehouses because there are only a 
handful of tools that can help in large-scale processing. Noise-tolerant storage of temporal data also 
places a high bar on maintaining data integrity because storage error patterns tend to be local and bursty 
in nature. While the theory of error correction for communication over channels prone to burst errors is 
well established (e.g., McAuley, 1990), applications of the theory to massive storage of temporal data are 
mostly confined to proprietary systems such as the aforementioned GFS. In addition to the storage 
requirements, substantial computing infrastructure is required even for simple tasks. Here again there is a 
lack of publicly available source code for near-real-time processing of temporally stored data. 

CHALLENGES 

Major current and future challenges that arise in time-aware systems for massive data include the 
following: 
 

• Design and implementation of new representation algorithms and methods for perpetually 
growing, non-stationary massive data, especially in conjunction with learning and modeling. While 
sketching algorithms for streaming data naturally incorporate changes in the data streams, they do not 
necessarily give an easy and straightforward method for adjusting and updating models and inferences 
derived from these sketches over time. Current algorithms permit efficient model-building but do not 
efficiently change the models over time. Furthermore, there is not a natural way to identify or to detect 
model changes in a streaming setting, perhaps with limited data. The current algorithms for updating 
network metrics permit efficient calculation only for certain network structures. 

• Streaming and sketching algorithms that leverage new architectures, such as flash memory 
and terascale storage devices. As discussed in the chapter on sampling, software and hardware models 
for acquiring data quickly over time is an area of active current research. Many streaming and sketching 
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algorithms are designed in the absence of a specific hardware or software system; yet it is only when 
practical systems are built that both the limitations of the theoretical algorithms as well as potential new 
algorithms are seen. 

• Distributed real-time acquisition, storage, and transmission of temporal data. 
• Consistency of data. Most systems perform acquisition in an asynchronous manner. When 

consistency is important, Paxos-based algorithms are employed. Can these solutions scale when the input 
stream is one or two orders of magnitude more massive, as in the case of audio and video data? 

• Lack of effective tools for the design, analysis, implementation, and maintenance of real-time, 
temporal, time-aware systems for nonprofit, educational, and research institutions, including lack of 
realistic data sources for benchmarking algorithms and hardware performance. 
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5 

Large-Scale Data Representations 

OVERVIEW 

Data representation refers to the choice of a mathematical structure with which to model the data 
or, relatedly, to the implementation of that structure. The choice of a particular data representation is 
dictated by various considerations, such as hardware, communication, data-generation process, input-
output, data sparsity, and noise. As such, questions of large-scale data representation typically have 
algorithmic, statistical, and implementation or systems aspects that are intertwined and which need to be 
considered jointly. In addition, the nature of data representation changes depending on the task at hand, 
the context in which the data are acquired, the aspect of data analysis being addressed, and what features 
of the data are being captured. 

A closely related but somewhat more vague notion is that of a data feature. In many cases, a data 
feature is an externally defined property of the data that can be easily computed from the data or 
measured directly and then plugged into a data-processing algorithm. Designing such features is often 
difficult, because it requires substantial domain-specific insight, but it is often the most important step in 
the data-analysis pipeline. In other cases, however, standard mathematical operations are used to 
transform the data and, thereby, define features. For example, properties of the eigenvectors or 
eigenvalues of matrices associated with the data can be used as features. 

For consistency, the following taxonomy is used to distinguish between several basic uses of the 
term “data representation”: 
 

• Basic data structures. This category includes structures such as hash tables, inverted indices, 
tables/relations, etc. These are data structures that one finds in standard textbooks on algorithms and 
databases (Cormen et al., 2009; Garcia-Molina et al., 2008). 

• More abstract, but basic, mathematical structures. This category includes structures such as 
sets, vectors, matrices, graphs, and metric spaces. Many of these mathematical structures have sparse 
variants, e.g., vectors and graphs with few non-trivial components, matrices of low rank, and so on. Each 
mathematical structure can be represented using many data structures, with different implementations 
supporting different operations and optimizing different metrics. 

• Derived mathematical structures. This category includes more sophisticated structures such 
as clusters, linear projections, data samples, and such. Although these representations are often basic 
mathematical structures, they do not directly represent the original data, but are instead derived from the 
data and often can be viewed as representations of components in a model of the data. 
 

The committee also differentiates between two different “design goals” that one has to keep in 
mind in choosing appropriate data representations: 
 

• First, on the upstream or data-acquisition or data-generation side, one would like a structure 
that is “sufficiently close” to the data. Such a representation supports the process of generating, storing, or 
accessing the data while providing a model for the noise or uncertainty properties of the data. The goal of 
such representations is to support all of these operations without significantly altering the data. 
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• Second, on the downstream or data analysis side, one would like a structure that has both a 
flexible description and is tractable algorithmically. That is, it should be expressive enough so that it can 
describe a range of types of data, but it should not be so expressive that it can describe anything (in which 
case computations and inferences of interest would likely be intractable). 

GOALS OF DATA REPRESENTATION 

While a picture may be worth a thousand words, a good representation of data is priceless: a 
single data representation, or sometimes multiple ones, allows one to carry out a large number of data 
processing and analysis tasks in a manner that is both algorithmically efficient and statistically 
meaningful. This section presents an overview of the various goals of data representations, together with 
illustrative examples of representations that accomplish those goals. 

Reducing Computation 

In the massive data context, a key goal in data representation is that of reducing computation. In 
order to understand the relationship between data representation and computational efficiency, one has to 
examine specific data structures that are most suitable for different computational primitives. 

One basic operation in data processing is to query parts of the data. The main technique to 
facilitate efficient querying is indexing, and thus one needs advanced indexing algorithms that can 
retrieve desired data and attributes efficiently. The indices can be regarded as additional representations 
of the data that are derived from the raw data and added to the data set as auxiliary information. 
Moreover, different classes of queries and different data require different indexing methods in order to be 
performed efficiently. 

For example, for queries on text documents, a standard indexing technique is an inverted index 
table (Baeza-Yates and Ribeiro-Neto, 1999). That is, one stores a mapping from content (such as words or 
numbers) to its physical locations in the data set. One may map different contents into one index; for 
example, an indexer for text search usually records words with the same underlying meaning (e.g., 
“drives,” “drove,” and “driven” would be related to the single concept word “drive”). In some 
applications (e.g., biology) it is important to allow more general pattern matching queries, where the goal 
is to find arbitrary substrings (not only words) in the text. Suffix trees, suffix arrays, and variations of 
these are some of the popular structures solving the pattern matching problem (Jones and Pevzner, 2004). 
In general, approximate matching may require more complex indexing schemes. Example are locality-
sensitive hashing (Andoni and Indyk, 2008) and min-hashing (Broder, 1997), which can efficiently find 
approximate nearest neighbors of a query from a database. 

For many other aspects of data analysis, the more traditional data representations have been 
geared toward algorithms that process data sequentially on a single machine. Additional considerations 
are needed for large-scale distributed computing environments that use computational resources from 
multiple computers.  

Reducing Storage and/or Communication  

In addition to reducing computation time, proper data representations can also reduce the amount 
of required storage (which translates into reduced communication if the data are transmitted over a 
network). For example, text documents can be efficiently compressed using Lempel-Ziv compression, the 
Burrows-Wheeler transform, or similar representations (Salomon, 1998). Compression can be also 
applied to data structures, not just data. For the aforementioned pattern-matching search problem, there 
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exist data structures (based on the Burrows-Wheeler transform) that store only a compressed 
representation of the text (Ferragina and Manzini, 2000; Langmead et al., 2009). 

One can reduce the storage size even further by resorting to lossy compression. There are 
numerous ways this can be performed. This is often achieved by transform coding: one transforms the 
data (e.g., images or video) into an appropriate representation (e.g., using Fourier or wavelet transforms) 
and then drops “small” coefficients. For matrices, lossy compression can be achieved by truncating the 
Singular Value Decomposition or the eigenvalue decomposition (Hansen, 1987). This involves retaining 
just the dominant part of the spectrum of the data matrix and removing the “noise.” Different forms of 
lossy compression can be used to improve space efficiency of data structures as well. Examples include 
Bloom filters, for approximate set-membership queries (Broder and Mitzenmacher, 2002), and Count-
Sketch (Charikar et al., 2002) and Count-Min (Cormode and Muthukrishnan, 2005) representations for 
estimating item counts. These methods randomly map (or hash) each data item into a lower-dimensional 
representation, and they can be used for other tasks, such as estimating similarity between data sets. Other 
related techniques for obtaining low-dimensional representations include random projections, based either 
on the Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss, 1984) or its more time-efficient 
versions (Ailon and Chazelle, 2010; Ailon and Liberty, 2011).  

Reducing Statistical Complexity and Discovering the Structure in the Data  

One can also use data representations to reduce the statistical complexity of the problem—the 
amount of data needed to solve a given statistical task with a given level of confidence—by 
approximating the data set by simpler structures. Specifically, by carefully selecting a small number of 
data attributes, data points, or other parameters, one can apply more constrained statistical models with 
fewer parameters and improve the quality of statistical inference. The reduced representation should 
represent the sufficient statistics for inference, while the “dropped” data should either be irrelevant or 
simply be noise. Alternatively, one can view this process from a model-based perspective as discovering 
the latent structure of the data.  

Typically, this approach also leads to reduced running time and storage. This can be exploited as 
a filtering approach to data analysis: if we have a data set with many features that cannot be processed by 
complex algorithms, we may use a simple feature-selection algorithm to filter the features and obtain a 
smaller (but still reasonably large) set of features that can be handled by the complex algorithm. This 
leads to a multi-stage approach that goes back and forth between representations with different accuracies 
and algorithmic complexity. 

Two basic approaches to structure discovery are dimensionality reduction and clustering. 
Dimensionality reduction refers to a broad class of methods that re-express the data, typically in 

terms of vectors that are formally of very high dimension, in terms of a small number of actual data points 
or attributes, linear or nonlinear combinations of actual data points/attributes, or linear combinations of 
nonlinearly transformed actual data points/attributes. Such methods are most useful when one can view 
the data as a perturbed approximation of some low-dimensional scaffolding. There are numerous 
algorithms for discovering such structures in data, either linear (e.g., Principal Component Analysis; see 
van der Maaten et al., 2009) or nonlinear ones (locally linear embedding, isomap, Laplacian eigenmaps, 
diffusion maps; see Roweis and Saul, 2000; Tenenbaum et al., 2000; Belkin and Niyogi, 2003; and 
Coifman and Lafon, 2006). 

It is critically important to understand what kind of properties must be preserved via 
dimensionality reduction. In the simplest unsupervised settings, it is often the variance or some other 
coarse measure of the information in the data that must be preserved. In supervised settings, the goal is to 
reduce the dimension while preserving information about the relevant classification directions. A popular 
method for achieving this goal when it is thought that some sort of sparsity is present is to augment a 
regression or classification objective with an L1 constraint, which reduces the number of attributes used 
by the classifier (Tibshirani, 1996). A different class of methods, known as sufficient dimension reduction 
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methods, search over projections of the data to find a projection that retains as much information about 
the response variable as possible. 

Although algorithms that implicitly incorporate sparsity (e.g., local spectral methods or local 
diffusion-based or sampling-based methods) have been less well-studied than algorithms that explicitly 
add a regularization term to the original objective, the former have clear advantages for very-large-scale 
applications. Relatedly, randomization as a computational or algorithmic resource, and its implicit 
regularization properties, is also a subject of interest, in particular for large-scale data analysis. By 
implicitly incorporating regularization into the steps of an approximation algorithm in a principled 
manner, one can obtain algorithmic and statistical benefits simultaneously. More generally, although the 
objects in the reduced dimensional space are often represented as vectors, other useful data 
representations such as relational or hierarchical representations can be useful for large-scale data that are 
not naturally modeled as matrices. 

Dimensionality reduction is often used after increasing the dimensionality of the data. Although 
at first this may appear counter-intuitive, the additional dimensions may represent important nonlinear 
feature interactions in the data. Including these additional dimensions can simplify statistical inference 
because the interaction information they capture can be incorporated into simpler linear statistical models, 
which are easier to deal with. This forms the basis of kernel-based methods that have been popular 
recently in machine learning (Hofmann et al., 2008), and, when coupled with matrix sampling methods, 
forms the basis of the Nystrom method (Kumar et al., 2009). 

Clustering (also known as partitioning or segmentation) is a widely performed procedure that 
tries to partition the data into “natural groups.” Representing the data by a small number of clusters 
necessarily loses certain fine details, but it achieves simplification, which can have algorithmic and 
statistical benefits. From a machine learning perspective, this task often falls under the domain of 
unsupervised learning, and in applications often the first question that is asked is, How do the data 
cluster? Many clustering algorithms are known in the literature. Some of the most widely used are 
hierarchical clustering, k-means, and expectation maximization (Jain et al., 1999). 

There is a natural relationship between clustering and dimensionality reduction methods. Both 
classes of methods try to make data more compact and reveal underlying structure. Moreover, one may 
view clustering as a form of dimensionality reduction. Some methods, e.g., latent Dirichlet allocation 
(Blei et al., 2003), explicitly exploit this connection. 

Exploratory Data Analysis and Data Interpretation 

Both dimensionality reduction and clustering are highly useful tools for visualization or other 
tasks that aid in initial understanding and interpretation of the data. The resulting insights can be 
incorporated or refined in more sophisticated inference procedures. More generally, exploratory data 
analysis refers to the process of simple preliminary examinations of the data in order to gain insight about 
its properties in order to help formulate hypotheses about the data. One might compute very simple 
statistics, use some of the more sophisticated algorithms discussed earlier, or use visualization tools. 
Sampling the data, either randomly or nonrandomly, is often important here, because working 
interactively with manageable sizes of data can often be a first step at determining what is appropriate for 
a more thorough analysis, or whether a more sophisticated analysis is even needed. It should be noted, 
however, that in addition to reducing storage, sampling methods such as CUR decompositions1 can also 
be also useful for exploratory data analysis tasks, since they provide actual data elements that are 
representative in some sense. For example, when applied to genetics data, CUR decompositions can 
provide actual information about actual patients or actual DNA single-nucleotide polymorphisms that can 
then be typed in a laboratory by a geneticist for further downstream analysis (Paschou et al., 2007). 

1 The decomposition of a data matrix into the factors “C,” “U,” and “R” is explained in Mahoney and Drineas 
(2009).  
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Sampling and Large-Scale Data Representation 

Many questions of large-scale data representation have to do with questions of sampling the data, 
and there are several complementary perspectives one can adopt here.  

On the one hand, one can imagine that the data have been collected (either actually or 
conceptually), and one is interested in performing relatively expensive computations on the data. One 
possible solution, mentioned above, is to perform the expensive computation on a small sample of the 
data and use that as an approximation for the exact solution on the full data set. In this case, sampling is 
effectively a dimensionality-reduction method and/or a technique for reducing storage that makes it 
possible to obtain approximate solutions to expensive problems. Many randomized, as well as 
nonrandom, sampling techniques are known as well, including core-sets, data squashing, and CUR 
decompositions (Agarwal et al., 2005; DuMouchel, 2002; Mahoney and Drineas, 2009). More generally, 
data clustering (also mentioned above) can be used to perform data compression by replacing each cluster 
element with a cluster “representative,” a process sometimes known as vector quantization (Gersho and 
Gray, 1992).  

On the other hand, sampling can refer to the process of collecting data in the first place, and 
typically it is of interest when collecting or analyzing all of the data is unreasonable. A more detailed 
discussion of this is provided in Chapter 8, and here the committee simply notes some similarities and 
differences. When sampling to collect data, one is interested in sampling enough to reduce the uncertainty 
or variance of, for example, estimates, but a major concern is also on controlling the bias. That is, one 
wants to collect at least some data from all groups or partitions that are thought to be relevant to the 
outcomes of the data analysis. When sampling is used to speed up computation, one is also interested in 
minimizing variance, but controlling bias is often less of an issue. The reason is that one can typically 
construct estimators that are unbiased or that have a small bias and then focus on collecting enough 
samples in such a way that the variance in the computed quantities is made sufficiently small. Because the 
goal is simply to speed up computations, one is interested in not introducing too much error relative to the 
exact answer that is provided by the larger data set. Thus, many of the underlying methodological issues 
are similar, but in applications these two different uses of the term “sampling” can be quite different. 

CHALLENGES AND FUTURE DIRECTIONS 

The discussion to this point has addressed some of the challenges in data representation in 
general, but it has not highlighted the additional burdens that massive data impose on data 
representations. The following subsections address key issues in representing data at massive scales. The 
challenges of data management per se are important here, but they have already been discussed in Chapter 
3. 

The Challenge of Architecture and Algorithms:  
How to Extend Existing Methods to Massive Data Systems 

A large body of work currently exists for small-scale to medium-scale data analysis and machine 
learning, but much of this work is currently difficult or impossible to use for very-large-scale data 
because it does not interface well with existing large-scale systems and architectures, such as multi-core 
processors or distributed clusters of commodity machines. Thus, a major challenge in large-scale data 
representation is to extend work that has been developed in the context of single machines and medium-
scale data to be applicable to parallel, distributed processing and much larger-scale situations. A critical 
concern in this regard is taking into account real-world systems and architectural constraints. Many of 
these issues are very different than in the past because of the newer architectures that are emerging 
(Asanovic et al., 2006). 
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In order to modify and extend existing data analysis methods (that have implicitly been developed 
for serial machines with all the data stored in random access memory), a critical step will be choosing the 
appropriate data representation. One reason is that the choice of representation affects how well one can 
decompose the data set into smaller components so that analysis can be performed independently on each 
component. For example, intermediate computational results have to be communicated across different 
computational nodes, and thus communication cost should be minimized, which also affects and is 
affected by the data representation. This issue can be rather complicated, even for relatively simple data 
structures such as matrix representations. For example, to perform matrix-vector multiplication (or one of 
many linear algebra operations that use that step as a primitive), should the matrix be distributed by 
columns (in which case each node keeps a small set of columns) or should it be distributed by rows (each 
node keeps a small set of rows)? The choice of representation in a parallel or distributed computing 
environment can heavily impact the communication cost, and thus it has far-reaching consequences on the 
underlying algorithms. 

The Challenge of Heavy-Tailed and High-Variance Data 

Although dimensionality reduction methods and related clustering and compact representations 
represent a large and active area of research with algorithmic and statistical implications, it is worth 
understanding their limitations. At a high level, these methods take advantage of the idea that if the data 
are formally high-dimensional but are very well-modeled by a low-dimensional structure—that is, the 
data are approximately sparse in some sense—then a small number of coordinates should suffice to 
describe the data. On the other hand, if the data are truly high-dimensional, in the sense that a high-
dimensional structure provides the best null model with which to explain the data, then measure 
concentration and other intrinsically high-dimensional phenomena can occur. In this case, surprisingly, 
dimensionality reduction methods can often be appropriate again. Both very-high-dimensional and very-
low-dimensional extremes can have beneficial consequences for data analysis algorithms.  

Unfortunately, not all data can fruitfully be approximated by one of those two limiting states. 
This is often the case when the processes that underlie the generation of the data are highly variable. 
Empirically, this situation often manifests itself by so-called heavy-tailed distributions, e.g., degree 
distribution or other statistics of informatics graphs that decay much more slowly than do the tails of 
Gaussian distributions (Clauset et al., 2009). 

As an example of this, social and information networks often have very substantial long-tailed or 
heavy-tailed behavior. In this case, there are a small number of components that are “most important,” but 
those components do not capture most of the information in the data. In such cases, data often cluster 
poorly—there may be local pockets of structure, but the data might be relatively unorganized when 
viewed at larger size scales—and thus the vast majority of traditional algorithmic and statistical methods 
have substantial limitations in extracting insight (Leskovec et al., 2009). 

Far from being a pathological situation, the phenomenon of data having good small-scale 
structure but lacking good large-scale structure arises in many applications. In Internet applications, a 
major challenge is to “push mass out to the heavy tail.” For example, in a recommender system, the 
“heavy tail” may refer to the large number of users who rate very few movies, in which case a challenge 
is to make useful personalized recommendations to those users; or it may refer to the large number of 
movies that are not blockbuster hits and that have received very few ratings, in which case a challenge is 
to create new markets by suggesting these movies to potentially interested users. In both cases, there is 
substantial competitive advantage to be exploited by making even slightly more reliable predictions in 
this noisy regime. Similarly, in many scientific applications, the “heavy tail” is often where new scientific 
phenomena manifest themselves, and thus methods for extracting small signal from a background of noise 
is of interest.  

Thus, a major challenge in large-scale data representation is to develop methods to deal with 
very-high-variance situations and heavy-tailed data. 
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The Challenge of Primitives: Develop a Middleware for Large-Scale Graph Analytics 

From the computer systems perspective, it would be very helpful to identify a set of primitive 
algorithmic tools that (1) provide a framework to express concisely a broad scope of computations; (2) 
allow programming at the appropriate level of abstraction; and (3) are applicable over a wide range of 
platforms, hiding architecture-specific details from the users. To give an example of such a framework, 
linear algebra has historically served as such middleware in scientific computing. The mathematical tools, 
interactive environments, and high-quality software libraries for a set of common linear algebra 
operations served as a bridge between the theory of continuous physical modeling and the practice of 
high-performance hardware implementations. A major challenge in large-scale data representation is to 
develop an analogous middleware for large-scale computations in general and for large-scale graph 
analytics in particular. The Graph 500 effort2 may be helpful in this regard, and Chapter 10 of this report 
discusses a possible classification of analysis tasks that might underpin a library of such middleware. 

A good example of an archetypal problem for this challenge is the need for methods appropriate 
for the analysis of large but relatively unstructured graphs, e.g., on social networks, biological networks, 
certain types of noisy graphical models, etc. These problems represent a large and growing domain of 
applications, but fundamental difficulties limit the use of traditional data representations in large-scale 
applications. For example, these problems are characterized by poor locality of reference and data access, 
nontraditional local-global coupling of information, extreme sparsity, noise difficulties, and so on.  

Of particular importance is the need for methods to be appropriate for both next-user-interaction 
applications and interpretable analytics applications. In many applications, there is a trade-off between 
algorithms that perform better at one particular prediction task and algorithms that are more 
understandable or interpretable. An example of the former might be in Internet advertising, where one 
may wish to predict a user’s next behavior. The most efficient data-analysis algorithm might not be one 
that is interpretable by a human analyst. Examples of interpretable analytics applications arise in fields 
such as biology and national security, where the output of the data-analysis algorithm is geared toward 
helping an analyst interpret it in light of domain-specific knowledge. Ideally, middleware would be 
designed to serve both of these purposes. 

