Fuzz Testing for Creating Evidence

University in Security Assurance Cases
of Victoria
Ezgmeermg Jens Weber

omputer

Science University of Victoria, Canada

Security Assurance Cases

Security Claim Evidence
‘ A
Security Claim
f Security Claim Evidence
4 B
Security Claim
3
Security Claim Evidence
5 C
Argument

University
of Victoria

Fuzz Testing for Creating Evidence in Security
Assurance Cases, SCC-15,May 3-4,2015

j
!

‘ Engineering Jens Weber

| Jimbioses

2 General Types of Security Claims

(1) claims about the requirements-based security properties
of a system and

(2) claims about the absence of vulnerabilities in the design
or implementation that could be exploited to break the
system’s security model

LA University

k: RN Engineering Jens Weber

| Jimbioses

Claims about Requirements-based
Security Properties

Organisational Common Critena Evaluation | Process rigor required for
Throats Security Policies Assumptions Assurance Level (EAL) development of an IT product
EAL 1 Functionally tested.
EAL 2 Structurally tested.
Security 0bjectives EAL 3 Methodically tested and checked.
Securly otyecives for the operational Methodically designed, tested and
for the TOE environment EAL 4 reviewed.
t EAL 5 Semi-formally designed and tested.
Wg functional Security EAL 6 g:(r’ntn:;c;ndény verified, designed
requirements requirements
EAL 7 Formally designed and tested.

5 . .
“4Common Criteria

Wk
3
h=

University

Fuzz Testing for Creating Evidence in Security
of Victoria

Assurance Cases, SCC-15, May 34,2015

Engineering Jens Weber

| Jimbioses

2 General Types of Security Claims

(1) claims about the requirements-based security properties
of a system and

((2) claims about the absence of vuInerablI:t:es in the des:gn
or implementation that could be exploited to break the
system’s security model

| “Indiana Jones Attack”
AN 7 Weinstock, C. Q., & Lipson, I-E;(ZO | 3).

University

of Victoria | Engineering

der ecurity
Assurance_Cases SCC I5, May 34, 3

Claims about Absence of Security
Vulnerabilities

Testing efforts attempt to produce defeaters/rebuttals

® Penetration testing

® Random negative testing (Fuzz Testing)

L] University o
&8/ of Victoria Engineering

| Jimbioses

Fuzz Testing

unexpected

bth
random

input

System

under Test

normal
behaviour

Fuzzing is a black-box testing technique that exposes the SUT
to randomized input while observing its behaviour.,

University
of Victoria

Fuzz Testing for Creating Evidence in Security
Assurance Cases, SCC-15, May 34,2015

| Engineering Jens Weber

| Jimbioses

Evidence Template: Testing uipson & weinstock]

Results from running test of the system using attacks of type A

Technology & System => Test Results

The system is secure against attacks of type A.

The tests can adequately exercise the code, and therefore the results are a reasonable measure of
code quality.

Since the level of assurance needed isn't ultra-high, it is possible to run enough tests for long enough
to make the results believable. The tests have good coverage of the software under test. The testing
methods have been proven to work in other similar systems.

Weinstock, C. B., & Lipson, H. F. (201 3). Evidence of Assurance: Laying the Foundation for a Credible Security Case.
SEI - CMU Report.

L] University

U of Victoria

Fuzz Testing for Creating Evidence in Security
Assurance Cases, SCC-15, May 3-4,2015

Jens Weber 8

Engineering
| Jimbioses

Evidence Template: Testing uipson & weinstock]

Results from running test of the system using attacks of Zpe A

Type of Technology & System => Test Results Fuzz lesti ng does
Evidence

not gen erate
Claim The system is secure against attacks of type A. S PeC Iﬁ (@ EVi CI ence

pe L The tests can adequately exercise the code, and therefore the results are a reasonable measure of
code quality.

Since the level of assurance needed isn't ultra-high, it is possible to run enough tests for long enough
to make the results believable. The tests have good coverage of the software under test. The testing
methods have been proven to work in other similar systems.

Weinstock, C. B., & Lipson, H. F. (201 3). Evidence of Assurance: Laying the Foundation for a Credible Security Case.
SEI - CMU Report.

-

Fuzz Testing for Creating Evidence in Security
Assurance Cases, SCC-15,May 3-4,2015

University
of Victoria

Engineering Jens Weber

| Jimbioses

Evidence Template: Testing uipson & weinstock]

Evidence Results from running test of the system using attacks of type A
Type of Technology & System => Test Results Ran dom Te Sti ng
Evidence .

results in shallow,
Claim The system is secure against attacks of type A. poor code cove Fage

L The tests adequately exercise the code, and therefore the results are a reasonable measure of

Since the level of assurance needed isn't ultra-high, it is possible to run enough tests for long enough
to make the results believable. The tests have good coverage of the software under test. The testing
methods have been proven to work in other similar systems.

Weinstock, C. B., & Lipson, H. F. (201 3). Evidence of Assurance: Laying the Foundation for a Credible Security Case.
SEI - CMU Report.

