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SO YOU WANT TO PUT A NEURAL NETWORK
ON AN AIRPLANE...

OR ANY SAFETY-CRITICAL PLATFORM

scary

Another Tesla phantom

|58

ARE YOU CRAZY2?

firetruck, N'TSB finds

https://www.latimes.com/business/story/2019-09-03/tesla-was-on-autopilot-when-it-hit-culver-city-fire-truck-ntsb-finds

Tesla phantom breaking inside a tunnel causing 8 vehicle accident

Collins Aerospace @JRHe

https://www.youtube.com/shorts/\WVh5bxLBX58



https://www.youtube.com/shorts/WVh5bxLBX58
https://www.latimes.com/business/story/2019-09-03/tesla-was-on-autopilot-when-it-hit-culver-city-fire-truck-ntsb-finds

TRUSTWORTHY MACHINE LEARNING

THE WAY FORWARD

- Past — gaps and barriers
- Present — mitigations and standards

- Future — roadmaps and next steps
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PAST

GAPS AND BARRIERS
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THE GAP

Safety Assessment Process
Guidelines & Methods

(ARP 4761)

l:?::g:’ Function, Failure System
Function & Safety Design
Information Information

Aircraft & System Development

Processes
(ARP 4754 | ED-79)

Guidelines for Integrated
Modular Avionics
(DO-297/ED-124)

Y Y

Electronic Hardware Software Development
Development Life-Cycle Life-Cycle
(DO-254 / ED-80) (DO-178B/ED-12B)
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ASSURANCE CHALLENGES FOR ML

Are requirements complete?

« Do we have enough training and test data?

* How to assess completeness and representativeness of datasets?
Structural coverage metrics for testing don’t work

« Too easy to 100% coverage for a neural network

« Can’t detect unintended behavior

- Can'’t detect missing requirements / insufficient data
Traceability objectives are irrelevant

* Neither ML model elements (e.g., layers, neurons, weights) nor individual lines of code
represent design choices that can be traced back to specific requirements

How do we show that no unintended behavior has been introduced during the training

process that produces an ML Inference Model?
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PRESENT

MITIGATIONS AND STANDARDS
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LEARNING ASSURANCE PROCESS

. - = 4 on
Concept of P 25
Operations . Verification (o nance

validation

Do) | Redulrements verlication
(Sub)system P and Validation (Sub)system
requirements W— integration, /. requirements
Design Vefiii(atiun

& design ntcaration verification

Implamzantation

Time

>EASA

European Union Aviation Safety Agency

Requirements
allocated to ML
component
management

ML

requirements
verification

EASA Concept Paper:
First usable guidance for Level 1&2
machine learning applications

Independent data
and learning
verification

Data

A deliverable of the EASA Al Roadmap management
.

Learning Learning Inference model
process Process verification &
management verification integration

Model training ) Model :
implementation

easa.europa.eu/ai I

Source: EASA First Usable Guidance for Level 1
and 2 Machine Learning Applications

(Feb 2023, for comment)
https://www.easa.europa.eu/domains/research-
innovation/ai
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AS6983 PROCESS OUTLINE

SAE G34 /| EUROCAE WG114

1. Learning Process

Use subsystem requirements to define
Operational Design Domain (ODD) and
training/test datasets

= Data generation/management

G Data is complete and representative
relative to ODD

» Model training to achieve performance
target

2. Verification of Trained Model
Show absence of unintended behavior

= Generalization
= Stability
= Robustnhess

W .
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NHTERNATIONAL

3. Inference Model Implementation

Implement model functionality using traditional
methods

= Verification using traditional methods

4. Inference Model Integration/Verification

Show that implementation of inference model
preserves properties of trained model

» Requirements verification

= Performance verification

» Robustness on target hardware

= Compatibility with target hardware

Y
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requirements
&&&&& ign
e/

Directly related to
unintended behavior



UNINTENDED BEHAVIORS

Generalization

*  How does system respond to novel/unexpected
inputs that were not included in training dataset?

* In ODD but “between” concrete training points
Stability

*  How does system respond to perturbations
around training data points?

« Can small input disturbances result in large
output deviations?

* Related to adversarial inputs

Robustness

«  How does system respond to inputs near
boundary of ODD?

- Similar to abnormal inputs (robustness test cases
in DO-178C)
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Underfit
(high bias)

Optimum

* o

* %

—X ***‘

Performance vs. Generalization

Overfit

(high variance)

High training error
High test error

Low training error
Low test error

Low training error
High test error
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COLLINS-EASA INNOVATION PARTNERSHIP CONTRACT
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FORMULA - BRIEF OUTLINE
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COLLISION AVOIDANCE DEMONSTRATION
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RUN-TIME ASSURANGCE

Lalhude: 46.665° ""i )” A 1 L W 1 u
Nominal conditions with various
encounter geometries
Leoemve 7' el Synoptiz 2.0 ’V -

0% lorgiede 110296 S11° Atk 133 26m
Grund Speed ',;n.r.« g i |

Intentionally defective NN
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......