One of the potential approaches to this challenge is to use the existing middleware for linear-
algebraic computation, using deep theoretical connections between graph theory and linear algebra (both 
classic (e.g., Chung, 1992) and more recent ones (e.g., Spielman, 2010). However, it is not clear yet to 
what extent these connections can be exploited practically to create an analogous middleware for very-
large-scale analytics on graphs and other discrete data. Because the issues that arise in modern massive 
data applications of matrix and graph algorithms are very different than those in traditional numerical 
linear algebra and graph theory—e.g., the sparsity and noise properties are very different, as are 
considerations with respect to communication and input/output cost models—a central challenge will be 
to deal with those issues.  

The Challenge of Manipulation and Integration of Heterogeneous Data 

The manipulation and integration of heterogeneous data from different sources into a meaningful 
common representation is a major challenge. For example, in biology, one might have mRNA expression 
data, protein-protein interaction data, gene/protein sequence data, and phenotypic data to fit to something, 
such as whether a gene is up-regulated or down-regulated in a measurable way. Similarly, on a Web page, 
one may have text, links to and from, images, html structure, user click behavior, and data about which 
site the user came from and goes to. A common way to combine these diverse non-numerical data is to 
put everything into a feature vector. Alternatively, one might construct several similarity graphs or 
matrices and then combine them in a relatively ad hoc way. The very real danger is that doing so damages 

2 See The Graph 500 List, available at http://www.graph500.org/. 
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the structure in each representation, e.g., linear combinations of the combined data might not be 
meaningful, or the rule for combining similarity graphs implicitly introduces a lot of descriptive 
flexibility.  

It is thus important to develop principled ways to incorporate metadata on top of a base 
representation. Such methods should have theoretical foundations, as well as respect the constraints of 
communication, hardware, and so on.  

Relatedly, large-scale data sets may contain information from multiple data sets that were 
generated individually in very different ways and with different levels of quality or confidence. For 
example, in a scientific study, multiple experiments may be conducted in different laboratories with 
varying conclusions. In Web-page analysis, information such as content, click-through information, and 
link information may be gathered from multiple sources. In multi-media analysis, video, speech, and 
closed captions are different information sources. In biological applications, if one is interested in a 
specific protein, information can be obtained from the literature in free-text form describing different 
research results, or from protein interaction tables, micro-array experiments, the protein’s DNA sequence, 
etc. 

One issue is that the most appropriate data representation can differ across these heterogeneous 
sources. For example, structured data, such as in a relational database, are usually represented in tabular 
form. Another kind of data, which is becoming increasingly important, is unstructured data such as free-
form text and images. These require additional processing before the data can be utilized by computers 
for statistical inference. Another challenge is how to take advantage of different information sources (or 
views) to improve prediction or clustering performance. This is referred to as multi-view analysis, a topic 
that has drawn increasing interest in recent years. Much research has been focused on more sophisticated 
ways to combine information from different sources instead of naively concatenating them together into a 
feature vector. 

The Challenge of Understanding and Exploiting the Relative Strengths of Data-Oblivious Versus 
Data-Aware Methods 

Among the dimensionality reduction methods, there is a certain dichotomy, with most of the 
techniques falling into one of two broad categories. 
 

• Data-oblivious dimensionality reduction includes methods that compute the dimensionality-
reducing mapping without using (or the knowledge of) the data. A prime example of this approach is 
random projection methods, which select the mapping at random (Johnson and Lindenstrauss, 1984). In 
this case, the projection is guaranteed to work (in the sense that it preserves the distance structure or other 
properties) for arbitrary point-sets. In addition, generating such projection requires very little resources in 
terms of space and/or time, and it can be done before the data are even seen. Finally, this approach leads 
to results with provable guarantees. Thus, it is popular in areas such as theory of algorithms (Vempala, 
2005), sketching algorithms (see Chapter 6), or compressive sensing (Donoho, 2006).  

• Data-aware dimensionality reduction includes methods that tailor the mapping to a given 
data set. An example is principal components analysis and its refinements. The mapping is data-
dependent in that the algorithm uses the data to compute the mapping, and, as a result, it identifies the 
underlying structure of the data. Empirically, these methods tend to work better than random projections 
(e.g., in the sense of preserving more information with shorter sketches), as long as the test data are 
consistent with the data used to construct the projection. This approach is popular with researchers in 
machine learning, statistics, and related fields. 
 

A challenge is to merge the benefits of data-oblivious and data-aware dimensionality reduction 
approaches. For example, perhaps one could develop methods that “typically” achieve the performance of 
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data-aware techniques while also maintaining the worst-case guarantees of random projections (to have 
something to fall back on in case the data distribution changes rapidly).  

The Challenge of Combining Algorithmic and Statistical Perspectives3 

Given a representation of data, researchers from different areas tend to do very different and 
sometimes incompatible things with it. For example, a common view of the data in a database, in 
particular historically among computer scientists interested in data mining and knowledge discovery, has 
been that the data are an accounting or a record of everything that happened in a particular setting. The 
database might consist of all the customer transactions over the course of a month, or it might consist of 
all the friendship links among members of a social networking site. From this perspective, the goal is to 
tabulate and process the data at hand to find interesting patterns, rules, and associations. An example of an 
association rule is the (possibly mythical) finding that says that people who buy beer between 5 p.m. and 
7 p.m. also buy diapers at the same time. The performance or quality of such a rule is judged by the 
fraction of the database that satisfies the rule exactly, which then boils down to the problem of finding 
frequent itemsets. This is a computationally hard problem, and much algorithmic work has been devoted 
to its exact or approximate solution under different models of data access. 

A very different view of the data, more common among statisticians, is that a set of data 
represents a particular random instantiation of an underlying process describing unobserved patterns in 
the world. In this case, the goal is to extract information about the world from the noisy or uncertain data 
that is observed. To achieve this, one might posit a model, such as a distribution that represents the 
variability of the data around its mean. Then, using this model, one would proceed to analyze the data to 
make inferences about the underlying processes and predictions about future observations. From this 
perspective, modeling the noise component or variability well is as important as modeling the mean 
structure well, in large part since understanding the former is necessary for understanding the quality of 
predictions made. With this approach, one can even make predictions about events that have yet to be 
observed. For example, one can assign a probability to the event that a given user at a given Web site will 
click on a given advertisement presented at a given time of the day, even if this particular event does not 
exist in the database. See Chapter 7 for further discussion of the model-based perspective.  

The two perspectives need not be incompatible. For example, statistical and probabilistic ideas 
are central to much of the recent work on developing improved randomized approximation algorithms for 
matrix problems. Otherwise-intractable optimization problems on graphs and networks yield to 
approximation algorithms when assumptions are made about the network participants. Much recent work 
in machine learning also draws on ideas from both areas. Thus, a major challenge in large-scale data 
representation is to combine and exploit the complementary strengths of these two approaches. The 
underlying representation should be able to support in an efficient manner operations required by both 
approaches. One promising direction takes advantage of the fact that the mathematical structures that 
provide worst-case guarantees often have fortuitous side effects that lead to good statistical properties 
(Mahoney and Orecchia, 2011). 
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6 
Resources, Trade-offs, and Limitations 

INTRODUCTION 

This chapter discusses the current state of the art and gaps in fundamental understanding of 
computation over massive data sets. The committee focuses on general principles and guidelines 
regarding which problems can or cannot be solved using given resources. Some of the issues addressed 
here are also discussed in Chapters 3 and 5 with a more practical focus; here the focus is on theoretical 
issues. 

Massive data computation uses many types of resources. At a high level, they can be partitioned 
into the following categories: 
 

• Computational resources, such as space, time, number of processing units, and the amount of 
communication between them; 

• Statistical or information-theoretic resources, such as the number of data samples and their 
type (e.g., whether a sample is random or carefully selected by the algorithms, whether the data are 
“labeled” or “unlabeled,” and so on); often, one might also like to minimize the amount and type of 
information revealed about the data set in order to perform certain computation to minimize the loss of 
privacy; and 

• Physical resources, such as the amount of energy used during the computation. 

The use of these resources has been studied in several fields. Reviewing the state of the art in 
those areas, even only in the context of massive data processing, is a task beyond the scope of this report. 
Nevertheless, identifying the gaps in current knowledge requires at least a brief review of the background. 
To this end, the following section begins with a short overview of what theoretical computer science can 
reveal about the computational resources needed for massive data computations. This is a complement to 
the background material on statistics in the next two chapters. 

RELEVANT ASPECTS OF THEORETICAL COMPUTER SCIENCE 

Theoretical computer science studies the strengths and limitations of computational models and 
processes. Its dual goals are to (1) discover and analyze algorithms for key computational problems that 
are efficient in terms of resources used and (2) understand the inherent limitations of computation with 
bounded resources. The two goals are naturally intertwined; in particular, understanding the limitations 
often suggests approaches for sidestepping them. 

In this section the committee surveys an illustrative list of concepts and notions developed in 
theoretical computer science, with the emphasis on material relevant to computing over massive data 
sets.1  

1 For a broader overview, the Theory Matters blog entry “Vision Nuggets,” available at 
http://thmatters.wordpress.com/vision-nuggets/, provides a good background. 
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Tractability and Intractability 

One of the central notions in understanding computation is that of polynomial time. A problem is 
solvable in polynomial time if there is an algorithm that can solve it which runs in time Nc for some 
constant c (i.e., it is O(Nc)) on inputs of size N. Polynomial-time algorithms have the following attractive 
property: doubling the input size results in running time that is only a fixed factor larger (its value 
depends on c). Therefore, they scale gracefully as the input size increases. This should be contrasted with 
algorithms with running time exponential in N—e.g., of O(2N). Here, doubling the input size can increase 
the running time in a much more dramatic fashion. As such, problems that have polynomial-time 
algorithms are often referred to as tractable. In contrast, problems for which such algorithms are 
conjectured to not exist are called intractable.  

Perhaps surprisingly, most of the natural problems are known to fall into one of these two 
categories. That is, either a polynomial-time algorithm for a problem is known, or the best-known 
algorithm has exponential running time. Many of the latter problems have the property that if one is given 
a solution to the problem, it only takes polynomial time to verify whether it is correct. Such problems are 
said to run in non-deterministic polynomial time (NP). Some such problems have the “one-for-all and all-
for-one” property: if any of them can be solved in polynomial time, then all of them can. Those problems 
are called NP-complete. Examples of NP-complete problems include the Traveling Salesman Problem 
(given a set of cities and distances between them, is there a tour of a given length that visits all cities?) 
and the Satisfiability Problem (given a set of m constraints over n variables, is there a way to satisfy them 
all?). The (conjectured) difficulty of such problems comes from the (apparent) need to enumerate an 
exponential number of possible solutions in order to find the feasible one. 

Although it is not known whether an NP-complete problem can be solved in polynomial time—
this question, called “P versus NP,” is one of the central open problems in computer science—it is widely 
conjectured that such algorithms do not exist.2 The notion of NP-completeness thus provides a very useful 
tool guiding algorithm design. Specifically, showing that a problem is NP-complete means that instead of 
trying to find a complete solution, one likely needs to modify the question. This can be done, for example, 
by allowing approximate answers or exploiting the particular structure of inputs. For a recent overview of 
such developments in the context of satisfiability, see Malik and Zhang (2009). 

Given the usefulness of NP-completeness and other computational hardness tools when dealing 
with computational problems, it is natural to explore their uses in the context of massive data sets. This 
question is examined in more depth later in this chapter. 

Sublinear, Sketching, and Streaming Algorithms  

In the search for efficient algorithms for large-scale problems, researchers formulate more 
stringent models of computation. One such notion that is particularly relevant to massive data is that of 
sublinear algorithms. They are characterized as using an amount of resources (e.g., time or space) that is 
much smaller than the input size, often exponentially smaller. This, in particular, means that the algorithm 
cannot read or store the whole input, and instead it must extrapolate the answer from the small amount of 
information read or stored. 

One of the popular computational models of this type is data-stream computing. In the data 
stream model, the data need to be processed “on the fly”—i.e., the algorithm can make only a single pass 
over the data, and the storage used by the algorithm can be much smaller than the input size. Typically, 
streaming algorithms proceed by computing a summary or “sketch” of the input, which is much shorter 
but nevertheless sufficient to approximate the desired quantity. Perhaps surprisingly, for many problems, 
efficient sketching methods are known to exist (Muthukrishnan, 2005; Indyk, 2007). For example, 
consider the problem of counting the number of distinct elements in a stream. This task is known to 

2 Fortnow (2009) provides an overview. 
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require space that is at least as large as the actual number of distinct items; the items have to be stored 
temporarily to avoid double-counting the items already seen. However, it is possible to approximate this 
quantity using only a logarithmic amount of space (Flajolet and Martin, 1985). 

Other models of sublinear computation include sublinear time computation (where the algorithm 
is restricted to using an amount of time that scales sublinearly with the input size) and approximate 
property testing (where one tests whether the input satisfies a certain property using few data samples). 
See Czumaj and Sohler (2010) or Rubinfeld and Shapira (2011) for an overview. 

Communication Complexity 

The field of communication complexity (Kushilevitz and Nisan, 1997) studies the amount of 
information that needs to be extracted from the input, or communicated between two or more parties 
sharing parts of the input, to accomplish a given task. The aforementioned sketching approach to 
sublinear computation is one of the studied models, but many other models have been investigated as 
well. In contrast to NP-completeness, communication complexity techniques make it possible to prove 
that some tasks cannot be accomplished using limited communication. For example, consider the 
following set disjointness problem, where two parties want to determine whether two data sets of equal 
size, each held locally by one of the parties, contain any common items. It has been shown that in order to 
accomplish this task, the parties must exchange a number of bits that is linear in the size of the data set 
(Razborov, 1992; Kalyanasundaram and Schnitger, 1992). 

External Memory 

Another way of modeling space-limited computation is to focus on the cost of transferring data 
between the fast local memory and slow external memory (e.g., a disk). This approach is motivated by the 
fact that, in many scenarios, the transfer cost dominates the overall running time. The external memory 
model (Vitter, 2008) addresses precisely that phenomenon. Specifically, the computer system is assumed 
to be equipped with a limited amount of main memory (which is used to perform the computation) and an 
unbounded external memory such as disk drive (which stores the input and any intermediate data 
produced by the algorithm). The data are exchanged between the main and external memories via a 
sequence of input/output (I/O) operations. Each such operation transfers a contiguous block of data 
between the memories. The complexity of an algorithm is then measured by the total number of I/O 
operations that the algorithm performs.  

The algorithms that are efficient in the external memory model minimize the need to refer to data 
that are far apart in memory storage or in time. This approach enables the computation to limit the 
required number of block transfers. See Vitter (2008) for an overview. 

In general, external memory algorithms are “cache-aware”; i.e., they must be supplied with the 
amount of available main memory before they can proceed. This drawback is removed by “cache-
oblivious algorithms” (Frigo et al., 1999), which automatically adapt to the amount of memory (in fact, 
general caching mechanism) available to the algorithm. 

Parallel Algorithms 

A fundamental and widely studied question is to understand for which problems one can obtain a 
speedup using parallelism. Many models of parallel computation have been studied. Perhaps the one that 
has attracted the greatest amount of attention is the class of problems having polynomial-time sequential 
algorithms for which one can obtain exponential speedups by using parallelism. Such speedups are known 
to be possible for surprisingly many problems, such as finding a perfect matching in a graph. That 
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problem calls for finding a subset of edges that contains exactly one edge incident to any vertex, given a 
set of nodes and edges between them. There are also problems that are conjectured to be inherently 
sequential, i.e., they appear to not be amenable to exponential speedups. 

Computational Learning Theory 

The field of computational learning theory (Blum, 2003) studies the computational aspects of 
extracting knowledge from data. Specifically, it addresses the following question: How much data and 
computational resources are needed in order to “learn” a concept of interest with a given accuracy and 
confidence? For example, a well-studied task is to infer a linear classifier that can separate data into 
positive and negative classes, given a sequence of labeled examples and using a bounded amount of 
computational resources. Variations of the basic framework include semi-supervised learning (where the 
labels are specified for only some of the examples) and active learning (where the algorithm can query the 
value of a label for some or all examples). Computational learning theory has natural connections to 
statistics, especially statistical learning theory, and utilizes and builds on notions from those fields. 

GAPS AND OPPORTUNITIES 

Despite the extensive amount of work devoted to the topic, the fundamentals of computation over 
massive data sets are not yet fully understood. This section examines some of the gaps in the current 
knowledge and possible avenues of addressing them.  

Challenges for Computer Science 

Computational Hardness of Massive Data Set Problems 

Given the usefulness of computational hardness in guiding the development of general 
polynomial-time algorithms, it would be helpful to be able to apply such tools to algorithms designed for 
massive data as well. However, polynomial-time is typically not a sufficient condition for tractability 
when the input to a problem is very large. For example, although an algorithm with running time N4 can 
be quite efficient for moderate values of N (say, a few thousand), this is no longer the case when N is of 
the order of billions or trillions. One must therefore refine the approach. This will involve (1) defining 
more refined boundaries between the tractable and the intractable which model the massive-data 
computation more accurately and (2) identifying new “hard” problems that are (conjectured to be) 
unsolvable within those boundaries.  

The class of sublinear algorithms presented in the earlier section is a well-studied example of this 
line of research. However, the limitations imposed by that class are quite restrictive, and they exclude 
some tasks (such as sorting) that can be successfully performed even on very large data sets. Two 
examples of more expressive classes of problems are those requiring sub-quadratic time and those 
requiring linear time.  

Quadratic time is a natural boundary of intractability for problems over massive data because 
many problems have simple quadratic-time solutions. For example, the generalized N-body problem class 
discussed in Chapter 10—which consists of problems involving interactions between pairs of elements—
and the class of alignment problems also discussed in that chapter are amenable to such algorithms. For 
massive data, however, one typically needs algorithms that run in time faster than quadratic. In some 
cases, obtaining better algorithms is possible. For example, the basic N-body problem (involving particles 
interacting in a three-dimensional space) can be solved in O(N log N) time by use of the Fast Multipole 
Method. 
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Unfortunately, unlike for polynomial-time computation, versatile tools are lacking that would 
help determine whether a given problem has a sub-quadratic-time algorithm or not. A few proposals for 
such tools exist in the literature. For example, the 3SUM problem (given a set of N numbers, are there 
three numbers in the set that sum to zero?) is a task that appears to be unsolvable in less than quadratic 
time (Gajentaan and Overmars, 1995). As a result, 3SUM plays a role akin to that of an NP-complete 
problem: if 3SUM can efficiently be reduced to a problem of interest, this indicates that the problem 
cannot be solved in less than quadratic time. Several such reductions are known, especially for 
computational-geometry and pattern-matching problems. However, the “web of reductions” is still quite 
sparse, especially when compared to the vast body of work on polynomial time/NP-complete problems. A 
better understanding of such reductions is sorely needed. 

Linear running time is a gold standard of algorithmic efficiency. As long as an algorithm must 
read the whole input to compute the answer, it must run in at least linear time. However, as in the case of 
sub-quadratic-time algorithms, there are no methods that would indicate whether a problem is likely to 
have a linear time solution or not.  

One problem that has been identified as “hard” in this regime is the problem of computing the 
discrete Fourier transform. The Fast Fourier Transform algorithm performs this task in time O(N log N), 
and despite decades of research no better algorithm is known. Thus, if a given problem requires 
computation of the discrete Fourier transform, that is a strong indication that (at the very least) it will be 
difficult to obtain a linear time algorithm for that problem. Still, it would be helpful to develop a better 
foundation for the study of such problems, for example, by developing a richer or more refined set of 
problems that are conjectured to be hard. 

More study is needed for each of these classes of algorithms. 

The Role of Constants 

To this point, the discussion of running times involved asymptotic analysis—that is, the running 
times were specified up to a leading constant. Even though it is generally understood that the value of the 
leading constants can make a difference between a practical algorithm and an unfeasible “galactic 
algorithm” (Lipton, 2010), asymptotic analysis nevertheless remains the standard theoretical tool. 
Optimizing constant factors is often thought to belong to algorithm engineering rather than algorithm 
design. A notable exception to this trend includes the study of classic problems like median finding or 
sorting, especially in the context of average-case analysis.  

There are several good reasons for this state of affairs. For one, the asymptotic running time 
provides a simple and convenient way to describe, compare, and reason about the algorithm performance: 
one has to deal with only one parameter, namely the exponent. Moreover, the actual running times of an 
algorithm can be highly variable, even for a particular input, because they are both time-dependent 
(computers gain processing power every few months) and platform-dependent (different instructions can 
have different execution times on different machines). All of these reasons motivate a constant-free 
approach to running time analysis, unless the cost model is very well defined. 

At the same time, there exist potential opportunities in trying to understand constants in more 
depth. For one, ignoring constant factors can obscure the dependencies on implicit data parameters, such 
as the dimension of the underlying space, precision, etc. Moreover, some of the aforementioned 
motivating factors are no longer as relevant. For example, it is no longer the case that computers are 
getting faster: the increase in processing power in coming years is projected to come from increased 
parallelism rather than clock speed.  

The platform-dependence issue continues to be significant. However, as described in Chapter 10, 
it is often the case that an algorithm is assembled from a relatively small set of building blocks, as 
opposed to being designed entirely from scratch. In such scenarios it could be possible to encapsulate 
platform dependence in implementations of those blocks, while making the rest of the algorithm platform-
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independent. The number of times the subroutine is invoked could then be optimized in a platform-
independent fashion. 

New Models for Massive Data Computation  

Understanding the quickly evolving frameworks and architectures for massive data processing 
will likely require constructing and investigating new models of computation. Many such models have 
been designed in recent years, especially in the context of parallel data processing (see Chapter 3). This 
includes models such as MapReduce, Hadoop and variations, multicores, graphic processing units 
(GPUs), and parallel databases. The new models and their relationship to more traditional models of 
parallel computation have already been a subject of theoretical studies.3 However, more work is certainly 
needed.  