University

! of Victoria

=

Fuzz Testing for Creating Evidence in Security
Assurance Cases, SCC-15,May 3-4,2015

Engineerin Jens Weber 1
g g

| Jimbioses

Benefits and Limitations of Fuzzing

Fuzzing has been proven effective in finding security
vulnerabilities (defeaters for security claims).

However, what evidence arises from
unsuccessful fuzz testing?

University
=3/ of Victoria

Fuzz Testing for Creating Ev dence in Securlty
Assurance Cases, SCC- 15, May- 3 4,2015

|1
| Jimbioses

.-'"

Engineering Jens Weber

Smart Fuzzing

Traditional Fuzzing is akin
to firing a scatter gun

“Smart Fuzzing” uses some

utility function to optimize

the random data generation
with respect to a predefined - e* o
“vulnerability pattern” Tl

Bekrar, S., Bekrar, C., Groz, R., & Mounier, L. (201 |, March). Finding software vulnerabilities by smart fuzzing. In
Software Testing, Verification and Validation (ICST), 201 | IEEE Fourth Intl Conf. on (pp. 427-430). IEEE.

Fuzz Tesufng fi

Assurance Ca

"hh

Al University
==, of Victoria

Jens Weber
| Jimbioses

P

Two main issues

® How to find vulnerability patterns (targets)?

® How to guide the Fuzzer to target this code?

Fuzz Testing for Creating Evidence in Security
Assurance Cases, SCC-15, May 3-4,2015

University
of Victoria

-

Engineering Jens Weber

| Jimbioses

How to find vulnerable patterns

static code analysis and complexity metrics can be
used to detect potential vulnerabilities,
e.g., Buffer Overflows, Integer over/underruns

"h%
— University

=8/ of Victoria

Fuzz Testing for Creatlng'ET'ldence in Securlty
Assurance Cases, SCC-15,May 34,2015

Engineering Jens Weber

| Jimbioses

How to guide the
Fuzzer to target
vulnerabilities?

Taint Analysis

Bekrar, Sofia, et al. "A taint based
approach for smart fuzzing."
Software Testing, Verification and
Validation (ICST), 2012 IEEE 5th
Intl Conf. on., 2012.

LAl University
==, of Victoria

| Engineering

Vulnerability > Taint

Pattern Analysis
vy
Generation

Coverage Test
Analysis Execution

A 4
Exploitability Property
Analysis Checking

Problems with Taint Analysis

Precision

® Static taint analysis over approximates (many false
positive dependencies)

® Dynamic taint miss (indirect) dependencies (control flow)
Tooling
® Taint analysis requires language-aware tooling

® Best suited for programs with several discrete inputs (as
opposed to programs reading complex files / protocols)

LA University

&8/ of Victoria ans Veber

Engineering

| Jimbioses

An alternative way to guide the Fuzzer

Evolutionary Fuzzing

Dissect input Generate Fuzz
protocol/file » populations »| SUT for each
into regions of Tests protocol
Select and
Analyze
mate best Coverage
individuals 5

Fuzz Testing for Creating Evidence in Security
Assurance Cases, SCC-15, May 3-4,2015

University
of Victoria

-

Engineering Jens Weber

| Jimbioses

Example: Fuzzing VWeb Browser

HTML Documents has many logical feature blocks

Legend

Node Name

Pre-order Payload Post-order HTML Node
Payload Payload <html> I I <htmb>

Head Node Body Node
<head> <head> <body> [, 1o <body>
the body”
Title Node JavaScript Node Anchor Node
<title> |me hero!l <hitle> <script> IJShore! II </script> <a> I Anchor || <ta>

Infinitely many possible HTML documents, generated from protocol

-

Fuzz Testing for Creating Evidence in Security
Assurance Cases, SCC-15, May 3-4,2015

University
of Victoria

Engineerin ens Weber
g g

| Jimbioses

Protocol “Block” for Anchor Nodes

The following code (Python) will produce the anchor tag:
So will this.

s_static("<a alt=\"")
s_string("this will be fuzzed.")
s_static ("\" href=\"")
s_string("127.0.0.1")

s_static ("\">")

s_string("So will this.")

s_static("")

University

Fuzz Testing for Creating Evidence in Security
of Victoria

Assurance Cases, SCC-15, May 3-4,2015

-

Jens Weber 5

Engineering
| Jimbioses

Definition of Fuzzed Feature Blocks
Evolutionary Algorithm

Example:
® Anchors,
® |mages,
e Divs, (,0,1,1,0,0, I)
® |Frames,

® Objects,

® JavaScript, and

® Applets

R3] University | . . Fuzz Testing for Creating vidence in Securi 20
of Victoria Engineering Assurance Cases, SCC-15, May 3-4 ‘: 3 | Dimbioses

Author: HTMLTreeConstructor
Description:

Auto Generated Protocol Definition:

(+, o, o, o, o, 0, 0]

Source: PDHelpers.py
Created: 2014-05-15 19:00:38.530000

from sulley import x*

import random

s_initialize("Protocol Definition")

s_static("<html>")
s_static("<head>")
s_static("<title>")

s_string ("Sulley Says Hello!")
s_static("</title>")
s_static("</head>")

s_static ("<body>")