Challenges for Other Disciplines 

Perhaps the biggest challenge to understanding the fundamentals of computing over massive data 
lies in understanding the trade-offs between resources traditionally studied by computer science and those 
typically studied by statistics or physics. This section examines some of the issues that lie at these 
intersections.  

Statistics 

Traditionally, computer sciences view the input data as a burden: the larger it is, the more work 
that needs to be done to process it. If one views the input as a “blob” of arbitrary data, this conclusion 
appears inevitable. However, if one assumes that the data have some statistical properties—that is, they 
are a sequence of samples from some distribution or that the data have sparsity or other structural 
properties—the result might be different. In fact, some problems have the property that the more data is 
available, the easier it becomes to solve them.  

Quantitative trade-offs of this type have been investigated, for example, in computational learning 
theory (Blum, 2003), machine learning (Bottou, 2008), and sublinear algorithms (Chien et al., 2010; 
Harsha et al., 2004). However, many questions remain open. For example, in computational learning 
theory, the computational limitations are typically specified in terms of polynomial-time computability, 
and thus the limitations of that topic (as discussed earlier) apply.  

Another issue that spans statistical and computational aspect of massive data is privacy. This line 
of research addresses the question of how much information about the data must be revealed in order to 
perform some computation or answer some queries about the data. The problem has been extensively 
studied in statistics and, more recently, in applied (Sweeney, 2002) and theoretical (Dwork, 2006) 
computer science. Privacy is a very large topic in its own right, and this report does not attempt to address 
the privacy issues associated with massive data and its analysis. 

Physical Resources  

Computation is ultimately a physical phenomenon, consuming and emitting energy. Over the past 
decade, this aspect of computation has attracted renewed attention. There are several factors responsible 
for this state of affairs: 

3 For example, see the website for DIMACS Workshop on Parallelism: A 2020 Vision, March 14-16, 2011, 
Piscataway, N.J., available at http://dimacs.rutgers.edu/Workshops/Parallel/slides/slides.html. 
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• The large amount of consumed and dissipated energy is the key reason why the steady 

increase in processor clock rates has slowed in recent years. 
• The ubiquity of energy-limited mobile computing devices (smart phones, sensors, and so on) 

has put a premium on optimizing energy use. 
• The impact of computation and data storage on the environment has motivated the 

development of green computing (Hozle andWeihl, 2006). 
 
A fair amount of theoretical research has been devoted to reversible computing (Bennett, 1973), 

which aims to understand the necessary condition for computation to be energy efficient. However, the 
lower bounds for energy use in computation, and the trade-offs between energy efficiency and 
computation time, are still not fully understood (Snir, 2011). For example, what are the lower bounds on 
the amount of energy required to perform basic algorithmic tasks, such as sorting? While there have been 
a number of applied studies aimed at finding energy efficient architectures and algorithms for sorting,4 no 
non-trivial lower bounds for energy consumptions appear to be known. In fact, even formulating this 
question rigorously presents a challenge, because the input and the output to the problem can take many 
physical forms. More research is needed to clarify the model, limitations, and trade-offs. 
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7 

Building Models from Massive Data 

INTRODUCTION TO STATISTICAL MODELS 

The general goal of data analysis is to acquire knowledge from data. Statistical models provide a 
convenient framework for achieving this. Models make it possible to identify relationships between 
variables and to understand how variables, working on their own and together, influence an overall 
system. They also allow one to make predictions and assess their uncertainty. 

Statistical models are usually presented as a family of equations (mathematical formulas) that 
describe how some or all aspects of the data might have been generated. Typically these equations 
describe (conditional) probability distributions, which can often be separated into a systematic component 
and a noise component. Both of these components can be specified in terms of some unknown model 
parameters. These model parameters are typically regarded as unknown, so that they need to be estimated 
from the data. For a model to be realistic and hence more useful, it will typically be constrained to honor 
known or assumed properties of the data. For example, some measurements might always be positive or 
take on values from a discrete set. Good model building entails both specifying a model rich enough to 
embody structure that might be of use to the analyst and using a parameter estimation technique that can 
extract this structure while ignoring noise. 

Data-analytic models are rarely purely deterministic—they typically include a component that 
allows for unexplained variation or “noise.” This noise is usually specified in terms of random variables, 
that is, variables whose values are not known but are generated from some probability distribution. For 
example, the number of people visiting a particular website on a given day is random. In order to 
“model”—or characterize the distribution of—this random variable, statistical quantities (or parameters) 
might be considered, such as the average number of visits over time, the corresponding variance, and so 
on. These quantities characterize long-term trends of this random variable and, thus, put constraints on its 
potential values. A better model for this random variable might take into account other observable 
quantities such as the day of the week, the month of the year, whether the date is near some major event, 
and so on. The number of visits to the website can be constrained or predicted by these additional 
quantities, and their relationship will lead to a better model for the variable. This approach to data 
modeling can be regarded as statistical modeling: although there are no precise formulas that can 
deterministically describe the relationship among observed variables, the distribution underlying the data 
can be characterized. In this approach, one can only guess a certain form of the relationship up to some 
unknown parameters, and the error—or what is missed in this formulation—will be regarded as noise. 
Statistical modeling represents a powerful approach for understanding and analyzing data (see 
McCullagh, 2002).  

In what follows, the committee does not make a sharp distinction between “statistics” and 
“machine learning” and believes that any attempt to do so is becoming increasingly difficult. Statisticians 
and machine learners work on similar problems, albeit sometimes with a different aesthetic and perhaps 
different (but overlapping) skill sets. Some modeling activities seem especially statistical (e.g., repeated 
measures analysis of variance), while others seem to have more of a machine-learning flavor (e.g., 
support vector machines), yet both statisticians and machine learners can be found at both ends of the 
spectrum. In this report, terms like “statistical model” or “statistical approach” are understood to include 
rather than exclude machine learning. 
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There are two major lenses through which statistical models are framed, which are described 
briefly below. 

The Frequentist View 

The first viewpoint is from classical statistics, where models can take a variety of forms, as can 
the methods for estimation and inference. One might model the conditional mean of the response (target 
for prediction) as a parametrized function of the predictors (e.g., linear regression). Although not a 
requirement, this model can be augmented with an additive noise component to specify the conditional 
distribution of the response given the predictors. Logistic regression models the conditional distribution 
of a categorical response given predictors, again using a parametrized model for the conditional 
probabilities. Most generally, one can specify a joint distribution for both response and predictors. 
Moving beyond regression, multivariate models also specify a joint distribution, but without 
distinguishing response and predictor variables. 

The frequentist approach views the model parameters as unknown constants and estimates them 
by matching the model to the available training data using an appropriate metric. Minimizing the 
empirical sum-of-squared prediction errors is popular for regression models, but other metrics (sum of 
absolute errors, trimmed sum-of squares, etc.) are also reasonable. Maximum likelihood estimation is a 
general approach when the model is specified via a (conditional) probability distribution; this approach 
seeks parameter estimates that maximize the probability of the observed data. 

The goal of the statistician is to estimate the parameters as accurately as possible and to make 
sure the fit of the model to the observed data is satisfactory. The notion of accuracy is based on average 
frequencies. For example, it should be the case that, on average, over many possible draws of similar data 
from the model, the estimation procedure yields a value of the parameter that is close to the true 
underlying parameter. Thus mean-squared error, sampling variance, and bias are used to characterize and 
rate different estimation procedures. It should also be the case that were the sample size to increase, the 
estimate should converge to the true parameter, which is defined in terms of the limiting empirical 
distribution of the data. This is the frequentist concept of consistency.  

As an example, consider the problem of modeling customer arrivals at a service center. One can 
model the data using a Poisson distribution, with an unknown parameter r indicating the daily arrival rate. 
If one estimates r from the historic observations, then the approximate behavior (probability distribution) 
of the observations (customer visits per day) is specified. The estimate is random, because it depends on 
the random data, and one would like for it to be close to the true parameter when averaging over this 
randomness, i.e., when considering all possible draws from the Poisson distribution. 

The frequentist view focuses on the analysis of estimation procedures and is somewhat agnostic 
about the nature of the procedures that are considered. That said, the analysis often suggests the form of 
good procedures (even optimal procedures). For example, members of a broad class of estimation 
procedures, known as M-estimators, take the form of optimization problems. This class includes 
maximum likelihood estimation, but is much broader. 

The Bayesian View 

The second viewpoint is from Bayesian statistics. In this case, the model specifies a family of 
(conditional) probability distributions, indexed by parameters. These parameters are considered random 
as well, and so a prior distribution needs to be specified for them. For website visits, for example, it might 
be assumed that the rate parameter r has a flat distribution over the positive interval (0,∞), or that it 
decays as 1/r. Once a prior is assumed, the joint distribution over the parameters and the observations is 
well defined. The distribution of the model parameter is characterized by the posterior distribution of the 
parameters given historic data, which is defined as the conditional distribution of the parameter given the 
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data. The posterior can be calculated from Bayes’s theorem. Bayesian models replace the “parameter 
estimation” problem by the problem of defining a “good prior” plus computation of the posterior, 
although when coupled with a suitable loss function, Bayesian approaches can also produce parameter 
estimates. The concept of a loss function is discussed in later sections. 

From a procedural point of view, Bayesian methods often take the form of numerical integration. 
This is because the posterior distribution is a normalized probability measure, and computing the 
normalization factor requires integration. The numerical integration is generally carried out via some form 
of Monte Carlo sampling procedure or other type of numerical approximation. 

Thus, procedurally, methods studied in frequentist statistics often take the form of optimization 
procedures, and methods studied in Bayesian statistics often take the form of integration procedures. The 
relevance of these viewpoints to massive data analysis comes down in part to the scalability of 
optimization versus integration. (That said, it is also possible to treat integration problems using the tools 
of optimization; this is the perspective of the variational approach to Bayesian inference (Wainwright and 
Jordan, 2003).) 

It should also be noted that there are many links between the frequentist and Bayesian views at a 
conceptual level, most notably within the general framework of statistical decision theory. Many data 
analyses involve a blend of these perspectives, either procedurally or in terms of the analysis. 

Nonparametrics 

Although the committee has framed its discussion of models in terms of “parameters,” one often 
sees a distinction made between “parametric models” and “nonparametric models,” perhaps confusingly, 
because both classes of models generally involve parameters. The difference is that in a parametric 
model, the number of parameters is fixed once and for all, irrespective of the number of data points. A 
nonparametric model is (by definition) “not parametric,” in that the number of parameters is not fixed, but 
rather grows as a function of the number of data points. Sometimes the growth is explicitly specified in 
the model, and sometimes it is implicit. For example, a nonparametric model may involve a set of 
functions that satisfy various constraints (e.g., smoothness constraints), and the choice of parameters (e.g., 
coefficients in a Fourier expansion) may be left implicit. Moreover, the growth in the number of 
parameters may arise implicitly as part of the estimation procedure. 

Although parametric models will always have an important role to play in data analysis, 
particularly in situations in which the model is specified in part from an underlying scientific theory (such 
that the parameters have meaning in the theory), the committee finds that the nonparametric perspective is 
particularly well aligned with many of the goals of massive data analysis. The nonparametric perspective 
copes naturally with the fact that new phenomena often emerge as data sets increase in size. 

The distinction between parametric and nonparametric models is orthogonal to the 
frequentist/Bayesian distinction—there are frequentist approaches to nonparametric modeling and 
Bayesian approaches to nonparametric modeling. The Bayesian approach to nonparametrics generally 
involves replacing classical prior distributions with stochastic processes, thereby supplying the model 
with an open-ended (infinite) number of random parameters. The frequentist approach, with its focus on 
analysis, shoulders the burden of showing that good estimates of parameters can be obtained even when 
the number of parameters is growing. 

It is also possible to blend the parametric and nonparametric perspective in a hybrid class of 
models referred to as “semiparametric.” Here the model may be based on two subsets of parameters, one 
which is fixed and which is often of particular interest to the human data analyst, and the other which 
grows and copes with the increasing complexity of the data as a function of the size of the data set. 
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Loss Functions and Partially Specified Models 

One rarely wishes to model all aspects of a data set in detail, particularly in the setting of massive 
data. Rather, there will aspects of the model that more important than others. For example, particular 
subsets of the parameters may be of great interest and others of little interest (the latter are often referred 
to as “nuisance parameters”). Also, certain functions of parameters may be of particular interest, such as 
the output label in a classification problem. Such notions of importance or focus can be captured via the 
notion of a “loss function.” For example, in binary classification, one may measure performance by 
comparing the output of a procedure (a zero or one) with the true label (a zero or one). If these values 
disagree the loss is one, otherwise it is zero. In regression it is common to measure the error in a fitted 
function via the squared-error loss.  

Both frequentists and Bayesians make use of loss functions. For frequentists the loss is a 
fundamental ingredient in the evaluation of statistical procedures; one wishes to obtain small average loss 
over multiple draws of a data set. The probabilistic model of the data is used to define the distribution 
under which this average is taken. For Bayesians the loss function is used to specify the aspects of the 
posterior distribution that are of particular interest to the data analyst and thereby guide the design of 
posterior inference and decision-making procedures. 

The use of loss functions encourages the development of partially specified models. For example, 
in regression, where the goal is to predict Y from X, if the loss function only refers to Y, as is the case with 
the least-squares loss, then this encourages one to develop a model in which the distribution of X is left 
unspecified. Similarly, in binary classification, where the goal is to label a vector X with a zero or one, 
one can forgo an attempt to model the class-conditional distributions of X and focus only on a separating 
surface that predicts the labels well. For example, if one considers the class of all hyperplanes, one has a 
parametric model in which the parameters are those needed to define a hyperplane (note that the number 
of parameters is fixed in advance in this case). Alternatively, one can consider flexible surfaces that grow 
in complexity as data accrue; this places one in the nonparametric modeling framework. Note that the use 
of the term “model” has become somewhat abstract at this point; the parameters have a geometric 
interpretation but not necessarily a clear interpretation in the problem domain. On the other hand, the 
model has also become more concrete in that it is targeted to the inferential goal of the data analyst via the 
use of a loss function. 

Even if one makes use of a partially specified model in analyzing the data, one may also have in 
mind a more fully specified probabilistic model for evaluating the data analysis procedure; that is, for 
computing the “average” loss under that procedure. While classically the model being estimated and the 
model used for evaluation were the same, the trend has been to separate these two notions of “model.” A 
virtue of this separation is that it makes it possible to evaluate a procedure on a wider range of situations 
than the situation for which it was nominally designed; this tests the “robustness” of the procedure. 

Other Approaches 

In addition to the statistical modeling perspectives discussed above, which have been extensively 
studied in the statistical and machine-learning literature, other forms of data-analysis algorithms are 
sometimes used in practice. These methods also give meaningful descriptions of the data, but they are 
more procedure-driven than model-driven. 

Some of these procedures rely on optimization criteria that are not based on statistical models or 
even have any underlying statistical underpinning. For example, the k-means algorithm is a popular 
method for clustering, but it is not based on a statistical model of the data. However, the optimization 
criterion still characterizes what a data analyst wants to infer from the data: whether the data can be 
clustered into coherent groups. This means that instead of a statistical model, appropriately defined 
optimization formulations may be more generally regarded as models that capture useful descriptions of 
the data. In such a case, parameters in the optimization formula determine a model, and the optimal 
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parameter gives the desired description of the data. It should be noted that many statistical parameter 
estimation methods can be regarded as optimization procedures (such as maximum-likelihood 
estimation). Therefore, there is a strong relationship between the optimization approach (which is heavily 
used in machine learning) and the more traditional statistical models. 

Some other data-analysis procedures try to find meaningful characterizations of the data that 
satisfy some descriptions but are not necessarily based on optimization. These methods may be 
considered as algorithmic approaches rather than models. For example, methods for finding the most 
frequent items in a large-scale database (the “heavy hitters”) or highly correlated pairs are computational 
in nature. While the specific statistical quantities these algorithms try to compute provide models of the 
data in a loose sense (i.e., as constraints on the data), the focus of these methods is on computational 
efficiency, not modeling. Nevertheless, the algorithmic approaches are important in massive data analysis 
simply because the need for computational efficiency goes hand-in-hand with massive data analysis. 

DATA CLEANING 

In building a statistical model from any data source, one must often deal with the fact that data 
are imperfect. Real-world data are corrupted with noise. Such noise can be either systematic (i.e., having 
a bias) or random (stochastic). Measurement processes are inherently noisy, data can be recorded with 
error, and parts of the data may be missing. The data produced from simulations or agent-based models, 
no matter how complex, are also imperfect, given that they are built from intuition and initial data. Data 
can also be contaminated or biased by malicious agents. The ability to detect false data is extremely weak, 
and just having a massive quantity of data is no guarantee against deliberate biasing. Even good data 
obtained by high-quality instrumentation or from well-designed sampling plans or simulations can 
produce poor models in some situations. Noisy and biased data are thus unavoidable in all model 
building, and this can lead to poor predictions and to models that mislead.  

While random noise can be averaged out, loosely speaking, using multiple independent 
experiments—that is, the averaged noise effect approaches zero—this is not the case with systemic noise. 
In practice, both kinds of noise exist, and thus both kinds should be incorporated into models of the data. 
The goal is often to build statistical models that include one or more components of noise so that noise 
can be separated from signal, and thus relatively complex models can be used for the signal, while 
avoiding overly complex models that would find structure where there is none. The modeling of the noise 
component not only impacts the parameter estimation procedure, but it also has an impact on the often 
informal process of cleaning the data and assessing whether the data are of high-enough quality to be used 
for the task at hand. This section focuses on this informal activity of data cleaning in the setting of 
massive data. 

The science and art of cleaning data is fairly well developed when data sets are of modest size,1 
but new challenges arise when dealing with massive data. In small-scale applications, data cleaning often 
begins with simple sanity checking. Are there any obvious mistakes, omissions, mislabelings, and so on, 
that can be seen by sampling a small subset of the data? Do any variables have obviously incorrect 
values? This kind of checking typically involves plotting the data in various ways, scanning through 
summaries, and producing particular snapshots that are designed to expose bad data. Often the result of 
this process is to return to the source to confirm suspicious entries, or to fill in omitted fields.  

How does this approach change with massive data? The sanity checking and identification of 
potential problems can still be performed using samples and snapshots, although determining how to find 
representative samples can sometimes pose problems (see Chapter 8). However, the ability to react to 
issues will be constrained by time and size, and most human intervention is impossible. There are at least 
two general approaches to overcoming this problem: 
 

1 See, e.g., Dasu and Johnson (2003). 
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• One can build auto-cleaning mechanisms into data-capture and data-storage software. This 
process requires monitoring via reporting and process-control mechanisms. Ideally, an audit trail should 
accompany the data, so that changes can be examined and reversed where needed. 

• Certain problems can be anticipated and models built that are resistant to those problems. 
 

Although there has been a lot of research in “robust” modeling in accordance with the second 
approach, the vast majority of models currently in use are not of this kind, and those that are tend to be 
more cumbersome. Hence the first approach is more attractive, but the second should be considered. 

For example, features that are text-based lead to many synonyms or similar phrases for the same 
concept. Humans can curate these lists to reduce the number of concepts, but with massive data this 
probably needs to be done automatically. Such a step will likely involve natural language processing 
methodology, and it must be sufficiently robust to handle all cases reasonably well. With storage 
limitations, it may not be feasible to store all variables, so the method might have to be limited to a more 
valuable subset of them. This subset may well be the “cleanest.” With text-based features, some are so 
sparse they are ultimately useless and can be cleaned out of the system. 

Missing data is often an issue, and dealing with it can be viewed as a form of cleaning. Some 
statistical modeling procedures—such as trees, random forests, and boosted trees—have built-in methods 
for dealing with missing values. However, many model-building approaches assume the data are 
complete, and so one is left to impute the missing data prior to modeling. There are many different 
approaches to data imputation. Some simple methods that are practical on a massive scale are to replace 
the missing entries by the mean for that variable. This implicitly assumes that the omissions are 
completely random. Other more sophisticated methods treat the missing data imputation as a prediction 
problem—predicting the missing entries for a variable using that variable as a response, and all the values 
as input variables. This might create a computational burden that is prohibitive with massive data, so 
good compromises are sought. 

Whatever approaches are used to clean and preprocess the data, the steps should be documented, 
and ideally the scripts or code that were used should accompany the data. Following these steps results in 
a process that is reproducible and self-explanatory. 

CLASSES OF MODELS 

Data analysts build models for two basic reasons: to understand the past and to predict the future. 
One would like to understand how the data were generated, the relationships between variables, and any 
special structure that may exist in the data. The process of creating this understanding is often referred to 
as unsupervised learning. A more focused task is to build a prediction model, which allows one to predict 
the future value of a target variable as a function of the other variables at one’s disposal, and/or at a future 
time. This is often referred to as supervised learning. 

Data-generating mechanisms typically defy simple characterization, and thus models rarely 
capture reality perfectly. However, the general hope is that carefully crafted models can capture enough 
detail to provide useful insights into the data-generating mechanism and produce valuable predictions. 
This is the spirit behind the famous observation from the late George Box that all models are wrong, but 
some are useful. While the model-building literature presents a vast array of approaches and spans many 
disciplines, model building with massive data is relatively uncharted territory. For example, most 
complex models are computationally intensive, and algorithms that work perfectly well with megabytes 
of data may become infeasible with terabytes or petabytes of data, regardless of the computational power 
that is available. Thus, in analyzing massive data, one must re-think the trade-offs between complexity 
and computational efficiency. 

This section provides a summary of major techniques that have been used for data mining, 
statistical analysis, and machine learning in the context of large-scale data, but which need re-evaluation 
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in the context of massive data. Some amplification is provided in Chapter 10, which discusses 
computational kernels for the techniques identified here. 

Unsupervised Learning 

Unsupervised learning or data analysis aims to find patterns and structures in the data. Some 
standard tasks that data analysts address include the following:  
 

• Clustering, which is partitioning data into groups so that data items within each group are 
similar to each other and items across different groups are not similar. K-means and hierarchical 
clustering are popular algorithmic approaches. Mixture models use a probabilistic framework to model 
clusters.  

• Dimension reduction, which finds a low-dimensional space that approximately contains the 
data; another view is to represent high-dimensional data points by points in a lower-dimensional space so 
that some properties of the data can be preserved. For example, one approach might be to preserve 
enough information to fully reconstruct the data, and another may be to preserve only enough information 
to recover distances among data points. Dimension reduction can be either linear or nonlinear depending 
on the underlying model. Statistically, dimension reduction is closely related to factor analysis. Factor 
models treat dimensions as factors, and each observation is represented by a combination of these factors.  

• Anomaly detection, or determining whether a data point is an outlier (e.g., is very different 
from other typical data points). This is often achieved by defining a criterion that characterizes how a 
typical data point in the data set behaves; this criterion is then used to screen all the points and to flag 
outliers. One general approach is to use a statistical model to characterize the data, and an outlier is then a 
point that belongs to a set with a small probability (which can be measured by a properly defined p-value) 
under the model.  

• Characterizing the data through basic statistics, such as mean, variance, or high-order 
moments of a variable, correlations between pairs of variables, or the frequency distribution of node 
degrees in a graph. Although simple from a modeling perspective, the main challenge of these methods is 
to find computational algorithms that can efficiently work with massive data.  

• Testing whether a probability model of the data is consistent with the observed statistics, e.g., 
whether the data can be generated from a Gaussian distribution, or whether a certain statistical model of a 
random graph will produce a graph with observed characteristics such as the power law of node degrees, 
etc.  

 
A variety of approaches are used in practice to address many of these questions. They include the 

probabilistic modeling approach (with a well-defined statistical model), the non-probabilistic approach 
based on optimization, or simply a procedure that tries to find desired structures (that may or may not rely 
on optimization). For example, a mixture model can be used as a statistical model for addressing the 
clustering problem. With a mixture model, in order to generate each data point, one first generates its 
mixture component, then generates the observation according to the probability distribution of the mixture 
component. Hence the statistical approach requires a probabilistic model that generates the data—a so-
called generative model. By comparison, the k-means algorithm assumes that the data are in k clusters, 
represented by their centroids. Each data point is then assigned to the cluster whose centroid is closest. 
This is iterated, and the algorithm converges to a local minimum of an appropriate distance-to-center 
criterion. This approach does not hinge on a statistical model, but instead on a sensible optimization 
criterion. There are also valid clustering procedures that are not based on optimization or statistical 
models. For example, in hierarchical agglomerative clustering, one starts with each single data point as a 
cluster, and then iteratively groups the two closest clusters to form a larger cluster; this process is repeated 
until all data are grouped into a single cluster. Hierarchical clustering does not depend on a statistical 
model of the data nor does it attempt to optimize a criterion. Nevertheless, it achieves the basic goal of 
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cluster analysis—to find partitions of the data so that points inside each cluster are close to one another 
but not close to points in other clusters. In a loose sense, it also builds a useful model for the data that 
describes similarity relationship among observations. However, the model is not detailed enough to 
generate the data in a probabilistic sense. 

Statistical models in the unsupervised setting that focus on the underlying data-generation 
mechanism can naturally be studied under the Bayesian framework. In that case, one is especially 
interested in finding unobserved hidden information from the data, such as factors or clusters that reveal 
some underlying structure in the data. Bayesian methods are natural in this context as they work with a 
joint distribution, both on observed and unobserved variables, so that elementary probability calculations 
can be used for statistical inference. Massive data may contain many variables that require complex 
probabilistic models, presenting both statistical and computational challenges. Statistically one often 
needs to understand how to design nonparametric Bayesian procedures that are more expressive than the 
more traditional parametric Bayesian models. Moreover, in order to simplify the specification of the full 
joint probability distribution, it is natural to consider simplified relationships among the data such as with 
graphical models that impose constraints in the form of conditional independencies among variables. 
Computational efficiency is also a major challenge in Bayesian analysis, especially for massive data. 
Methods for efficient large-scale Monte Carlo simulation or approximate inference algorithms (such as 
variational Bayesian methods) become important for the success of the Bayesian approach. 

Supervised Learning 

Predictive modeling is referred to as supervised learning in the machine-learning literature. One 
has a response or output variable Y, and the goal is to build a function f(X) of the inputs X for predicting 
Y. The response “supervises” the learning procedure, in that it determines when the method is doing well 
or not. Basic prediction problems involving simple outputs include classification (Y is a discrete 
categorical variable) and regression (Y is a real-valued variable). 

Statistical approaches to predictive modeling can be generally divided into two families of 
models: generative models and discriminative models. In a generative model, the joint probability of X 
and Y is modeled; that is, P(X|Y). The predictive distribution P(Y|X) is then obtained via Bayes’s theorem. 
In a discriminative model, the conditional probability P(Y|X) is directly modeled without assuming any 
specific probability model for X. An example of generative model for classification is linear discriminant 
analysis. Here one assumes in each class the conditional distribution is Gaussian (with common 
covariance matrix used for all classes); hence, the joint distribution is the product of a Gaussian density 
with a class probability. Its discriminative model counterpart is linear logistic regression, which is also 
widely used in practice. Logistic regression proposes a model for P(Y|X) and is not concerned with 
estimating the distribution of X. It turns out that they both result in the same parametric representation for 
P(Y|X), but the two approaches lead to different estimates for the parameters. 

In the traditional statistical literature, the standard parameter estimation method for developing 
either a generative or discriminative model is maximum likelihood estimation (MLE), which leads to an 
optimization problem. One can also employ optimization in predictive modeling in a broader sense by 
defining a meaningful criterion to optimize. For example, one may consider a geometric concept such as a 
margin and use it to define an optimization criterion for classification that measures how well classes are 
separated by the underlying classifier. This leads to purely optimization-based machine-learning methods 
(such as the support vector machine method for recognizing patterns) that are not based on statistical 
models of how the data were generated (although one can also develop a model-based perspective for 
such methods). 

Another issue in modern data analysis is the prevalence of high-dimensional data, where a large 
number of variables are observed that are difficult to handle using traditional methods such as MLE. In 
order to deal with the large dimensionality, modern statistical methods focus on regularization approaches 
that impose constraints on the model parameters so that they can still be reliably estimated even when the 
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number of parameters is large. Examples of such methods include ridge regression and the Lasso method 
for least-squares fitting. In both cases one adds a penalty term that takes the form of a constraint on the 
norm of the coefficient vector (L2 norm in the case of ridge regression, and L1 norm in the case of Lasso). 
In the Bayesian statistical setting, constraints in the parameter space can be regarded naturally as priors, 
and the associated optimization methods correspond to maximum a posteriori estimation. 

In many complex predictive modeling applications, nonlinear prediction methods can achieve 
better performance than linear methods. Therefore, an important research topic in massive data analysis is 
to investigate nonlinear prediction models that can perform efficiently in high dimensions. Classical 
examples of nonlinear methods include nearest neighbor classification and decision trees. Some recent 
developments include kernel methods, random forests, and boosting. 

Some practical applications require one to predict output Y with a rather complex structure. For 
example, in machine translation, input X is observed as a sentence in a certain language, and a 
corresponding sentence (translation) Y needs to be generated in another language. These kinds of 
problems are referred to as structured prediction problems, an active research topic in machine learning. 
Many of these complex problems can benefit from massive data, even without increasing the complexity 
of the underlying models. Nevertheless, additional computational challenges arise. Efficient leverage of 
massive data is an important research topic currently in structured prediction, and this is likely to continue 
for the near future. 

Another active research topic is online prediction, which can be regarded both as modeling for 
sequential prediction and as optimization over massive data. Online algorithms have a key advantage in 
handling massive data, in that they do not require all data to be stored in memory. Instead, each time they 
are invoked, they look at single observations (or small batches of observations). One popular approach is 
stochastic gradient descent. Because of this advantage, these algorithms have received increasing 
attention in the machine learning and optimization communities. Moreover, from a modeling perspective, 
sequential prediction is a natural setting for many real world applications where data arrive sequentially 
over time. 

Computational Simulation 

Agent-based models and system dynamic models are core modeling techniques for assessing and 
reasoning about complex socio-technical systems where massive data are inherent. These models require 
the fusion of massive data, and the assessment of said data, to set initial conditions. In addition, these 
models produce massive data, potentially comparable in size and complexity to real-world data. Two 
examples, used in epidemiology and biological warfare, are BioWar (Carley et al., 2006) and Episims 
(Eubank et al., 2004). Both simulate entire cities, and thus are both users and producers of massive data. 
BioWar, for example, generates data on who interacts with whom and when, who has what disease, who 
is showing which symptom(s) and where, and what they are doing at a given time; it updates this picture 
across a city for all agents in 4-hour time blocks. For these models, core challenges are identifying 
reduced-form solutions that are consistent with the full model, storing and processing data generated, 
fusing massive amounts of data from diverse sources, and ensuring that results are due to actual behavior 
and not tail constraints on long chains of data. 

Network Modeling 

In data analysis, increasingly researchers are using relational or network models to assess 
complex systems. Models of social interaction, communication, and technology infrastructure (e.g., 
power grids) are increasingly represented and assessed as time-varying probabilistic networks. It is 
increasingly common for such models to have millions of nodes. A core challenges include generation of 
massive but realistic network data that match real data not just in size and density, but also in the 
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distribution of core metrics, linkage to other networks, and attributes of nodes. A second core challenge 
centers on statistically assessing confidence in network metrics given different types and categories of 
network errors. Row-column dependencies in networks violate the assumptions of simple parametric 
models and have driven the development of nonparametric approaches. However, such approaches are 
often computationally intensive, and research on scalability is needed. Another core challenge is then how 
to estimate confidence without requiring the generation of samples from a full joint distribution on the 
network. 

MODEL TUNING AND EVALUATION 

Models are, by their nature, imperfect. They may omit important features of the data in either the 
structural or noise components, make unwarranted assumptions such as linearity, or be otherwise mis-
specified. On the other hand, models that are over-specified, in terms of being richer than the data can 
support, may fit the training data exceptionally well but generalize poorly to new data. Thus, an important 
aspect of predictive modeling is performance evaluation. With modern methods, this often occurs in two 
stages: model tuning, and then the evaluation of the chosen model. Tuning is discussed first, followed by 
model evaluation. 

The models that are fit to particular data are often indexed by a tuning parameter. Some relevant 
examples are the following: 
 

• The shrinkage parameter in a Lasso or elastic-net logistic regression; 
• The number of terms (trees) in a boosted regression model; 
• The “cost” parameter in a support vector machine classifier, or the scale parameter of the 

radial kernel used; 
• The number of variables included in a forward stepwise regression; and 
• The number of clusters in a prototype model (e.g., mixture model). 

 
The process of deciding what model type to work with remains more art than science. In the 

massive data context, computational considerations frequently drive the choice. For example, in sequence 
modeling, a conditional random field may lead to more accurate predictions, but a simple hidden Markov 
model may be all that is feasible. Similarly, a multilevel Bayesian model may provide an elegant 
inferential framework, but computational constraints may lead an analyst to a simpler linear model. For 
many applications, a model-complexity ladder exists that provides the analyst with a range of choices. For 
example, in the high-dimensional classification context, the bottom rung contains simple linear classifiers 
and naive Bayes. The next rung features traditional tools, such as logistic regression and discriminant 
analysis. The top rungs might feature boosting approaches and hierarchical nonparametric Bayesian 
methods. Similarly in pharmacoepidemiology, simple (and widely used) methods include 
disproportionality analyses based on two-by-two tables. Case-control and case-crossover analyses provide 
a somewhat more complex alternative. High-dimensional propensity scoring methods and multivariate 
self-controlled case series are further up the ladder. Ultimately the appropriate rung on the ladder must 
depend on the signal-to-noise ratio. Presumably there is little point in fitting a highly complex model to 
data with a low signal-to-noise ratio, although little practical guidance currently exists to inform the 
analyst in this regard. 

Ideally the family of models has been set up so that a tuning parameter orders the models in 
complexity. All the examples given above are of this kind. Complexity is generally understood here as the 
“effective dimension” of the model. The complexity is increased in an attempt to remove any systematic 
bias in the model. However, higher complexity also means that the model will fit the training data more 
closely, and there is a risk of overfitting. The idea is to fit a sequence or path of models—one for each 
value of the tuning parameter—and evaluate the performance of each against a set of held-back 
“validation” data. Then one picks the position on the path with the best validation performance. Because 
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the family is ordered according to complexity, this process determines the right complexity for the 
problem at hand. 

A substantial body of knowledge now exists about complexity trade-offs in modeling. As 
mentioned previously, more complex models can overfit data and provide poor predictions. These trade-
offs, however, are poorly understood in the context of massive data, especially with non-stationary 
massive data streams. It is also important to note that statistical model complexity and computational 
complexity are distinct. Given a model with fixed statistical complexity and for a fixed out-of-sample 
accuracy target, additional data allows one to estimate a model with more computational efficiency. This 
is because in the worst case a computational algorithm can trivially subsample the data to reduce data size 
without hurting computation, but some algorithms can utilize the increased data size more efficiently than 
simple subsampling. This observation has been discussed in some recent machine-learning papers. 
However, in nonparametric settings, one may use models whose complexity grows with increasing data. 
It will be important to study how to grow model complexity (or shift models in the non-stationary setting) 
in a computationally efficient manner. 

There are other good reasons for dividing the model-building process into the two stages of fitting 
a hierarchical path of models, followed by performance evaluation to find the best model in the path. One 
of these reasons is that typically the model fitting uses a “convenient” loss function that can be optimized 
with numerical algorithms—for example, a loss function that is convex and/or differentiable. This can be 
relaxed during the second stage, which can use whatever figure of merit has most meaning for the specific 
application, and it need not be smooth at all. Examples are misclassification cost or the “F1” measure, or 
some tailor-made cost function involving real prices and other factors. 

In most cases this tuning is performing some kind of trade-off between bias and variance; 
essentially, deciding between under- and over-fitting of the training data. Thus, once the best model has 
been chosen, its predictive performance should be evaluated on a different held-back test data set, since 
the selection step can introduce bias. Ideally, then, the following three separate data sets will be identified 
for the overall task: 
 

• Training data. These data are used to fit each of the models indexed by the tuning parameter. 
Typically one fits models by minimizing a smooth measure of training risk, perhaps penalized by a 
regularization term. 

• Validation data. These data are used to evaluate the performance of each of the models fit in 
the previous step; i.e., to evaluate the prediction performance. One then chooses a final model from this 
list (which can be a single model or a weighted combination of several). 

• Test data. A final data set is often reserved to evaluate the chosen model, since the previous 
step can be viewed as “fitting” the validation data.  
 

Model validation refers to using the validation data to evaluate a list of models. A plot of model 
prediction error versus tuning parameter values can be revealing. To see this, assume that as the tuning 
parameter increases, the model complexity increases. Then two general scenarios tend to occur in 
practice: 
 

• The prediction error initially decreases, bottoms out, and then starts to increase. The 
decrease occurs because the early models are too restrictive or biased. Eventually the increase is because 
the models are fitting the noise in the training data, which adds unwanted variance that increases the 
prediction error when the model is applied to new data. 

• The error decreases and slowly levels out, never really increasing. This often occurs in a 
data-rich scenario (many observations compared to variables). Here, the tuning allows one to fit a model 
that is sufficiently large to capture the structure in the data, while avoiding overly massive models that 
might strain resources. 
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For scenarios that are not data rich, or if there are many more variables than observations, one 
often resorts to K-fold cross-validation (Hastie et al., 2009). For this model-tuning task, the training data 
are randomly divided into K equal-sized chunks (K = 10 is a popular choice). One then trains on all but 
the kth chunk and evaluates the prediction error on the kth chunk. This is done K times, and the 
prediction-error curves are averaged.  

One could also use cross-validation for the final task of evaluating the test error for the chosen 
model. This calls for two nested layers of cross-validation. 

With limited-size data sets, cross-validation is a valuable tool. Does it lose relevance with 
massive data sources? Is the bias/variance trade-off even relevant anymore? Can one over-train? Or is one 
largely testing whether one has trained enough? If the data are massive because the number of variables is 
large in comparison to the number of observations, then validation remains essential (see the discussion of 
false discovery in the opening part of the section below on “Challenges”). If both the number of variables 
and the number of observations are large (and growing), then one can still overfit, and here too 
regularization and validation continue to be important steps. If there are more than enough samples, then 
one can afford to set aside a subset of the data for validation. As mentioned before, variance is typically 
not an issue here—one is determining the model complexity needed to accomplish the task at hand. This 
can also mean determining the size of the training set needed. If models have to repeatedly be fit as the 
structure of the data changes, it is important to know how many training data are needed. It is much easier 
to build models with smaller numbers of observations. 

Care must be taken to avoid sample bias during the validation step, for the following reasons: 
 

• The sampling procedure may itself be biased (non-random), 
• Dynamics change in time-aware applications, and 
• Data-gathering may involve adversarial actions. 

 
An example of the last of these items is spam filtering, where the spammer constantly tries to 

figure out the algorithms that filter out spam. In situations like these, one may fit models to one 
population and end up testing them and making predictions on another.  

With massive data it is often essential to sample, in order to produce a manageable data set on 
which algorithms can run. A common, simple example is where there is a rare positive class (such as 
“clicked on an ad”) and a massive negative class. Here, it is reasonable to sample the positive and 
negative examples at different rates. Any logistic regression or similar model can be fit on the stratified 
sample and then post-facto corrected for the imbalance. This can be done on a larger scale, balancing for a 
variety of other factors. While it makes the modeling trickier, it allows one to work with more modest-
sized data sets. Stratified sampling of this kind is likely to play an important role in massive data 
applications. One has to take great care to correct the imbalance after fitting, and account for it in the 
validation. See Chapter 8 for further discussion of sampling issues. 

With massive data streams, it appears there may be room for novel approaches to the validation 
process. With online algorithms, one can validate before updating—i.e., evaluate the performance of the 
current model on a new data point, then update the model. If the complexity of the model is governed by 
the number of learning steps, this would make for an interesting adaptive learning algorithm. There is a 
large literature on this topic; indeed, online learning and early stopping were both important features in 
neural networks. (See, for example, Ripley, 1996, and Bishop, 1995.)  

Once a model has been selected, one often wants to assess its statistical properties. Some of the 
issues of interest are standard errors of parameters and predictions, false discovery rates, predictive 
performance, and relevance of the chosen model, to name a few. 

Standard error bars are often neglected in modern large-scale applications, but predictions are 
always more useful with standard errors. If the data are massive, these can be negligibly small, and can be 
ignored. But if they are not small, they raise a flag and usually imply that one has made a prediction in a 
data-poor region.  
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Standard error estimates usually accompany parameter and prediction estimates for traditional 
linear models. However, as statistical models have grown in complexity, estimation of secondary 
measures such as standard errors has not kept pace with prediction performance. It is also more difficult 
to get a handle on standard errors for complex models. 

The bootstrap is a very general method for estimating standard errors, independent of the model 
complexity. It can be used to estimate standard errors of estimated parameters or predictions at future 
evaluation points. The committee’s description focuses on the latter. With the bootstrap method, the 
(entire) modeling procedure is applied to many randomly sampled subsets of the data, and a prediction is 
produced from each such model. One then computes the standard deviation of the predictions derived 
from each sample. The original bootstrap takes samples of size N (the original size) with replacement 
from the training data, which may be infeasible in the setting of massive data. A recent proposal, known 
as the “bag of little bootstraps,” has shown how to achieve the effect of the bootstrap while working with 
relatively small subsamples of the data (Kleiner et al., 2012). 

The bootstrap is also the basis for model averaging in random forests, and in this context is 
somewhat similar to certain Bayesian averaging procedures. 

Massive data streams open the door to some interesting new modeling paradigms that need to be 
researched to determine their potential effectiveness and usefulness. With parallel systems one could 
randomize the data stream and produce multiple models and, hence, predictions. These could be 
combined to form average predictions, prediction intervals, standard errors, and so on. This is a new area 
that has not been studied much in the literature. 

CHALLENGES 

Building effective models for the analysis of massive data requires different considerations than 
building models for the kinds of small data sets that have been more common in traditional statistics. 
Each of the topics outlined above face new challenges when the data become massive, although having 
access to much more data also opens the door to alternative approaches. For example, are missing data 
less of an issue, since we have so much data that we can afford to lose some measurements or 
observations? Can we simply discard observations with missing entries? While the answers are probably 
“no” to both these questions, it may well be that better strategies can be developed to deal with missing 
data when the source is less limited. 

Likewise, does dirty (mislabeled or incorrect) data hurt as much if we have a large amount of it? 
Can the “dirt” get absorbed into the noise model and get washed out in any analysis? Again, the answer is 
probably “no” in general, but it may well be that procedures that were deemed statistically inefficient for 
small data might be reasonable with massive data. The committee notes that, in general, while sampling 
error decreases with increasing sample size, bias does not—big data does not help overcome bad bias.  

Since massive amounts of observational data are exposed to many sources of contamination, 
sometimes through malicious intervention, can models be built that self-protect against these various 
sources? “Robust” regression models protect against outliers in the response, but this is just one source of 
contamination. Can the scope of these models be enlarged to cover more and different sources of 
contamination? 

The literature currently frames model selection around a bias/variance trade-off. Is this still 
relevant for massive data—that is, is variance still an issue? In some cases, such as when there are many 
variables p per observation N (p > N; “wide” data), it will be. But in cases for which N > p (“tall” data), 
the issue is less clear. If the models considered involve combinations of the p variables (interactions), then 
the numbers of such combinations grow rapidly, and many of them will be impacted by variance. In 
general, how will model selection change to reflect these issues? One suggestion is to find a least complex 
model that explains the data in a sufficient manner.  

Is cross-validation relevant for massive data? Cross-validation has to live with correlations 
between estimates from different subsets of the data, because of overlap. This has an impact on, for 
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example, standard error estimates for predictions (Markatou et al., 2005). Is one better off using 
independent subsets of the data to fit the model sequences, or some hybrid approach? 

The bootstrap is a general tool for evaluating the statistical properties of a fitted model. Is the 
bootstrap relevant and feasible (e.g., will is scale) for massive data? The “bag of little bootstraps” exploits 
parallelism to allow the bootstrap to be applied on the scale of terabytes, but what about larger scales? 
Are there better and more efficient ways to achieve the effect of the bootstrap?  

In many wide-data contexts, false discoveries—spurious effects and correlations—are abundant 
and a serious problem. Consider the following two cases: 
 

• Gene-expression measurements are collected on 20,000 genes on 200 subjects classified 
according to some phenotype. 