Chromosome:

Beginning of block: body_block
if s_block_start("body_block"):

s_string("body_block+assurance")

Beginning of block: body_block_al_block
if s_block_start ("body_block_al_block"):
s_string("body_block_al_block+assurance")

Begin <a> tag

s_static("<a ")
s_static("alt=\"")
s_string("body_block_al")
s_static ("\" ")
s_static("href=\"127.0.0.1/")
s_string ("body_block_al")
s_static ("\" ")

Experiment: Extend Sulley Framework

with Evolutionary Protocol Generation

Network / Internet

Emma Code Coverage Tool

(and Wrapper)

Running Target

Application [

Hermes
»{ Coverage Listener
I
Code Coverage Values
Genetic Algorithm
Fuzz Protocol Definition
™ Server P rolocol— Crestor -

Target Application
Source Code

FindBugs

Results

Parser

Parsed Results

Analyzer

Initial Protocol
Template

University
of Victoria

Wk
-
h=

Engineering

Assurance Cases, SCC-15, May 34,2015

Fuzz Testing for Creating Evidence in Security

Jens Weber

23

| Jimbioses

Genetic Algorithm Configuration

P(Crossover) = 0.5
P(Mutation) = 0.05

Number of Generations = 30
Individuals per Generation = 10

Selection Algorithm = Tournament Selection (size=3)

Target application: Crawler4]
https://github.com/yasserg/crawler4;

" o

Fuzz Testing for Crea g Evidence in Security

Lild University ating nc
SCC-15,May3-4,2015

&8/ of Victoria | Engineering

| Jimbioses

https://github.com/yasserg/crawler4j

Experiment

Use static code analysis to target most severe defects
(as per FindBugs Bugrank metric)

Percentage | Difference in | Difference | Baseline # | Full Best-Fit # | Difference

(%) Mean Coverage | in Std | Mutations | Mutations in #
(%) Deviation Mutations

10 0 0 67788 41964 25824

20 0 0.0025 67788 51648 16140

30 0 0 67788 41964 25824

40 0.0009 0.0001 67788 35508 32280

Speed-up between 24 and 48%

Shortt, Caleb James. Hermes: A Targeted Fuzz Testing Framework. MSc Thesis. University of Victoria, 2015.

&

Wk

University
&= of Victoria

’ Engineering

Fuzz Testing for Creating Evidence in Security
Assurance Cases, SCC-15, May 3-4,2015

Jens Weber

25

| Jimbioses

A Similar Approach using Path
Coverage: GA Fuzzer

g

0 GAFuzzing
B Random Fuzzing

:

7000 -

. 838883

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sequence

Guang-Hong, Liu, et al. "Vulnerability analysis for x86 executables using genetic algorithm and fuzzing." Convergence
and Hybrid Information Technology, 2008. ICCIT'08. 3rd Intl. Conf. on.Vol. 2. IEEE, 2008. Q

26
| Jimbioses

Fuzz Testing for Creating Evidence in Security
Assurance Cases, SCC-15, May 3-4,2015

L] University

- of Victoria

Jens Weber
h=

Engineering

Discussion of the Evolutionary
Approach

Benefits

® Can use existing Fuzzing frameworks / protocol
definitions

® Solution not language-dependent
Limitation

® Complex / deep vulnerabilities may still not be

triggered .
x = 2xget_input(-)
y := 5 + x
goto y

Schwartz, et al. "All you ever wanted to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask)." Security and Privacy, 2010 IEEE Symposium on

University

- - daen CCUrI 27
of Victoria Assurance_Cases sCC- 15, May 34,

| Jimbioses

-

Jens Weber

Approach: Concolic Execution

® Combines Symbolic Execution with Concrete
test case randomization

® Start with concrete test cases, trace execution
conditions and systematically negate them. Use
constraint solver to find data that satisfies
alternate paths

® -> Concolic Execution

Haller, Istvan, et al. "Dowsing for Overflows: A Guided Fuzzer to Find Buffer
Boundary Violations." Usenix Security. 2013.

. . F_. , sting 1 \ atl /|
ineeri ; e S s
| Eng ng Assurance Cases, . May

University
of Victoria

$" ‘37-‘

Limitations of Concolic Execution

® Scalability issues with symbolic execution

® Heuristics geared to specific vulnerability
patterns

® Geared towards specific languages
(heavy weight)

Fuzz Testing for Créaﬁn' vidence in Security
Assurance Cases, SCC-15,May 34,2015

R3] University . 29
S Engineering Jens Weber

| Jimbioses

Summary and Question

® Fuzzing (Random negative testing) is an important tool for
detecting security vulnerabilities

® Has successfully been used for generating defeaters in AC

® Unsuccessful undirected fuzz testing provides weak (no)
evidence in assurance cases

® Directed approaches utilize vulnerability pattern detection,
taint analysis, evolutionary fuzzing, concolic execution, or a
combination of these.

® How to quantify the evidence created by these directed
random tests!

30
| Jimbioses

Fuzz Testing f

Assurance Cases,
ra

LAl University
==, of Victoria

Engineering