• Measurements of 1 million single-nucleotide polymorphisms are made on a few thousand 
case-control subjects.  
 

Univariate tests at the p = 0.01 level would deliver 200 false discoveries in the first case, 10,000 
in the second. As a result, traditional p values are less useful. Methods to control the false discovery rate 
(FDR) have been developed that take account of the abundant correlations between the many variables, 
but these are largely confined to univariate screening methods. There is a lot of room for development 
here in the context of massive data sets.  

Finally, with massive data sets (large N [and possibly p]), it may be easy to find many 
“statistically significant” results and effects. Whether these findings have substantive relevance, however, 
becomes an important question, and statistically significant correlations and effects must be evaluated 
with subject-matter knowledge and experience. 

Following are some highlighted challenges related to model building with massive data. 

The Trade-Off Between Model Accuracy and Computational Efficiency 

As was discussed in Chapter 6, computational complexity is an important consideration in 
massive data analysis. While complex models may be more accurate, significantly more computational 
resources are needed to carry out the necessary calculations. Therefore determining the appropriate trade-
off can be a challenging problem. 

Even without more sophisticated models, if existing models can be adapted to handle massive 
data, then the mere availability of large amount of data can help to dramatically increase the performance. 
The challenge here is to devise computationally efficient algorithms for (even simple) models that can 
benefit from large data sets. An example is Google’s translation and speech recognition systems, which 
while largely using models that have existed for many years, have significantly improved performance 
owing to the availability of large amounts of data gathered from the Internet and other sources. For 
example, translations of many phrases that cannot be found in small data sets can be easily found in new 
larger-scale and continuously updated repositories that contain a huge amount of text together with 
corresponding translations (e.g., news articles on the Web). It is thus not surprising that relatively simple 
translation models that map phrases in the source language to translated phrases in the target language can 
benefit significantly from more data. This example shows that a major challenge and opportunity in 
massive data analysis is to develop relatively simple models that can benefit from large amounts of data 
in a computationally efficient manner. Such models can be more effective than more complex models if 
the latter cannot be easily adapted to handle massive data sets. 
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Feature Discovery 

Although simple regularized linear models such as the Lasso have been extensively studied in 
recent years, massive data analysis presents additional challenges both computationally and statistically. 
One may try to address the computational challenges in linear models with online algorithms. 
Nevertheless, as pointed out in the previous subsection, the availability of massive data means that there 
is a significant opportunity to build ever more complex models that can benefit from massive data, as long 
as this can be done efficiently. 

One approach is to discover important nonlinear features from a massive data set and using linear 
models with the discovered features. This approach addresses the need for adding nonlinearity by 
separating the nonlinear feature discovery problem from the linear-model parameter estimation problem. 
The problem of efficient linear-model estimation has been extensively investigated in the literature, and it 
is still an important research topic. Therefore, developing the capability to discover nonlinear features is 
an important challenge that allows a data analyst to benefit from massive data under the simpler linear 
model framework.  

The area of “deep learning” (Bengio, 2009) within machine learning focuses on features 
composed of multiple levels of nonlinear operations, such as in neural nets with many hidden layers or in 
complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep 
architectures is a difficult task, but learning algorithms such as those for deep belief networks have 
recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain 
areas.  

A current important application area where feature discovery plays a central role concerns 
prediction of healthcare events. For example, a recent data mining competition focuses on using insurance 
claims data to predict hospitalization2: Given extensive historical medical data on millions of patients 
(drugs, conditions, etc.), identify the subset of patients that will be hospitalized in the next year. Novel 
approaches are required to construct effective features from longitudinal data. 

Ranking and Validation 

A major goal in massive data analysis is to sieve through huge amounts of information and 
discover the most valuable information. This can be posed as statistical ranking problem, where the goal 
is to rank a set of items so that what is ranked on top contains the most important (or relevant) items. In 
general the more relevant the items that are placed on top, the higher the quality of the ranking algorithm. 
For example, FDR may be regarded as a ranking metric since it measures false negatives in top-ranked 
selections, and this is related to the concept of precision in the information retrieval literature. 

One challenge is to design statistically sensible metrics to measure ranking quality and study 
statistical inference algorithms to optimize it (Duchi et al., 2012). The current search algorithms all use 
home-grown criteria of this kind. 

Exploration in Evaluation 

Some problems in massive data analysis require validation during exploration. An example is 
Internet advertising, where the goal is to serve ads and optimize revenue. In order to optimize the 
immediate reward, companies try to serve ads according to the current model. However, the models are 
under constant development, and parameters of the models are continually tested. Tang et al. (2010) 
report on some progress made in this area at Google. There is a big statistical challenge here in that, rather 
than evaluating one model at a time, one needs to be able to test an ever-changing set of models 

2 Heritage Provider Network Health Prize website, available at http://www.heritagehealthprize.com. 
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simultaneously, after which the effects of the parameters in the different models have to be teased apart. 
Just how to balance these operations is somewhat uncharted territory. 

Meta Modeling 

With massive data there is an additional challenge of meta-modeling, the bringing together of 
multiple models each designed for different purposes into an operational whole. Currently the trend is to 
fuse the results from diverse models that utilize different parts of common data. Three difficulties that 
arise include the following:  
 

• Ensuring that the common data are from the same spatial-temporal region,  
• Building a meta-model of the way in which the diverse models operate, and  
• Providing insight into the model that is relevant given the scale of the data being examined.  

 
Meta modeling is related to the issue of data diversity. In many massive data applications, data 

contain heterogeneous data types such as audio, video, images, and text. Much of the model-building 
literature and the current model-building arsenal focus on homogeneous data types, such as numerical 
data or text. It remains a challenge to develop models that can satisfactorily handle multiple data types. 

It is also known that combining many different models that focus on different aspects of the 
problem can be beneficial. One example is the 2009 Netflix competition that aimed to improve the 
prediction of individual movie preference (in order for Netflix to make appropriate movie 
recommendations to each user). A $1 million prize was awarded to the winning system, which was a 
combination of many different models. Another example is the IBM’s Jeopardy playing system, 
“Watson,” which beat two human champions in a widely publicized television show. A key component of 
that system is an engine that combines many specialized algorithms (or models) where each can answer 
some specific types of questions more effectively than others. It is thus critical to develop an effective 
“executive” algorithm that can evaluate which of the proposed answers is more reliable and make choices, 
so that the overall system can provide a more accurate final answer than any individual component. 

Tail Behavior Analysis 

In traditional statistics, an event that has only, say, 0.1 percent probability of occurring may be 
safely regarded as a “rare event,” and it can be ignored. (Although such events are considered in the 
robust statistics literature, they are studied there for a different reason with more specialized 
assumptions.) However, in the realm of massive data, these so-called “rare events” can occur sufficiently 
frequently that they deserve special attention. This means that in general the analysis of tail behavior 
becomes a key challenge in models of massive data. 

One example of tail behavior analysis is outlier (or anomaly) detection. Another related issue is 
false discovery, discussed earlier. 

Best Use of Model Output 

As noted earlier, certain models (e.g., agent-based simulations) also generate massive data. Little 
theory exists to guide analyses of their output, and no standards exist for the data-to-model-to-data-to-
metadata workflow. Basic research on infrastructure support for the generation, archiving, and searching 
of data-to-model-to-data is thus needed. 
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Large-Scale Optimization 

It is clear that optimization plays an important role in model building. This is because traditional 
statistical models can lead to estimators (such as MLE) that solve an optimization problem; moreover, 
appropriately formulated optimization formulations (such as k-means) can in some ways be regarded as 
models themselves. Complex models involve more complex optimization formulations. It is thus 
important to investigate optimization formulations and methods that can handle massive data.  

A particularly important direction is online optimization algorithms. In many massive data 
applications the underlying data-generation mechanism evolves over time. This is especially true with 
massive data streams. While there are some existing dynamic modeling tools to handle non-stationary 
data, they concern themselves mostly with modest-sized data streams. Online model-building algorithms 
are often vital in such situations. Online methods try to address the time and space complexity 
simultaneously. The latter is achieved by not requiring all data to be in memory simultaneously, which 
alleviates data-storage requirement. However, it still requires the current state (represented by a set of 
parameters) of the underlying statistical model to be stored and updated. In particular, the online concept 
does not directly address the issue of how to efficiently store large statistical models. Therefore, it will be 
helpful to study space requirements in streaming applications by studying models that can be efficiently 
maintained/updated in the online setting with space constraints. A number of sketching and streaming 
algorithms deal with efficient storage and update of relatively simple statistics. What can be done for 
more complex statistical models? For example, linear classifiers when not all features can be stored in 
memory remain problematic today. Although some streaming ideas seem applicable, the quality (both in 
practice and in theory) requires further investigation. Distributed optimization may be necessary for ultra-
large-scale applications (Boyd et al., 2011). 

Can online algorithms be adapted for model fitting to do model selection as well? That is, as new 
data are obtained and the fit is updated, can the tuning parameters also be guided and changed? How 
should this be done? See Auer et al. (2002) for some (theoretical) developments on this problem, and, for 
a broader overview, see Cesa-Bianchi and Lugosi (2006). 

Models and System Architecture 

In truly massive data analysis, a single machine will generally not be able to process all of the 
data. It is therefore necessary to consider efficient computational algorithms that can effectively utilize 
multiple processors. This computational consideration can play a significant role in deciding what models 
to use. For example, in a distributed computing environment with many computers that are loosely 
connected, the communication cost between different machines is high. In this scenario, some Bayesian 
models with parameters estimated using Monte Carlo simulation can relatively easily take advantage of 
the multiple machines by performing independent simulations on different machines. However, 
efficiently adapting an online learning algorithm to take advantage of distributed computational 
environment is more difficult. A key challenge is to investigate models and the associated computational 
methods that can easily take advantage of the computational power in multi-processor computing 
environments. Graphics processing units (GPUs) also show considerable promise for certain kinds of 
computations such as large-scale optimization. 

Causal Modeling 

Harnessing massive data to support causal inference represents a central scientific challenge. Key 
application areas include climate change, healthcare comparative effectiveness and safety, education, and 
behavioral economics. Massive data open up exciting new possibilities but present daunting challenges. 
For example, given electronic healthcare records for 100 million people, can we ascertain which drugs 
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cause which side effects? The literature on causal modeling has expanded greatly in recent years. but 
causal modeling in massive data has attracted little attention. 
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8 
Sampling and Massive Data 

 
 

Sampling is the process of collecting some data when collecting it all or analyzing it all is 
unreasonable. Before addressing why sampling still matters when massive amounts of data are available 
and what the new challenges are when the amount of data is massive, an overview of statistical sampling 
is provided below. 

COMMON TECHNIQUES OF STATISTICAL SAMPLING 

Random Sampling 

In simple random sampling, everything of interest that could be sampled is equally likely to be 
included in the sample. If people are to be sampled, then everyone in the population of interest has the 
same chance to be in the sample. For that reason, a simple random sample gives an unbiased 
representation of the population. 

Simple random sampling is usually straightforward to implement, but other kinds of sampling can 
give better estimates. Stratified random sampling partitions the population into groups called strata and 
then randomly samples within each group. If strata are less diverse than the population as a whole, then 
combining group-level estimates, such as group means, is better than estimating from the population 
without partitioning. The improvement due to partitioning is larger if the more heterogeneous groups are 
more heavily sampled. Often the groups and group sizes are chosen to optimize some criterion—such as 
constraining the mean squared error of an estimate—based on past data, theory about the processes 
generating the data, or intuition. Of course, a sampling strategy that is optimal for estimating one kind of 
parameter may be inefficient or even unusable for another, so there is often an informal compromise 
between optimal stratification and pure random sampling so that useful information can be obtained about 
a wider set of parameters. This kind of compromise is especially important when data are expensive to 
collect and may be re-used for unforeseen purposes. 

There are many variants of random sampling beyond stratification. For example, random 
sampling may be applied in stages. For example, cluster or hierarchical sampling first randomly samples 
city blocks, apartment buildings, households, or other “clusters,” and then randomly samples individuals 
within each sampled cluster. Panels that monitor changes in attitudes or health track a random sample of 
respondents over time, removing respondents from the panel when they have served for a fixed length of 
time, and replacing them with a new random sample of respondents. Only a fraction of the respondents 
enter or leave the panel at the same time, so the panel is always a mix of different “waves” of 
respondents. Nielsen runs a panel of households for television viewing, Comscore has a panel for Web 
browsing, and the U.S. government has many panels, such as the National Longitudinal Studies run by 
the Bureau of Labor Statistics. Other examples of staged sampling can be found in environmental science 
and ecology. For example, points or small regions are randomly sampled, and then data are taken along 
random directions from a landmark, such as the center of the sampled region. Of course, random 
sampling methods can be combined, so panels can be selected with stratification, for example.  

Sampling may also be adaptive or sequential, so that the sampling rule changes according to a 
function of the observations taken so far. The goal is to over-sample regions with “interesting” data or 
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more-variable data to ensure that the estimates in those regions are reliable. For example, the number of 
observations taken in a region may not be fixed in advance but instead depend on the data already 
observed in the region or its neighbors. In sequential sampling, the population to be sampled (called the 
sampling frame) may change over time, as happens when sampling a data stream.  

Randomly sampling a data stream may mean producing a set of observations such that, at any 
time, all observations that have occurred so far are equally likely to appear in the sample. Vitter (1985) 
called this reservoir sampling, although his algorithm was earlier known as the Fisher-Yates shuffling 
algorithm (Fisher and Yates, 1938). The basic idea behind reservoir sampling is that the probability that 
the next item seen is sampled depends on the number of items seen so far, but not otherwise on their 
values.  

Random sampling of data streams has two major disadvantages: the number of unique values 
grows, which requires more and more storage, and the newly observed values, which are often the most 
interesting, are given no more weight than the old values. Gibbons and Mattias (1998) consider fixed-
buffer-length sampling schemes that replace an element in a buffer (the current fixed-length sample) with 
a value that is not in the sample with a probability that depends on the buffer counts so far. The basic idea 
is that a newly observed value that recurs, and so is “hot,” will eventually be included in the sample. 
Variants of this scheme use exponentially weighted moving averages of the buffer probabilities and 
include a buffer element for “other,” which tracks the probability that the buffer does not include a recent 
item. 

In choice-based and case-based sampling, whether for fixed populations or data streams, the 
probability of selection depends on an outcome like disease status. Case-based sampling is necessary 
when an outcome is so rare that simple random sampling would likely produce too few positive cases and 
an overwhelming number of negative cases. It is used in applications as diverse as medicine, ecology, and 
agriculture. For example, Suter et al. (2007) matched grassland plots with the poisonous grassland weed 
Senecio jacobaea and neighboring plots without S. jacobaea to determine environmental conditions 
conducive to the growth of S. jacobaea. 

Event-based sampling, in which data are collected only when a signal exceeds a threshold or 
when an alarm sounds, is yet another kind of adaptive sampling. It is commonly used for analyses from 
engineering and Earth and planetary sciences for which storing all the data would be too costly or 
impractical. The threshold used depends on scientific knowledge about the size of interesting events. For 
example, the data rate on detectors in high-energy physics is so extreme that thresholds in hardware only 
allow 1 in 10 million events to pass to the next stage of the data system. The surviving data are then 
hierarchically sampled and filtered for further processing. 

Size-biased sampling is similar: the probability of selection depends, either intentionally or not, 
on a measure of size, such as the duration of hospital stay or revenues of a corporation, that is related to 
the outcome. Size bias that is intentional can be removed during estimation and model fitting by 
weighting the data; unintentional size bias requires more specialized statistical analyses to remove (e.g., 
Vardi, 1982). 

Specialized sampling techniques have evolved in ecology and evolutionary and environmental 
biology, and some of these are applied in large-scale applications. For example, estimation of wildlife 
population sizes has long used capture-recapture. The key idea is to capture animals, tag them, and then 
recapture the same population. The fraction of previously unseen animals in the recapture provides 
information about the population size. Capture-recapture designs can be quite elaborate and are now 
widely used in epidemiology.  

There is also a growing literature on random sampling for simple networks and graphs; e.g., 
Handcock and Gile (2010). The network is represented as a binary matrix where element (i, j) is 1 if that 
pair of nodes is sampled, and 0 if not. Random sampling then chooses one such binary matrix randomly. 
For example, a node i may be chosen by simple random sampling and then all the nodes j that interact 
with i are included in the sample. Such sampling preserves some relationships, but it destroys many 
others. Sampling on networks is still in its infancy, and there are obvious opportunities for stratification, 
clustering, and adaptation (such as link tracing), with different consequences for estimation. 
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There are many more principled ways to sample data randomly. In theory, random sampling is 
easy, but in practice it is fraught with unforeseen complications, often due to a poor match between the 
sampling design and the structure and noise of the data.  

Sampling according to known probabilities, whether equal or not, or whether all-at-once or 
sequentially, is called random sampling. Stratified sampling, case-based sampling, adaptive sampling, and 
length-biased sampling are all examples of random sampling. They all share the premise that the 
probability model that defines the sampling plan can be “unwound” to estimate a parameter of interest for 
the population at large, even if some observations, by design, were more likely to be sampled than others. 
Unequal weights give intentional sampling bias, but the bias can be removed by using the sampling 
weights in estimation or by estimating with regression or other models, and the bias allows attention to be 
focused on parts of the population that may be more difficult to measure. Finally, whether simple or not, 
random sampling leads to valid estimates of the reliability of the estimate itself (its uncertainty).  

It is important to note that the analysis goals drive the sampling. Consider for example a 
repository of Web usage data. Sampling of search queries—probably by country, language, day of week, 
and so on—may make sense if the goal is to measure the quality of search results. On the other hand, if 
the goal is to measure user happiness, then one should sample across users, and perhaps queries within 
users. Or, it might be appropriate to sample user sessions, which are defined by nearly uninterrupted 
periods of activity for a user. At the other extreme, the sampling unit might be low-level timing events 
within queries. The decision about how to sample should follow the decision about what to sample. 

Non-Random Sampling 

Unfortunately, random sampling is not always practical. Members of stigmatized populations, 
like intravenous drug users, may hide the fact that they are part of that population, so the sampling frame 
is unknown. Some populations, like that of people with particular expertise or perspectives, may be 
difficult to identify. Snowball sampling, proposed by Goodman (1961), starts with a set of seeds that are 
known to belong to the hidden group. The seeds are asked to identify additional members of the group, 
then the newly identified members are asked to identify other group members, and so on. This process 
produces a sample without knowing the sampling frame. Goodman showed that if the initial seeds are 
random, then it is possible under some conditions to estimate relationships between people from snowball 
samples. Of course, there is a danger that the population is not well mixed, so only a non-representative 
sample can be reached from the initial seed. In contrast, random sampling is unbiased in the sense that 
two people in the same stratum, for example, have the same chance of being in the sample, even if their 
characteristics beyond those used for stratification are very different.  

Heckathorn (1997, 2002) improved snowball sampling by adding more structure to sample 
recruitment. Each recruit at each stage is given a set number of coupons, a constraint that controls the rate 
of recruitment in sub-groups (as in stratification), reduces the risk of sampling only a dominant subgroup, 
and makes it easier to track who recruited whom and how large a social circle each recruit has. This 
respondent-driven sampling (RDS) has largely replaced snowball sampling. RDS is not random sampling 
because the initial seeds are not random, but some have suggested that the mixing that occurs when there 
are many rounds of recruitment or when the recruits added at later stages are restricted to those that have 
been given exactly one coupon induces a pseudo-random sample. However, difficulty in recruiting initial 
seeds may still lead to bias, and there is controversy about the reliability of estimates based on RDS even 
after correcting for the size of the networks of the initial seeds (e.g., Goel and Salganik, 2010). Finally, 
note that both RDS and snowball sampling often focus on estimation for an outcome in a population that 
is reached through a social graph rather than estimation of properties of the graph itself. 
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Sparse Signal Recovery 

There are alternatives to sampling when collecting all the data is impractical, especially in 
applications in the physical sciences and engineering. In sparse signal recovery, a data vector x is 
multiplied by a matrix M, and only the resulting y = Mx is retained. If x has only a few large components, 
then the matrix M can have considerably fewer rows than columns, so the vector y of observations is 
much smaller than the original data set without any loss of information. This kind of data reduction and 
signal recovery is known as compressed sensing, and it arises in many applications, including analog-to-
digital conversion, medical imaging, and hyperspectral imaging, with a variety of different features that 
depend on the application (Candès and Tao, 2005; Donoho, 2006). 

In signal and image processing, sparse recovery is done physically. For example, analog-to-
digital converters sample analog signals, quantize the samples, and then produce a bit-stream. 
Hyperspectral cameras use optical devices to acquire samples that are then digitized and processed off-
line. Streaming algorithms employ software-based measurement schemes. 

Group testing is a special case of sparse signal recovery. Here the observations are taken on 
groups or pools of respondents, and only the combined response for the group is observed. Dorfman 
(1943), for example, combined blood samples from groups of army recruits to detect if any of them had 
syphilis. Because syphilis was uncommon, most groups would be negative, and no further testing was 
needed.  

Sampling for Testing Rather Than Estimation 

The discussion so far has focused on sampling for estimation, but it is also common to sample in 
order to test whether a set of factors and their interactions affect an outcome of interest. The factors under 
test are called treatments, and the possible values of a treatment are called levels. For example, two 
treatments might be “image used in ad campaign” and “webpage where the ad is shown.” The levels of 
the first treatment might be the various images shown to the user, including the null value of “no ad,” 
which is called the control. Often only a few levels of each treatment are tested. The decision about which 
test units get which combination of levels of the treatments is known as experiment design. Designed 
experiments go back at least as far as the 1700s, but Fisher’s book The Design of Experiments (1935) was 
the first to lay out principles for statistical experimentation. 

The basic premise of experiment design is that it is much more efficient and informative to apply 
several treatments to the same unit under test, thus testing the effect of several treatments simultaneously, 
than it is to apply only one experimental factor to each test unit. That is, instead of testing whether the 
different levels of treatment A give different results on average, and then testing whether the different 
levels of treatment B give different results on average, both A and B are tested simultaneously by 
assigning every test unit a level of A and a level of B.  

There are many kinds of experiment designs, just as there are many sampling designs. Perhaps 
the most common are fractional factorials that allocate test units to combinations of levels of treatment 
factors when the number of treatment levels plus the number of treatment interactions of interest exceed 
the number of units available for testing. In that case, various criteria are optimized to choose which 
combinations of treatment levels to test and how many units to test at each combination. Classical 
combinatorial theory is often used to find the assignment of treatments to experimental units that 
minimize the expected squared error loss (e.g., Sloane and Hardin, 1993).  

Test units are often a simple random sample from the population of interest, and they are often 
randomly assigned levels of the factors to be tested. However, test units can be blocked (stratified) to 
control for confounding factors that are not under test, such as age. For example, test units might be 
stratified by country when testing the effects of different ad images and websites. Then comparisons are 
made within blocks and combined over blocks. Sequential testing and adaptive testing (e.g., multi-armed 
bandits) are also common in some areas, such as in medicine. These designs change the fraction of test 
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units assigned to each combination of treatment factors over time, eliminating treatment levels as soon as 
they are unlikely to ever show a statistically significant effect. These ideas also extend to online 
experiments, where tests of different treatments are started and stopped at different times. That is, 
treatments A, B, and C may be tested on day 1 and treatments A, B, and D tested on day 2. If standard 
design principles are followed, then the effects of the different treatments and their interactions can be 
teased apart (Tang et al., 2010). 

Random sampling can be used not only to assign units to factors but also to evaluate which, if 
any, of the treatment factors and their interactions are statistically significant. As a simple example, 
suppose there is only one factor with two levels A and B, m units are assigned to A and n to B, and the 
goal is to decide if the mean outcome under A is different from the mean outcome under B after 
observing the difference Dobs of sample means. If the factor has no effect, so that there is no difference in 
A and B, then the A and B labels are meaningless. That is, Dobs should look like the difference computed 
for any random re-labeling of the units as m As and n Bs. The statistical test thus compares Dobs to the 
difference of sample means for random divisions of the observed data into A and B groups. If Dobs is 
larger or smaller than all but a small fraction of the mean differences obtained by random re-labeling, then 
there is statistical evidence that A and B have different effects on the mean outcome. On the other hand, if 
Dobs is not in the tail of the re-labeled differences, then one cannot be sure that the difference between A 
and B is meaningful. Such tests are called randomization or permutation tests. Tests that re-label a set of 
m+n test units drawn with replacement from the original data are called boostrapped tests; these behave 
similarly. Randomization and bootstrapped tests are nearly optimal in finite samples under weak 
conditions, even if the space of possible re-labelings is only sampled. In other words, valid tests can be 
constructed by approximating the sampling distribution of the test statistic with random re-sampling of 
the data. 

Finally, it is not always possible to assign units to treatments randomly. Assigning students to a 
group that uses drugs to measure the effect of drug use on grades would be unethical. Or people may be 
assigned randomly to a treatment group but then fail to use the treatment. For example, a non-random 
subset of advertisers may be offered a new tool that should make it easier to optimize online ad 
campaigns, and a non-random subset of those may choose to use it. Or the treatment group may be 
identified after the fact by mining a database. Even though the treatment group is not random, valid tests 
can often be based on a random set of controls or comparison group, perhaps stratifying or matching so 
that controls and “treated” were similar before treatment. Testing without randomization or with 
imperfect randomization falls under the rubric of observational studies. 

CHALLENGES WHEN SAMPLING FROM MASSIVE DATA 

Impressive amounts of data can now be collected and processed. But some tasks, like data 
visualization, still require sampling to tame the scale of the data, and some applications require sampling 
and testing methods that are beyond the state of the art. Following are a few examples of the latter.  

Data from Participatory Sensing, or “Citizen Science” 

There are billions of cell phones in the world. In participatory sensing, volunteers with cell 
phones collect location-tagged data either actively (taking images of overflowing trash cans, for example) 
or passively (reporting levels of background noise, pollutants, or health measurements like pulse rates). In 
principle, simple random sampling can be used to recruit participants and to choose which active devices 
to collect data from at any time and location, but, in practice, sampling has to be more complex and is not 
well-understood. Crowdsourcing, such as the use of micro-task markets like Amazon’s Mechanical Turk, 
raise similar sampling questions (see Chapter 9). Challenges, which result from the non-stationary nature 
of the problem, include the following: 
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• Sample recruitment is ongoing. The goal is to recruit (i.e., sample mobile devices or raters for 

micro-task markets) in areas with fast-changing signals (hot spots) or high noise or that are currently 
underrepresented to improve the quality of sample estimates. Those areas and tasks have to be identified 
on the fly using information from the current participants. Recruiting based on information from other 
participants introduces dependence, which makes both sampling implementation and estimation more 
difficult. There are analogies with respondent-driven sampling, but the time scales are much compressed. 

• Some incoming samples are best omitted. This is, in a sense, the inverse of the sample 
recruitment challenge just mentioned: how to decide when to exclude a participant or device from the 
study, perhaps because it produces only redundant, noisy, spotty, or perverse data.  

• Participants will enter and leave the sensing program at different times. This hints of panel 
sampling with informative drop-out, but with much less structure. Note that the problem is non-stationary 
when the goals change over time or the user groups that are interested in a fixed goal change over time. 

• Data need not be taken from all available devices all the time. Randomly sampling available 
devices is one option, but that could be unwieldy if it requires augmenting information from one device 
with information from others. Here, the problems are intensified by the heterogeneous nature of the data 
sources. Some devices may be much more reliable than others. Moreover, some devices may give data in 
much different formats than others. 

• Sampling for statistical efficiency and scheduling for device and network efficiency have an 
interplay. How should sampling proceed to minimize communication (e.g., battery) costs? There may be 
analogies with adaptive testing or experiment design. 

• Data obtained from participatory sensing and crowdsourcing is likely to be biased. The mix 
of participants probably does not at all resemble a simple random sample. Those who are easiest to recruit 
may have strong opinions about what the data should show, and so provide biased information. Samples 
may need to be routinely re-weighted, again on the fly, with the weights depending on the purpose of the 
analysis. New ways to describe departures from random sampling may need to be developed. Past work 
on observational studies may be relevant here. 
 

For recent references on sampling and sampling bias in crowdsourcing or citizen science, see, for 
example, Dekel and Shamir (2009), Raykar et al., (2010), and Wauthier and Jordan (2011). 

Data from Social Networks and Graphs 

Statistically principled sampling on massive graphs, whether static or dynamic, is still in its 
infancy. Sampling—no matter how fine its resolution—on graphs can never preserve all graph structure 
because sampling never preserves everything. But having some insight into some properties of a graph 
and its communities, and being able to characterize how reliable that insight is, may be better than having 
none at all. If so, then a set of design principles for sampling from graphs for different kinds of analyses is 
needed. 

Variants of respondent-driven sampling have been applied to graphs by randomly sampling a 
seed set of nodes and then randomly sampling some of the nodes they are connected to, with the selection 
depending on a window of time for dynamic graphs. Sometimes new random seeds are added throughout 
the sampling. Other methods are based on random walks on graphs, starting from random nodes, perhaps 
adding new seeds at random stages. With either approach, there are many open questions about tailoring 
sampling methods to the analysis task. Just as with smaller problems, there is likely to be no one right 
way to sample, but rather a set of principles that guide sampling design. However, these principles are not 
yet in place. 

Entirely new ways to sample networks may be needed to obtain dense-enough subgraphs to give 
robust estimates of graph relationships. Traditional network statistics are highly sensitive to missing data 
or broken relations (e.g., Borgatti et al., 2006). For example, a rank order of nodes can be radically 
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different if as little as 10 percent of the links are missing. New ways to sample that preserve node 
rankings are needed, as is theoretical understanding of the biases inherent in a strategy for network 
sampling. In particular, sampling designs that account for the network topology are needed. There has 
been some initial work (e.g., Guatam et al., 2008), but this topic is still in its infancy. 

Finally, the difficulties in sampling networks are compounded when the data are obtained by 
crowdsourcing or massive online gaming. They are further intensified when individuals belong to 
multiple social networks, maintained at different sites. Answering a question as seemingly simple as how 
many contacts does an individual have is fraught with technical difficulty.  

Experiment design for social networks is even less explored. Here the unit under test is not a node 
but a connected set of nodes. Choosing equivalent sets of connected nodes that can be randomly assigned 
to the different levels of the treatments has only recently received attention (e.g., Backstrom and 
Kleinberg, 2011.) There is also a need for methods that allow principled observational studies on graphs. 
Aral et al. (2009) provide an early example that uses propensity scoring to find appropriate random 
controls when the treatment cannot be properly randomized. 

Data from the Physical Sciences 

The emergence of very large mosaic cameras in astronomy has created large surveys of sky 
images that contain 500 million objects today and soon will have billions. Most astronomers today use a 
target list from a large, existing imaging survey to select their favorite objects for follow-up observations. 
Because these follow-ups are quite expensive in terms of telescope time, various (mostly ad hoc) 
sampling strategies are applied when, for example, selecting galaxies for spectroscopic observations. 
While it is relatively straightforward to create a sampling scheme for a single criterion, it is rare that a 
sample created for one purpose will not be later reused in another context. The interplay between often 
conflicting sampling criteria is poorly understood, and it is not based on a solid statistical foundation. 

As a concrete example, both Pan-STARRS and the Large Synoptic Survey Telescope will provide 
deep multicolor photometry in co-added (averaged) images for several billion galaxies over a large 
fraction of the sky. This data set will provide an excellent basis for several analyses of large-scale 
structure and of dark energy. However, unlike the Sloan Digital Sky Survey (SDSS), these surveys will 
not have a spectroscopic counterpart of comparable depth. The best way to study structure, then, is to split 
the galaxy sample into radial shells using photometric redshifts—i.e., using the multicolor images as a 
low-resolution spectrograph. The most accurate such techniques today require a substantial “training set” 
with spectroscopic redshifts and a well-defined sample selection. No such sample exists today, nor is it 
clear how to create one. It is clear that its creation will require major resources (approximately 50,000-
100,000 deep redshifts) on 8- to 10-m class telescopes. 

Given the cost of such an endeavor, extreme efficiency is needed. Special care must be taken in 
the selection of this training set, because galaxies occupy a large volume of color space, with large 
density contrasts. Either one restricts galaxy selection to a small, special part of the galaxy sample (such 
as luminous red galaxies from the SDSS), or one will be faced with substantial systematic biases. A 
random subsample will lack objects in the rare parts of color space, while an even selection of color space 
will under-sample the most typical parts of color space. The optimum is obviously in between. A 
carefully designed stratified sample, combined with state-of-the-art photometric redshift estimation, will 
enable many high-precision cosmological projects of fundamental importance. This has not been 
attempted at such scale, and a fundamentally new approach is required. 

Time-domain surveys are just starting, with projected detection cardinalities in the trillions. 
Determining an optimal spatial and temporal sampling of the sky (the “cadence”) is very important when 
one operates a $500 million facility. Yet, the principles behind today’s sampling strategies are based on 
ad hoc, heuristic criteria, and developing more optimal algorithms, based on state-of-the-art statistical 
techniques, could have a huge potential impact. 

PREPUBLICATION DRAFT – Subject to Further Editorial Correction 
85 



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

As scientists query large databases, many of the questions they ask are about computing a 
statistical aggregate and its uncertainty. Running an SQL statement or a MapReduce task provides the 
“perfect” answer, the one that is based on including all the data. However, as data set sizes increase, even 
linear data scans (the best case, since sometimes algorithms have a higher complexity) become 
prohibitively expensive. As each data point has its own errors, and statistical errors are often small 
compared to the known and unknown systematic uncertainties, using the whole data set to decrease 
statistical errors makes no sense. Applying an appropriate sampling scheme (even incrementally) to 
estimate the quantities required would substantially speed up the response, without a loss of statistical 
accuracy. Of course, scientific data sets often have skewed distributions; not everything is Gaussian or 
Poisson. In those cases, one needs to be careful how the sampling is performed. 
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Human Interaction with Data 

INTRODUCTION 

Until recently, data analysis was the purview of a small number of experts in a limited number of 
fields. In recent years, however, more and more organizations across an expanding range of domains are 
recognizing the importance of data analysis in meeting their objectives. Making analysis more useful to a 
wider range of people for a more diverse range of purposes is one of the key challenges to be addressed in 
the development of data-driven systems. 

In many, perhaps most, scenarios today and in the near-term future, people are the ultimate 
consumers of the insights from data analysis. That is, the analysis of data is used to drive and/or improve 
human decision-making and knowledge. As such, methods for visualization and exploration of complex 
and vast data constitute a crucial component of an analytics infrastructure. The field of human-computer 
interactions has made great progress in the display and manipulation of complex information, but the 
increasing scale, breadth, and diversity of information provide continued challenges in the area. 

People are not, however, merely consumers of data and data analysis. In many analytics usage 
scenarios, people are also the source (and often the subject) of the data being analyzed. Continuing 
improvements in network connectivity and the ubiquity of sophisticated communications and computing 
devices has made data collection easier, particularly as more activities are done online. Moreover, 
increasing network connectivity has been leveraged by a number of platforms that can allow people to 
participate directly in the data analysis process. Crowdsourcing is the term used to describe the harnessing 
of the efforts of individual people and groups to accomplish a larger task. Crowdsourcing systems have 
taken on many forms, driven largely by advances in network connectivity, the development of service-
oriented platforms and application programming interfaces (APIs) for accomplishing distributed work, 
and the emergence of user-generated content sites (sometimes referred to as “Web 2.0”) that include 
socially oriented and other mechanisms for filtering, vetting, and organizing content. 

This chapter discusses several aspects of crowdsourcing that could contribute to extracting 
information from massive data. Crowdsourced data acquisition is the process of obtaining data from 
groups either explicitly—for example, by people deliberately contributing content to a website—or 
implicitly, as a side effect of computer-based or other networked activity. This has already been shown to 
be a powerful mechanism for tasks as varied as monitoring road traffic, identifying and locating 
distributed phenomena, and discovering emerging trends and events. 

For the purposes of this report, a perhaps more interesting development in crowdsourcing is the 
involvement of people to aid directly in the analysis process. It is well known that computers and people 
excel at very different types of tasks. While algorithm developers continue to make progress in enabling 
computers to address tasks of greater complexity, there remain many types of analysis that can be more 
effectively done by people, even when compared to the most sophisticated computers and algorithms. 
Such analyses include deep language understanding and certain kinds of pattern recognition and outlier 
detection. Thus, there has been significant recent work and recognition of further opportunities in hybrid 
computer/human data analysis. 

These trends are leading to the increased understanding of the role of people in all phases of the 
data processing lifecycle—from data collection through analysis to result consumption, and ultimately to 
decision making. The human dimension carries with it a new set of concerns, design constraints, and 
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opportunities that must be addressed in the development of systems for massive data analysis. In addition, 
massive data calls for new approaches to data visualization, which is often used in exploratory data 
analysis. This chapter thus focuses on the various aspects of human interaction with data, with an 
emphasis on three areas: data visualization and exploration, crowdsourced data acquisition, and hybrid 
computer/human data analysis. 

STATE OF THE ART 

Data Visualization and Exploration1 

Information visualization technologies and visual analytics processes have matured rapidly in the 
past two decades and continued to gain commercial adoption, while the research enterprise has expanded. 
Successful commercial tools include some that stand alone, such as Spotfire, Tableau, Palantir, 
Centrifuge, i2, and Hive Group, as well as some that are embedded in other systems, such as IBM ILOG, 
SAS JMP, Microsoft Proclarity, Google Gapminder, and SAP Xcelsius. In addition, open-source toolkits 
such as R, Prefuse, ProtoVis, Piccolo, NodeXL, and Xmdv support programmers. Academic conferences 
and journals in this area are active, and an increasing number of graduate courses are available.  

At the same time, news media and web-based blogs have focused intense public attention on 
interactive infographics that deal with key public events such as elections, financial developments, social 
media impacts, and healthcare/wellness. Information visualizations provide for rapid user interaction with 
data through rich control panels with selectors to filter data, with results displayed in multiple coordinated 
windows. Larger displays (10 megapixels) or display arrays (100-1,000 megapixels) enable users to 
operate dozens of windows at a time from a single control panel. Large displays present users with 
millions of markers simultaneously, allowing them to manipulate these views by dynamic query sliders 
within 100 ms. Rapid exploration of data sets with 10 million or more records supports hypothesis 
formation and testing, enabling users to gain insights about important relationships or significant outliers. 

An important distinction is often made between the more established field of scientific 
visualization and the emerging field of information visualization. Scientific visualizations typically deal 
with two-dimensional and three-dimensional data about physical systems in which questions deal with 
position—for example, the location of highest turbulence in the airflow over aircraft wings, the location 
and path of intense hurricanes, or the site of blockages in arteries. In contrast, information visualizations 
typically deal with time series, hierarchies, networks, or multi-variate or textual data, in which questions 
revolve around finding relationships, clusters, gaps, outliers, and anomalies.  

Information visualization problems might be typified by the following examples: 
 

• Find the strongest correlations in daily stock market performance over 5 years for 10,000 
stocks (analyze a set of time series); 

• Identify duplicate directories in petabyte-scale hard drives (search through hierarchies);  
• Find the most-central nodes in a social network of 500 million users (network analysis); and 
• Discover related variables from 100-dimensional data sets with a billion rows (multivariate 

analysis).  
 

Increasingly, text-analytics projects are searching Web-scale data sets for trending phrases (e.g., 
Google’s culturomics.org), unusual combinations, or anomalous corpora that avoid certain phrases. 

There are hundreds of interesting visualization techniques, including simple bar charts, line 
charts, treemaps, graphs, geographic maps, and textual representations such as tag clouds. Information 
visualization tools, however, often rely on rich interactions between multiple simultaneous visualizations. 

1 The committee thanks Ben Shneiderman of the University of Maryland and Patrick Hanrahan of Stanford 
University for very helpful inputs to this section. 
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For example, a user might select a set of markers in one window, and the tool highlights related markers 
in all windows, so that relationships can be seen. Such a capability might allow a user to select bars on a 
timeline indicating earthquakes and, from that, automatically highlight markers on a map and show each 
earthquake in a scattergram organized by intensity versus number of fatalities, color coded by whether the 
quake was under water or under land areas. Similarly, the movement of any dynamic query slider 
immediately filters out the related markers in all views. For example, a user could filter out the quakes 
whose epicenter was deeper than 3 miles to study the impact of deep quakes only.  

The general approach to seeking information is to overview first, zoom and filter, and then find 
details on demand. This simple notion conveys the basic idea of an exploratory process that has been 
widely applied. More recently, however, attention in the visual analytics community has shifted to 
process models for exploration. Such models range from simple 4-step approaches that gather 
information, re-represent it, develop insights, and present results, to elaborate 16-step models and 
domain-specific approaches for medical histories, financial transactions, or gene expression data.2 The 
process models help guide users through steps that include data cleaning (remove errors, duplicates, 
missing data, etc.), filtering (select appropriate subsets), aggregation (clustering, grouping, hierarchical 
organization), and recording insights (marking, annotation, grouping).3  

The steps in such process models have perceptual, cognitive, and domain-specific aspects that 
lead researchers to consider visual analytics as a sense-making process, which requires validation by 
empirical assessments. While some aspects of interface design and usage can be tested in controlled 
empirical user studies and expert reviews, information visualization researchers have creatively found 
new evaluation methods. Often, case studies of usage by actual researchers working with their own data 
over periods of weeks or months have been used to validate the utility of information visualization tools 
and visual analytics processes (Shneiderman and Plaisant, 2006). 

Crowdsourced Data Acquisition 

The idea of coordinating groups of people to perform computational tasks has a long history. 
Small groups of people were used to catalog scientific observations as early as the 1700s, and groups of 
hundreds of people were organized to compute and compile tables of mathematical functions in the early 
part of the 20th century (Grier, 2005). Recently, as the Internet has enabled large-scale organization and 
interaction of people, there has been a resurgence of interest in crowd-based data gathering and 
computation. The term “crowdsourcing” is used to describe a number of different approaches, which can 
be grouped into two general classes: those that leverage human activity, and those that leverage human 
intelligence. In the former case, data are produced and gathered, and work is performed as a by-product of 
individuals’ behavior on the Web or in other networked environments. In the latter case, groups of people 
are organized and explicitly tasked with performing a job, solving a problem, or contributing content or 
other work product. 

The first category of crowdsourcing consists of techniques for garnering useful information 
generated as a byproduct of human activity. Such information is sometimes referred to as “data exhaust.” 
For example, search companies can continuously improve their spell checking and recommendation 
systems using data generated as users enter misspelled search terms and then click on a differently spelled 
(correct) result. Many Web companies engage in similar types of activity mining, for example, to choose 
which content or advertising to display to specific users based on search history, access history, 
demographics, etc. Many other online activities, such as recommending a restaurant, “re-tweeting” an 
article, and so on, also provide valuable information. The implicit knowledge that is gleaned from user 
behaviors can be used to create a new predictive model or to augment and improve an existing one. 

2 See Thomas and Cook (2005) for an overview. 
3 See, e.g., Perer and Shneiderman (2006). 
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In these examples, users’ online activity is used to predict their intent or discern their interests. 
Online activity can also be used to understand events and trends in the real world. For example, there has 
been significant interest lately in continuously monitoring online forums and social media to detect 
emerging news stories. As another example, Google researchers have demonstrated the ability to 
accurately detect flu outbreaks in particular geographic regions by noting patterns in search requests about 
flu symptoms and remedies.4 Importantly, they demonstrated that such methods sped up the detection of 
outbreaks by weeks compared to the traditional reporting methods currently used by the Centers for 
Disease Control and Prevention and others. 

Another form of crowdsourced data acquisition is known as participatory sensing (Estrin, 2010). 
The convergence of sensing, communication, and computational power on mobile devices such as cellular 
phones creates an unprecedented opportunity for crowdsourcing data. Smartphones are increasingly 
integrating sensor suites (with data from the Global Positioning System, accelerometers, magnetometers, 
light sensors, cameras, and so on), and they are capable of processing the geolocalized data and of 
transmitting them. As such, participatory sensing has become a paradigm for gathering data at global 
scales, which can reveal patterns of humans in the built environment. Early successes have been in the 
area of traffic monitoring and congestion prediction,5 but it is possible to build many applications that 
integrate physical monitoring with maps. Examples of other applications include monitoring of 
environmental factors such as air quality, sound pollution, ground shaking (i.e., earthquake detection), 
and water quality and motion. Urban planning can be aided by the monitoring of vehicular as well as 
pedestrian traffic. Privacy concerns must be taken into account and handled carefully in some of these 
cases.  

In all the cases described above, data are collected as a byproduct of peoples’ online or on-
network behavior. Another class of crowdsourcing approaches more actively designs online activity with 
the express purpose of enticing people to provide useful data and processing. “Games with a purpose” are 
online games that entice users to perform useful work while playing online games (see, e.g., von Ahn and 
Dabbish, 2008). An early example was the ESP Game, developed at Carnegie Mellon University, in 
which players listed terms that describe images, simultaneously earning points in the game and labeling 
the images to aid in future image search queries.  

A related approach, called re-captcha,6 leverages human activity to augment optical character 
recognition (OCR). In re-captcha, users attempting to access an online resource are presented with two 
sets of characters to transcribe. One set of characters is known to the algorithm and is presented in a 
format that is difficult for machines to identify. The other set of characters presented to the user is a 
portion of text that an OCR algorithm was unable to recognize. The idea is that by correctly entering the 
first set of characters, a user verifies that he or she is not a machine, and by entering the second set of 
characters, the user then effectively performs an OCR task that an OCR algorithm was unable to perform. 

HYBRID HUMAN/COMPUTER DATA ANALYSIS 

In the crowdsourcing techniques described in the previous section, human input was obtained 
primarily as part of the data-collection process. More recently, a number of systems have been developed 
that more explicitly involve people in computational tasks. Although the fields of artificial intelligence 
and machine learning have made great progress in recent years in solving many problems that were long 
considered to require human intelligence—for example, natural language processing, language 
translation, chess playing, winning the television game show Jeopardy, and various prediction and 
planning tasks—there are still many tasks where human perception, and peoples’ ability to disambiguate, 

4 E.g., Explore Flu Trends Around the World, available at http://www.google.org/flutrends. 
5 E.g., Mobile Millennium, University of California, Berkeley, Snapshot of Mobile Millennium Traffic in San 

Francisco and the Bay Area, available at http://traffic.berkeley.edu/. 
6 The ReCAPTCHA website is available at http://www.google.com/recaptcha. 
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understand context, and make subjective judgments, exceed the capabilities of even the most 
sophisticated computing systems. For such problems, substantial benefit can be obtained by leveraging 
human intelligence. 

While Quinn and Bederson (2011) distinguish human computation from crowdsourcing, defining 
the former as replacing computers with humans and the latter as “replacing traditional human workers 
with members of the public,” many in both the research community and the general public do not make 
such a distinction. Thus, crowdsourcing is often used to refer to either type of human involvement, and 
that convention is followed here. 

Some types of crowdsourced systems that can be used to involve people in the process of 
analyzing data are the following: 
 

• User-generated content sites. Wikipedia is a prominent example of a user-generated content 
site where people create, modify, and update pages of information about a huge range of topics. More 
specialized sites exist for reviews and recommendations of movies, restaurants, products, and so on. In 
addition to creating basic content, in many of these systems users are also able to edit and curate the data, 
resulting in collections of data that can be useful in many analytics tasks. 

• Task platforms. Much of the interest around crowdsourcing has been focused on an emerging 
set of systems known as microtask platforms. A microtask platform creates a marketplace in which 
requesters offer tasks and workers accept and perform the tasks. Microtasks usually do not require any 
special training and typically take no longer than 1 minute to complete, although they can take longer. 
Typical microtasks include labeling images, cleaning and verifying data, locating missing information, 
and performing subjective or context-based comparisons. One of the leading platforms at present is 
Amazon Mechanical Turk (AMT). In AMT, workers from anywhere in the world can participate, and 
there are thought to be hundreds of thousands of people who perform jobs on the system.  

Other task-oriented platforms have been developed or proposed to do more sophisticated work. 
For example, specialized platforms have been developed to crowdsource creative work such as designing 
logos (e.g., 99designs) or writing code (e.g., TopCoder). In addition, some groups have developed 
programming languages to encode more sophisticated multistep tasks, such as Turkit (Little et al., 2010), 
or market-based mechanisms for organizing larger tasks (Shahaf and Horvitz, 2010). These types of 
platforms can be used to get human participation on a range of analytics tasks, from simple 
disambiguation to more sophisticated iterative processing. 

• Crowdsourced query processing. Recently, a number of research efforts have investigated the 
integration of crowdsourcing with query processing as performed by relational database systems. 
Traditional database systems are limited in their ability to tolerate inconsistent or missing information, 
which has restricted the domains in which they can be applied largely to those with structured, fairly clean 
information. Crowdsourcing based on application programming interfaces (APIs) provides an opportunity 
to engage humans to help with those tasks that are not sufficiently handled by database systems today. 
CrowdDB (Franklin et al., 2011) and Qurk (Marcus et al., 2011) are examples of such experimental 
systems. 

• Question-answering systems. Question-answering systems are another type of system for 
enlisting human intelligence. Many different kinds of human-powered or human-assisted sites have been 
developed. These include general knowledge sites where humans help answer questions (e.g., Cha Cha), 
general expertise-based sites, where people with expertise in particular topics answer questions on those 
topics (e.g., Quora), and specialized sites focused on a particular topic (e.g., StackOverflow for computer-
programming-related questions). 

• Massive multi-player online games. Another type of crowdsourcing site uses gamification to 
encourage people to contribute to solving a problem. Such games can be useful for simulating complex 
social systems, predicting events (e.g., prediction markets), or for solving specific types of problems. One 
successful example of the latter type of system is the FoldIt site,7 where people compete to most 

7 The FoldIt website is available at http://fold.it.  
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accurately predict the way that certain proteins will fold. FoldIt has been competitive with, and in some 
cases even beaten, the best algorithms for protein folding, even though many of the people participating 
are not experts. 

• Specialized platforms. Some crowdsourcing systems have been developed and deployed to 
solve specialized types of problems. One example is Ushahidi,8 which provides geographic-based 
information and visualizations for crisis response and other applications. Another such system is Galaxy 
Zoo,9 which enables people to help identify interesting objects in astronomical images. Galaxy Zoo learns 
the skill sets of its participants over time and uses this knowledge to route particular images to the people 
who are most likely to accurately detect the phenomena in those images.  

• Collaborative analysis. This class of systems consists of the crowdsourcing platforms that are 
perhaps the most directly related to data analytics at present. Such systems enable groups of people to 
share and discuss data and visualizations in order to detect and understand trends and anomalies. Such 
systems typically include a social component in which participants can directly engage each other. 
Examples of such systems include ManyEyes, Swivel, and Sense.us. 
 

As can be seen from the above list, there is currently a tremendous amount of interest in and 
innovation around crowdsourcing in many forms. In some cases (e.g., crowdsourced query processing and 
collaborative analysis) crowd resources are being directly used to help make sense of data. In other cases, 
there is simply the potential for doing so. The next section outlines opportunities and challenges for 
developing hybrid human/computer analytics systems, as well as the two other areas of human interaction 
with data discussed above. 

OPPORTUNITIES, CHALLENGES, AND DIRECTIONS 

Data Visualization and Exploration 

Many of the current challenges in visualization and exploration stem from scalability issues. As 
the volume of data to be analyzed continues to increase, it becomes increasingly difficult to provide 
useful visual representations and interactive performance for massive data sets. These concerns are not 
unrelated: interactive analysis is qualitatively different than off-line approaches, particularly when 
exploration is required. 

Aggregation strategies and visual representations are gaining importance as research topics 
(Shneiderman, 2008; Elmqvist and Fekete 2010). This is especially true for network visualization, in 
which billion-node communications or citation graphs are common and petabyte-per-day growth is a 
reality (Elmqvist et al., 2008; Archambault et al., 2011). 

In terms of performance, one would expect that the significant continuing changes in hardware 
architectures provide an opportunity to address the scalability issue. One appealing research direction is to 
support massive information visualization by way of specialized hardware. Graphics processing units 
(GPUs) have become low-cost and pervasive for showing three-dimensional graphics, while other 
emerging technologies such as data parallel computation platforms and cloud computing infrastructures 
must also be exploited.  

A second area that requires attention is the integration of visualization with statistical methods 
and other analytic techniques in order to support discovery and analysis. Here, the best strategy appears to 
lie in combining statistical methods with information visualization (Perer and Shneiderman, 2009). Users 
can view initial displays of data to gain provisional insights about the distributions, identify errors or 
missing data, select interesting outliers or clusters, and explore high and low values. At every point they 
can apply statistical treatments to produce new intermediate data sets, record their insights, select groups 

8 The Ushahidi website is available at http://ushahidi.com. 
9 The Galaxy Zoo website is available at http://www.galaxyzoo.org. 
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for later analysis, or forward promising partial results to colleagues. Often users will need to combine data 
from several sources and apply domain knowledge to interpret the meaning of a statistical result and 
visual display. While the products of an analysis may be compelling displays, the key outcome is insight 
about the data.  

An additional requirement that arises from the interactive nature of many data analysis processes 
is the need for the analytics system to provide human-understandable feedback to explain analytics results 
and the steps taken to obtain them. For example, sometimes automated systems produce models that are 
difficult to understand. Currently, the understandability of the analytical processes is the biggest 
impediment to using such techniques in decision-making. No CEO is going to make a risky decision 
using a model they do not understand. Consumers also have problems when automated systems present 
data they do not understand. Embedding data in a semantic substrate and allowing people to ask high-
level questions using interactive tools is an effective way to improve confidence in and utility of an 
analytics system. 

A final area of opportunity is support for group-based analytics. Complex decisions are often 
made by groups rather than individuals. As data become more complex, support for groups and shared 
expertise becomes even more important. Visual analytics researchers emphasize the social processes 
around information visualization, in which teams of 10 to 5,000 analysts may be working on a single 
problem, such as pharmaceutical drug discovery, oil/gas exploration, manufacturing process control, or 
intelligence analysis. These teams must coordinate their efforts over weeks or months, generate many 
intermediate data sets, and combine their insights to support important decisions for corporations or 
government agencies. 

Crowdsourced Data Acquisition and Hybrid Human/Computer Data Analysis 

The other two ways that people can participate in the analytics process are by helping to acquire 
data and by adding human intelligence where existing algorithms and systems technology cannot provide 
an adequate answer. These two topics are combined because they share many open issues.  

One of the main research problems for crowdsourcing is the need to understand, evaluate, and 
improve the quality of answers obtained from people. Answers from the crowd can be subject to 
statistical bias, malicious or simply greedy intent (particularly when work is done for pay), or simply 
incorrect answers due to a lack of expertise. Such problems are exacerbated in some crowdsourcing 
systems where workers are more or less anonymous and, hence, not fully accountable, and in 
environments where monetary incentives are used, which can lead to contributors providing large 
numbers of random or simply incorrect answers. While many traditional statistical tests and error 
adjustment techniques can be brought to bear on the problem, the environment of crowdsourced work 
provides new challenges that must be addressed. 

Another important area requiring significant work is the design of incentive mechanisms to 
improve the quality, cost, and timeliness of crowdsourced contributions. Incentive structures currently 
used include money, status, altruism, and other rewards. Also, since many crowdsourcing platforms are 
truly global markets, there are concerns about minimum wages, quality of work offered, and potential 
exploitation of workers that must be addressed. 

Participatory sensing provides another set of research challenges. Large-scale sensing 
deployments can create massive streams of real-time data. These data can be error-prone and context 
sensitive. Privacy issues must also be taken into account if the sensing is being done based on monitoring 
individuals’ activities. Finally, the sheer volume of data collected can stress even the most advanced 
computing platforms, particularly if data are to be maintained over long time periods. 

An interesting and important problem is that of determining what types of problems are amenable 
to human solution as opposed to computer solution. This question is related to the question of “AI 
Completeness” as described by (Shahaf and Amir, 2007). It also leads to what is likely the most important 
area of future work regarding crowdsourcing and analytics, namely, the design and development of hybrid 
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human/computer systems that solve problems that are too hard for computers or people to solve alone. 
Designing such systems requires a deep understanding of the relative strengths and weaknesses of human 
and machine computation. 

Given the scale of massive data, it makes sense to try to use computers wherever possible, since 
people are inherently slower for large number-crunching tasks and less scalable. Thus statistical methods 
and machine-learning algorithms should be used when they can produce answers with sufficient 
confidence within time and budget constraints. People can be brought to bear to handle cases that need 
additional clarification or insight. Furthermore, human input can be used to train, validate, and improve 
models. In the longer term, the expectation is that machines and algorithms will continue to improve in 
terms of the scale and complexity of the tasks they can accomplish. So the natural flow is that more of the 
human role will be moved over time to machines. 
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10 
The Seven Computational Giants of Massive Data Analysis 

 
 

One of the major challenges in massive data analysis is that of specifying an overall system 
architecture. Massive data analysis systems should make effective use of existing (distributed and 
parallel) hardware platforms; accommodate a wide range of data formats, models, loss functions and 
methods; provide an expressive but simple language in which humans can specify their data analysis 
goals; hide inessential aspects of data analysis from human users while providing useful visualizations of 
essential aspects of the analysis; provide seamless interfaces to other computational platforms, including 
scientific measurement platforms and databases; and provide many of capabilities familiar from large-
scale databases, such as checkpointing and provenance tracking. These systems should permit appropriate 
blends of autonomy and human oversight. 

Clearly we are far from possessing the ability to design and build such systems. In taking steps 
toward formulating design principles for massive data analysis systems, the committee notes that a major 
missing ingredient appears to be agreement on a notion of “middleware,” which would connect high-level 
analysis goals to implementations at the level of hardware and software platforms. The general goal of 
such middleware is to provide a notion of “reuse,” whereby a relatively small set of computational 
modules can be optimized and exploited in a wide variety of algorithms and analyses. 

The field of high-performance computing has faced a similar set of challenges. In that field, a 
useful step forward was provided by the Berkeley “dwarfs” paper (Asanovic et al., 2006), which specified 
a set of common problem classes that could help in the design of software for novel supercomputing 
architectures. In that paper, a “dwarf” represents a computational task that is commonly used and built 
from a consistent set of fundamental computations and data movements.  

This chapter represents a first attempt to define an analogous set of computational tasks for 
massive data analysis, essentially aiming to provide a taxonomy of tasks that have proved to be useful in 
data analysis and grouping them roughly according to mathematical structure and computational strategy. 
Given the vast scope of the problem of data analysis, and the lack of existing general-purpose 
computational systems for massive data analysis from which to generalize, the committee does not expect 
this taxonomy to survive a detailed critique. Indeed, the presentation here is not intended to be taken as 
definitive; rather, the committee wishes it will serve to open a discussion.  

Because the subject is massive data, the term “giants” will be used rather than “dwarfs.” The 
committee proposes the following seven giants of statistical data analysis: 
 

1. Basic statistics, 
2. Generalized N-body problem, 
3. Graph-theoretic computations, 
4. Linear algebraic computations, 
5. Optimization, 
6. Integration, and 
7. Alignment problems. 
 
For each of these computational classes, there are computational constraints that arise within any 

particular problem domain that help to determine the specialized algorithmic strategy to be employed. 
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Such collections of constraints are referred to here as “settings.” Important settings for which algorithms 
are needed include the following: 
 

A.  The “default setting” of a single processor with the entire data set fitting in random access 
memory (RAM); 

B. The streaming setting, in which data arrive in quick succession and only a subset can be 
stored; 

C. The disk-based setting, in which the data are too large to store in RAM but fit on one 
machine’s disk; 

D. The distributed setting, in which the data are distributed over multiple machines’ RAMs or 
disks; and 

E. The multi-threaded setting, in which the data lie on one machine having multiple processors 
which share RAM. 
 
Most work to date focuses on setting A. 

The relative importance of each of these settings is dictated by the state of computer technology 
and its economics. For example, the relative latencies of the entire hardware stack (for example, of 
network communication, disk accesses, RAM accesses, cache accesses, etc.) shifts over time, ultimately 
affecting the best choice of algorithm for a problem. What constitutes a “fast” or “good” algorithmic 
solution for a certain giant in a particular setting is determined by the resources (for example, time, 
memory, disk space, and so on) with which one is typically concerned. Different algorithms may be 
designed to achieve efficiency in terms of different resources. 

The giants are sometimes associated with, or even defined by, certain conceptual data 
representations, such as matrices, graphs, sequences, and so on. This is discussed further in Chapter 6. 
Sitting one conceptual level below such representations are data structures such as arrays, priority queues, 
hash tables, etc., which are designed to make certain basic operations on the representations efficient. 
These are discussed as needed in connection with the algorithmic strategies discussed in the remainder of 
this chapter. 

Another way of characterizing the major problems of massive data analysis is to look at the major 
inferential challenges that must be addressed. These are discussed in earlier chapters, and coincidentally 
there are also seven of these “inferential giants”: 
 

• Assessment of sampling biases, 
• Inference about tails, 
• Resampling inference, 
• Change point detection, 
• Reproducibility of analyses, 
• Causal inference for observational data, and 
• Efficient inference for temporal streams. 

 
The committee has not attempted to map these statistical problems against the algorithmic 

“giants” discussed next. The algorithmic groupings below are natural when contemplating how to 
accomplish various analyses within certain computational settings. But the list of inferential giants is a 
helpful reminder of the ultimate goal of knowledge discovery. 
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BASIC STATISTICS 

Types of Data Analyses and Computations 

This class includes basic statistical tasks. Examples include computing the mean, variance, and 
other moments; estimating the number of distinct elements in a data set; counting the number of elements 
and finding frequently occurring ones; and calculating order statistics such as the median. These tasks 
typically require O(N) calculations for N data points. Some other calculations that arguably fall into this 
class include sorting and basic forms of clustering.  

Such simple statistical computations are widely used in and of themselves, but they also appear 
inside myriad more complex analyses. For example, multidimensional counts are important in count-
based methods such as association rules and in probabilistic inference in graphical models with discrete 
variables. 

Challenges and Examples of Notable Approaches 

The problems in this class become more difficult in sublinear models of computation, such as in 
the streaming model. For many important tasks, identifying the best algorithm is still a subject of ongoing 
research. For example, an optimal space-efficient approximation algorithm for estimating the number of 
distinct elements (a problem studied since Flajolet and Martin, 1985) has been discovered only very 
recently (Kane et al., 2010). Many other problems remain open, notably those involving high-dimensional 
data. Various data structures can be employed for discrete counts; for an example, see Anderson and 
Moore (1998). Various “sketching” and “compressed sensing” approaches based on random projections 
and other forms of subsampling have been developed. These can provide probabilistic accuracy 
guarantees in exchange for speedup. Examples include sparse (Charikar et al., 2002; Cormode and 
Muthukrishnan, 2004; Gilbert and Indyk, 2010), dense (Candès et al., 2006; Donoho, 2006), and 
nonlinear (Agarwal et al., 2005) approaches. 

GENERALIZED N-BODY PROBLEMS 

Types of Data Analyses and Computations 

“Generalized N-body problems” (Gray and Moore, 2001) include virtually any problem involving 
distances, kernels, or other similarities between (all or many) pairs (or higher-order n-tuples) of points. 
Such problems are typically of computational complexity O(N2) or O(N3) if approached naively. Range 
searches of various flavors, including spherical and rectangular range searches, are basic 
multidimensional queries of general use. Nearest-neighbor search problems of various flavors, including 
all-nearest-neighbors (nearest-neighbor for many query points) and the nearest-neighbor classification 
problem (which can be performed without a full search), appear in nearest-neighbor classification as well 
as in modern methods such as nonlinear dimension reduction methods, which are also known as manifold 
learning methods. Kernel summations appear in both kernel estimators—such as kernel density 
estimation, kernel regression methods, radial basis function neural networks, and mean-shift tracking—
and modern kernelized methods such as support vector machines and kernel principal components 
analysis (PCA). The kernel summation decision problem (computing the greater of two kernel 
summations) occurs in kernel discriminant analysis as well as in support vector machines. Other instances 
of this type of computation include k-means, mixtures of Gaussians clustering, hierarchical clustering, 
spatial statistics of various kinds, spatial joins, the Hausdorff set distance, and many others. 
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Challenges and Examples of Notable Approaches 

A main challenge for such problems lies in dealing with high-dimensional data, because the 
bounds used in typical algorithmic approaches become less effective. For example, designing nearest-
neighbor algorithms that do not suffer from the curse of dimensionality is an important topic worthy of 
further study. Although some progress in this direction has been made (e.g., Freeman, 2011), more 
research is needed. Various non-Euclidean metrics—such as edit distances used in computational biology, 
earth-mover distances used in computer vision, and others—appear to pose even greater difficulties. For 
exact computations, some approaches that can be highly effective include multidimensional data 
structures such as kd-trees and cover-trees (Beygelzimer et al., 2006). Such algorithms can achieve O(N 
log N) run times for all-pairs problems, which would naively require O(N2) operations (Ram et al., 
2010a). Kernel summations can be accurately approximated using sophisticated hierarchical series 
approximation methods within trees (Lee and Gray, 2006). To achieve greater efficiency in higher 
dimensionalities, but at the cost of approximation guarantees holding only with high probability, random 
projections (sampling the dimensions) can be employed (Andoni and Indyk, 2008). Related sketching 
ideas such as in (Church et al., 2006) can be used for distance computations. Sampling ideas can also be 
powerfully employed within tree-based algorithms for increased accuracies at the cost of greater 
preprocessing time (Ram et al., 2010b; Lee and Gray, 2009). 

GRAPH-THEORETIC COMPUTATIONS 

Types of Data Analyses and Computations 

This class includes problems that involve traversing a graph. In some cases the graph is the data, 
and in other cases the statistical model takes the form of a graph, as in the case of graphical models. 
Common statistical computations that are employed on (data) graphs include betweenness, centrality, and 
commute distances; these are used to identify nodes or communities of interest. Despite the simple 
definition of such statistics, major computational challenges arise in large-scale, sparse graphs. When the 
statistical model takes the form of a graph, graph-search algorithms continue to remain important, but 
there is also a need to compute marginal probabilities and conditional probabilities over graphs, 
operations generally referred to as “inference” in the graphical models literature. 

In models with all discrete variables, graphical model inference requires deeply nested (many-
variable) summations. In models with all Gaussian variables, inference becomes a linear algebra problem 
(thus becoming a member of the next giant instead). Many graph computations can in fact be posed as 
linear algebra problems. Other sorts of graph-theoretic computations occur in manifold learning methods. 
For example, the Isomap method requires an all-pairs-shortest-paths computation. Another example is 
single-linkage hierarchical clustering, which is equivalent to computing a minimum spanning tree. Note 
that both of these are examples of Euclidean graph problems, which actually become distance-based, or 
N-body-type problems (the previous giant). 

Challenges and Examples of Notable Approaches 

The challenge regime of graph theoretic problems is that of graphs with high interconnectivity in 
general. For example, in graphical model inference problems, the challenging regime consists of graphs 
with large maximal clique size. Fundamental graph computations, such as shortest-path calculations, can 
pose significant challenges for graphs that do not fit in RAM (for example, due to the latency of remote 
memory access). Notable recent approaches include sampling (Sarkar et al., 2008) and disk-based 
(Ajwani et al., 2006; Sarkar and Moore, 2010) ideas.  
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Comprehensive parallel/distributed approaches to computing graph primitives can be built from 
work in sparse linear algebra (Gilbert et al., 2007; Kang et al., 2009), or they can use graph concepts more 
directly (Madduri et al., 2007). Powerful links between graph partitioning and linear algebraic 
reconditioning have been employed (Spielman and Teng, 2004; Andersen et al., 2006; Leskovec et al., 
2009). Notable approaches for graphical model inferences include transformation of the problem from 
one of summation to one of optimization via variational methods (Jordan et al., 1999; Wainwright and 
Jordan, 2003), sampling approaches (Dillon and G. Lebanon, 2010), and parallel/distributed approaches 
(Gonzalez et al., 2009). 

LINEAR ALGEBRAIC COMPUTATIONS 

Types of Data Analyses and Computations 

This class includes all the standard problems of computational linear algebra, including linear 
systems, eigenvalue problems, and inverses. A large number of linear models, including linear regression, 
PCA, and their many variants, result in linear algebraic computations. Many of these are well-solved by 
generic linear algebra approaches. There are at least two important differentiators, however. One is the 
fact that, in statistical problems, the optimization in learning—this is what the eigendecomposition of 
PCA is doing, optimizing a linear convex training error—need not necessarily be performed to high 
accuracy. This is because one wants to optimize generalization error and not training error, and thus 
optimizing the training error to high accuracy may be overfitting. Another difference is that multivariate 
statistics arguably has its own matrix form, that of a kernel (or Gram) matrix. This is significant since 
much of computational linear algebra involves techniques specialized to take advantage of certain matrix 
structures. In kernel methods such as Gaussian process regression (kriging) or kernel PCA, the kernel 
matrix can be so large as to prohibit even storing the matrix explicitly, motivating matrix-free algorithms 
if possible. 

Challenges and Examples of Notable Approaches 

Matrices that do not exhibit quickly decaying spectra—a feature that indicates strong structure 
that can be exploited computationally—and near-singular matrices represent two common challenges for 
linear algebraic problems. Many problems (such as PCA and linear regression) appear to be harder once 
the L2 norm is replaced by other Lp norms, notably the L1 norm. Probabilistic relaxations of the problem 
can be employed, sampling from the rows and/or columns of the matrix (Frieze et al., 1998; Drineas et al., 
2004). As in generalized N-body problems, the use of sampling within tree data structures can provide 
increased accuracies (Holmes et al., 2009). For kernel matrix computations as performed in Gaussian 
process regression, some effective approaches include greedy subsection selection (Smola and Bartlett, 
2001; Ouimet and Bengio, 2005; Bo and Sminchisescu, 2008), conjugate gradient-type methods requiring 
only the ability to multiply the kernel matrix by a vector (changing the core of the computation to a 
generalized N-body problem; Gray, 2004), and random sampling to compute the kernel (Rahimi and 
Recht, 2008). 

OPTIMIZATIONS 

Types of Data Analyses and Computations 

Within massive data, all the standard subclasses of optimization problems appear, from 
unconstrained to constrained, both convex and non-convex. Linear algebraic computations are arguably a 
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special case of optimization problems, and they are certainly the main subroutine of (second-order) 
optimization algorithms. Non-trivial optimizations have appeared in statistical methods from early on, and 
they appear increasingly frequently as methods have become more sophisticated. For example, linear 
programming (LP), quadratic programming (QP), and second-order cone programming appear in various 
forms of support vector machines as well as more recent classifiers, and semidefinite programming 
appears in recent manifold learning methods such as maximum variance unfolding. It is only a matter of 
time before other standard types of optimization problems, such as geometric programming (which has 
not yet been adopted within statistical fields), are applied in statistical methods. As touched on above for 
linear algebra computations, optimization in statistical problems is often focused on empirical loss 
functions, which are proxies for expectations. This is usefully formalized by the field of stochastic 
approximation. 

Challenges and Examples of Notable Approaches 

Optimization problems (mathematical programs) with a very large number of variables and/or 
constraints represent a primary difficulty in optimization. The global solution of non-convex problems 
remains an open problem. Problems with integer constraints come up against a fundamental hardness in 
computer science, that of combinatorial problems. In general, exploiting the particular mathematical 
forms of certain optimization problems can lead to more effective optimizers, as in the case of support 
vector machine-like quadratic programs (Platt, 1998). Some mathematical forms have special properties, 
for example, submodularity (Chechetka and Guestrin, 2007), which can provably be exploited for greater 
efficiencies. Distributed optimization, both centralized and asynchronous (Tsitsiklis et al., 1986; Nedic 
and Ozdaglar, 2009; Boyd et al., 2011; Duchi et al., 2010), is of increasing interest, and creating effective 
algorithms remains a challenge. A powerful technique of stochastic programming, called stochastic 
approximation or online learning, can be regarded as a random sampling approach to gradient descent, 
and this has been effective for many methods, including linear classifiers (Zhang, 2004; Shalev-Shwartz 
et al., 2007; Bottou and Bousquet, 2008; Nemirovski et al., 2009; Ouyang and Gray, 2010). The 
parallelization of online approaches remains relatively open. 

INTEGRATION 

Types of Data Analyses and Computations 

Integration of functions is a key class of computations within massive data analysis. Integrations 
are needed for fully Bayesian inference using any model, and they also arise in non-Bayesian statistical 
settings, most notably random effects models. The integrals that appear in statistics are often expectations, 
and thus they have a special form. 

Challenges and Examples of Notable Approaches 

The frontier of capability in integration surrounds high-dimensional integrals, as low-dimensional 
integrals are generally well-treated by quadrature methods. The kinds of integrals arising in Bayesian 
statistical models are typically of high dimension for modern problems. The default approach for high-
dimensional integration is Markov Chain Monte Carlo (MCMC; Andrie, 2003). In the case of certain 
sequential models, the approach becomes that of sequential Monte Carlo, which is also known as particle 
filtering (Doucet et al., 2001).  

Effective alternatives to MCMC include approximate Bayesian computation (ABC) methods, 
which operate on summary data (such as population means or variances) to achieve accelerations in some 
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cases (Marjoram et al., 2003), and population Monte Carlo, a form of adaptive importance sampling 
(Capp et al., 2004). Alternative approaches based on low-discrepancy sets improve over Monte Carlo 
integration in some cases (Paskov and Traub, 1995). Variational methods provide a general way to 
convert integration problems into optimization problems (Wainwright and Jordan, 2003).  

Due to the inherent difficulty of high-dimensional integration, a common strategy is to change the 
inference formulation away from a full Bayesian one—for example, in maximum a posteriori inference 
and empirical Bayesian inference, part of the integration problem is skirted via the use of optimization-
based point estimation. 

ALIGNMENT PROBLEMS 

Types of Data Analyses and Computations 

The class of alignment problems consists of various types of problems involving matchings 
between two or more data objects or data sets, such as the multiple sequence alignments commonly used 
in computational biology, the matching of catalogs from different instruments in astronomy, the matching 
of objects between images, and the correspondence between synonymous words in text analysis. Such 
non-trivial problems are often critical in the data fusion that must often be carried out before further data 
analyses can be performed. 

Challenges and Examples of Notable Approaches 

Such problems are often combinatorial in nature, and thus various forms of problem-specific 
constraints are generally exploited to make the computations efficient. The sequential structure of 
genomics problems naturally lead to dynamic programming solutions, but for larger scales, greedy 
hierarchical solutions (Higgins and Sharpe, 1988) and hidden Markov models (Grasso and Lee, 2004) are 
often used. For the catalog cross-match problem, which has the structure of a generalized N-body 
problem, spatial locality can be exploited using parallel in-database spatial indexing methods (Gray et al., 
2006; Nieto-Santisteban et al., 2006). The problem of finding correspondences between features of 
objects, such as faces between images, can in principle be treated with a matching algorithm (Bertsekas, 
1988), but it must also account for various invariances (Zokai and Wolberg, 2005). The synonymy 
problem in text can be handled by approaches such as linear dimension-reduction models, taking the form 
of a linear algebraic problem (Landauer et al., 1998). 

DISCUSSION 

Two of the most pervasive strategies for achieving computational efficiency are sampling and 
parallel/distributed computing. Sampling is discussed further in Chapter 8, where the focus is on the 
statistical aspects rather than the computational and algorithmic aspects touched on here. Current and 
emerging technologies for parallel and distributed computing are discussed in Chapter 3, where the focus 
is on architectural issues rather than the algorithmic aspects touched on here. 

Looking across all of the seven giants for common themes, the following are evident: 
 

• State-of-the-art algorithms exist that can provide accelerations of major practical importance, 
by significantly changing the runtime order, for example, from O(N2) to O(N log N). 

• The “non-default” settings—streaming, disk-based, distributed, multi-threaded—are quite 
important, yet mostly under-explored in terms of research effort. 
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• High dimensionality in the number of variables is a persistent challenge to obtaining 
computational efficiency, and this demands ongoing research effort. 

• Most of the best fast algorithms described in this chapter have only been demonstrated in 
research implementations. More work is required to create robust and reliable software before these 
algorithms can be used widely in practice. 
 

The combination of the seven giants and the five settings A through E, identified early in this 
chapter, imply a table of research frontiers. As noted early in this chapter, most work to date focuses on 
setting A, the “default setting” of a single processor with the entire data set fitting in random access 
memory, so much work remains in order to more completely explore this space of algorithms and 
settings. 
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11 
Conclusions 

 
 

This report aims to increase the level of awareness of the intellectual and technical issues 
surrounding the analysis of massive data. This is not the first report written on massive data, and it will 
not be the last, but given the major attention currently being paid to massive data in science, technology, 
and government, the committee believes that it is a particularly appropriate time to be considering these 
issues. 

This final section begins by summarizing some of the key conclusions from the report. It then 
provides a few additional concluding remarks. The study that led to this report reached the following 
conclusions: 
 

• Recent years have seen rapid growth in parallel and distributed computing systems, 
developed in large part to serve as the backbone of the modern Internet-based information ecosystem. 
These systems have fueled search engines, electronic commerce, social networks, and online 
entertainment, and they provide the platform on which massive data analysis issues have come to the fore. 
Part of the challenge going forward is the problem of scaling these systems and algorithms to ever-larger 
collections of data. It is important to acknowledge, however, that the goals of massive data analysis go 
beyond the computational and representational issues that have been province of classical search engines 
and database processing to tackling the challenges of statistical inference, where the goal is to turn data 
into knowledge and to support effective decision-making. Assertions of knowledge require control over 
errors, and a major part of the challenge of massive data analysis is that of developing statistically well-
founded procedures that provide control over errors in the setting of massive data, recognizing that these 
procedures are themselves computational procedures that consume resources. 

• There are many sources of potential error in massive data analysis, many of which are due to 
the interest in “long tails” that often accompany the collection of massive data. Events in the “long tail” 
may be vanishingly rare even in a massive data set. For example, in consumer-facing information 
technology, where the goal is increasingly that of providing fine-grained, personalized services, there may 
be little data available for many individuals even in very large data sets. In science, the goal is often that 
of finding unusual or rare phenomena, and evidence for such phenomena may be weak, particularly when 
one considers the increase in error rates associated with searching over large classes of hypotheses. Other 
sources of error that are prevalent in massive data include the high-dimensional nature of many data sets, 
issues of heterogeneity, biases arising from uncontrolled sampling patterns, and unknown provenance of 
items in a database. In general, data analysis is based on assumptions, and the assumptions underlying 
many classical data analysis methods are likely to be broken in massive data sets. 

• Massive data analysis is not the province of any one field, but is rather a thoroughly 
interdisciplinary enterprise. Solutions to massive data problems will require an intimate blending of ideas 
from computer science and statistics, with essential contributions also needed from applied and pure 
mathematics, from optimization theory, and from various engineering areas, notably signal processing 
and information theory. Domain scientists and users of technology also need to be engaged throughout the 
process of designing systems for massive data analysis. There are also many issues surrounding massive 
data (most notably privacy issues) that will require input from legal scholars, economists, and other social 
scientists, although these aspects have not been covered in the current report. In general, by bringing 
interdisciplinary perspectives to bear on massive data analysis, it will be possible to discuss trade-offs that 

PREPUBLICATION DRAFT – Subject to Further Editorial Correction 
108 



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

arise when one jointly considers the computational, statistical, scientific, and human-centric constraints 
that frame a problem. When considering parts of the problem in isolation, one may end up trying to solve 
a problem that is more general than is required, and there may be no feasible solution to that broader 
problem; a suitable cross-disciplinary outlook can point researchers toward an essential refocusing. For 
example, absent appropriate insight, one might be led to analyzing worst-case algorithmic behavior, 
which can be very difficult or misleading, whereas a look at the totality of a problem could reveal that 
average-case algorithmic behavior is quite appropriate from a statistical perspective. Similarly, 
knowledge of typical query generation might allow one to confine an analysis to a relatively simple subset 
of all possible queries that would have to be considered in a more general case. And the difficulty of 
parallel programming in the most general settings may be sidestepped by focusing on useful classes of 
statistical algorithms that can be implemented with a simplified set of parallel programming motifs; 
moreover, these motifs may suggest natural patterns of storage and access of data on distributed hardware 
platforms. 

• While there are many sources of data that are currently fueling the rapid growth in data 
volume, a few forms of data create particularly interesting challenges. First, much current data involves 
human language and speech, and increasingly the goal with such data is to extract aspects of the semantic 
meaning underlying the data. Examples include sentiment analysis, topic models of documents, relational 
modeling, and the full-blown semantic analyses required by question-answering systems. Second, video 
and image data are increasingly prevalent, creating a range of challenges in large-scale compression, 
image processing, computational vision, and semantic analysis. Third, data are increasingly labeled with 
geo-spatial and temporal tags, creating challenges in maintaining coherence across spatial scales and time. 
Fourth, many data sets involve networks and graphs, with inferential questions hinging on semantically 
rich notions such as “centrality” and “influence.” The deeper analyses required by data sources such as 
these involve difficult and unsolved problems in artificial intelligence and the mathematical sciences that 
go beyond near-term issues of scaling existing algorithms. The committee notes, however, that massive 
data itself can provide new leverage on such problems, with machine translation of natural language a 
frequently cited example. 

• Massive data analysis creates new challenges at the interface between humans and computers. 
As just alluded to, many data sets require semantic understanding that is currently beyond the reach of 
algorithmic approaches and for which human input is needed. This input may be obtained from the data 
analyst, whose judgment is needed throughout the data analysis process, from the framing of hypotheses 
to the management of trade-offs (e.g., errors versus time) to the selection of questions to pursue further. It 
may also be obtained from crowdsourcing, a potentially powerful source of inputs that must be used with 
care, given the many kinds of errors and biases that can arise. In either case, there are many challenges 
that need to be faced in the design of effective visualizations and interfaces and, more generally, in 
linking human judgment with data analysis algorithms.  

• Many data sources operate in real time, producing data streams that can overwhelm data 
analysis pipelines. Moreover, there is often a desire to make decisions rapidly, perhaps also in real time. 
These temporal issues provide a particularly clear example of the need for further dialog between 
statistical and computational researchers. Statistical research has rarely considered constraints due to real-
time decision-making in the development of data analysis algorithms, and computational research has 
rarely considered the computational complexity of algorithms for managing statistical risk. 

• There is a major need for the development of “middleware”—software components that link 
high-level data analysis specifications with low-level distributed systems architectures. Chapter 10 
attempts to provide an initial set of suggestions in this regard. As discussed there, much of the work on 
these software components can borrow from tools already developed in scientific computing instances, 
but the focus will need to change, with algorithmic solutions constrained by statistical needs. There is also 
a major need for software targeted to end users, such that relatively naive users can carry out massive data 
analysis without a full understanding of the underlying systems issues and statistical issues. However, this 
is not to suggest that the end goal of massive data analysis software is to develop turnkey solutions. The 
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exercise of effective human judgment will always be required in data analysis, and this judgment needs to 
be based on an understanding of statistics and computation. The development of massive data analysis 
systems needs to proceed in parallel with a major effort to educate students and the workforce in 
statistical thinking and computational thinking. 
 

The remainder of this chapter provides a few closing remarks on massive data analysis, focusing 
on issues that have not been highlighted earlier in the report. 

The committee is agnostic as to whether a new name, such as “data science,” needs to be invoked 
in discussing research and development in massive data analysis. To the extent that such names invoke an 
interdisciplinary perspective, the committee feels that they are useful.  

In particular, the committee recognizes that industry currently has major needs in the hiring of 
computer scientists with an appreciation of statistical ideas and statisticians with an appreciation of 
computational ideas. The use of terms such as “data science” indicates this interdisciplinary hiring profile. 
Moreover, the existing needs of industry suggest that academia should begin to develop programs that 
train bachelors- and masters-level students in massive data analysis (in addition to programs at the Ph.D. 
level). Several such efforts are already underway, and many more are likely to emerge in the next few 
years. It is perhaps premature to suggest curricula for such programs, particularly given that much of the 
foundational research in massive data analysis remains to be done. Even if such programs minimally 
solve the difficult problem of finding room in already-full curricula in computer science and statistics, so 
that complementary ideas from the other field are taught, they will have made very significant progress.  

A broader problem is that training in massive data analysis will require experience with massive 
data and with computational infrastructure that permits the real problems associated with massive data to 
be revealed. The availability of benchmarks, repositories (of data and software), and computational 
infrastructure will be a necessity in training the next generation of “data scientists.” The same point, of 
course, can be made for academic research: significant new ideas will only emerge if academics are 
exposed to real-world massive data problems. 

The committee emphasizes that massive data analysis is not one problem or one methodology. 
Data are often heterogeneous, and the best attack on a problem may involve finding sub-problems, where 
“best” may be motivated by computational, inferential, or interpretational reasons. The discovery of such 
sub-problems might itself be an inferential problem. On the other hand, data often provide partial views of 
a problem, and the solution may involve fusing multiple data sources. These perspectives of segmentation 
versus fusion will often not be in conflict, but substantial thought and domain knowledge may be required 
to reveal the appropriate combination. 

One might hope that general, standardized procedures might emerge that can be used as a default 
for any massive data set, in much the way that the Fast Fourier Transform is a default procedure in 
classical signal processing. The committee is pessimistic that such procedures exist in general. To take a 
somewhat fanciful example that makes the point, consider a proposal that all textual data sets should be 
subject to spelling correction as a preprocessing step. Now suppose that an educational researcher wishes 
to investigate whether certain changes in the curricula in elementary schools in some state lead to 
improvements in spelling. Short of designing a standardized test that may be difficult and costly to 
implement, the researcher might be able to use a data set such as the ensemble of queries to a search 
engine before and after the curriculum change was implemented. For such a researcher, it is exactly the 
pattern of misspellings that is the focus of inference, and a preprocessor that corrects spelling mistakes is 
an undesirable step that selectively removes the data of interest. 

Nevertheless, some useful general procedures and pipelines will surely emerge; indeed, one of the 
goals of this report is to suggest approaches for designing such procedures. But the committee emphasize 
a the need for flexibility and for tools that are sensitive to the overall goals of an analysis. Massive data 
analysis cannot, in general, be reduced to turnkey procedures that consumers can use without thought. 
Rather, as with any engineering discipline, the design of a system for massive data analysis will require 
engineering skill and judgment. Moreover, deployment of such a system will require modeling decisions, 
skill with approximations, attention to diagnostics, and robustness. As much as the committee expects to 

PREPUBLICATION DRAFT – Subject to Further Editorial Correction 
110 



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

see the emergence of new software and hardware platforms geared to massive data analysis, it also 
expects to see the emergence of a new class of engineers whose skill is the management of such platforms 
in the context of the solution of real-world problems. 

Finally, it is noted that this report does not attempted to define “massive data.” This is, in part, 
because any definition is likely to be so context-dependent as to be of little general value. But the major 
reason for sidestepping an attempt at a definition is that the committee views the underlying intellectual 
issue to be that of finding general laws that are applicable at a variety of scales, or ideally, that are scale-
free. Data sets will continue to grow in size over the coming decades, and computers will grow more 
powerful, but there should exist underlying principles that link measures of inferential accuracy with 
intrinsic characteristics of the data-generating process and with computational resources such as time, 
space, and energy. Perhaps these principles can be uncovered once and for all, such that each successive 
generation of researchers does not need to reconsider the massive data problem afresh.
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Acronyms 
 
ABC approximate Bayesian computation 
AMT Amazon Mechanical Turk 
API application programming interface 
CCD charge-coupled device 
CPU central processing unit 
CQL Contextual Query Language 
DAG directed-acyclic-graph 
DBMS database management system 
DNA deoxyribonucleic acid 
DSMS data stream management systems 
FDR false discovery rate 
FFTW Fastest Fourier Transform in the West 
FPGA field programmable gate array 
FTRL follow the regularized leader 
GB gigabyte 
GFS Google’s File System 
GPU graphics processing units 
HDFS Hadoop distributed file system 
I/O input/output 
LAPACK Linear Algebra PACKage library 
LP linear programming 
MCMC Markov Chain Monte Carlo 
MLE maximum likelihood estimation 
NP non-deterministic polynomial time 
OCR optical character recognition 
PB petabyte 
PCA principal components analysis 
QFS Quick File System 
QP quadratic programming 
RAM random access memory 
RDS respondent-driven sampling 
S3 Simple Storage Service 
SQL Structured Query Language 
TB terabytes 
TCAM ternary content addressable memory 
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