Dynamic (moving) weather cell

QL eosve Eapdinkdr Synoptic 2.C

Menu 16:47:30 UTC

19" Longtuoe: 18.414° Azmuth 31716 Alftude: 1847 458m
Ll o SR ol i)

Replan to extend assessment horizon

Separatior

FOR MULTI-OBJECT COLLISION AVOIDANCE

Linked [

/2 Collins Aerospace

Our run-time assurance and formal methods
technologies are at the heart of this Defense

Advanced Research Projects Agency (DARPA) Assured
Autonomy flight demonstration.

Check out this video produced by our colleagues at
Boeing to learn more.

-~
“DARPA Assured Autonomy

p

https://www.linkedin.com/posts/collins-

aerospace our-run-time-assurance-and-formal-

methods-activity-7043652507977351168-WIdr
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MODEL CHECKING BOEING NN (NFM 2023)

- Marabou used to analyze behavior of neural network collision

avoidance algorithm
- Property verification and robustness analysis
- How to improve Reinforcement Learning results?

- Coverage of input space?

Results align with expectations:
Own-ship always turns away
from intruder when they fly in the
same direction and are

Q goal_position
Intruder

Angle to intruder”
.

S
Own-ship '

MARABOU
e dangerously close (< 2750m) { init_position
Input .
Simplex Core SAT
| Interfaces : S - :
=l Piecewise-Linear Constraints s o goal_position
, - «
> \ T~
Divide and Deduction: R
Constraint-Level Reasor_nng
Network-Level Reasoning :
Intruder
Input laver Hidden Output ) |
P layers layer @ Reachability properties: Angle to intruder -
& - Unintended behavior: ~
A Sy ‘ 25 o x € [xi,x] = y € [yi yul Own-ship does not turn away L
2 @@L\ e they are at MIN_DIST ]
X X x=x| < eA|y=y| > A y - ‘
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5\\,::/@ Collins Aerospace Cong Liu, Darren Cofer, Denis Osipychev, Verifying an Aircraft Collision Avoidance Neural Network with Marabou, NFM 2023 16




FUTURE

ROADMAP AND NEXT STEPS
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AUTONOMY VERIEICATION
ROADMAP (NASA)

- Report published January 2023

- ldentifies V&V needs related to assurance
and certification of technologies supporting
autonomous operations, including machine
learning

- Short/mid/long-term research needs
https://ntrs.nasa.gov/citations/20230003734
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AVIATION ML APPLICATIONS

Perception is a strong point for ML/DNN, but also
hardest to verify (size, requirements)

LOW IMPACT
OF FAILURE
/\ ’ v \\
UHEN A USER TAKES A PHOTO { Avisual Defect \ VISION/PERCEPTION
THE APP SHOULD CHECK WHETHER /" Inspection { BASED SYSTEMS
THEY'RE. IN A NATIONAL PARK ... L (Maint ) :
SURE, EASY GI5 LOOKUR aintenance
GIMME A FEW HOURS, o (C—) :
.. AND CHECK UHETHER \ ML not necessary (there are existing
T’EP“OTDWF“B'RD e "'—_—_/‘KiﬁmF;Ii:aﬁr{r{lir{Wrimkf ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ aiternatives) but is used to save memory
T1L NEED A RESEARCH L = g npy te fi
/ Li (Advisory) |Equipment Health We may actually be able to demonstrate

> < . Monitoring (Dispatch) absence of unintended functionality

> N ;

w e

— : N

CEL g ACAS-Xu N

o | ! el Collision \ SIMPLE

o | | jrue Avoidance i OPERATIONAL

Optimal 7/ Measurement ! DOMAIN
https://xkcd.com/1425/ Flight Level
CRITICALITY

%\y/& Collins Aerospace

19



FIRST STEPS : LOW CRITICALITY

DAL D = MINOR

- Software is a “black box”

- Testing to show that software meets its requirements
* Very little about implementation details
* Nothing related to unintended function
- What else might be needed?
*  Operational Design Domain (ODD)
« Training data set

* Verification data set R o N
 Basic architecture (e.g., 3-layer feed-forward neural e (e
network with tanh activation functions, trained with s (e e

PyTorch)
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FIRST STEPS : LOW COMPLEXITY

SIMPLE NEURAL NETWORK

- Criticality up to DAL A supported
- Limited to NN with “simple” ODD (or “small” model)
« Small number of well-defined scalar-valued sensor inputs with Lo v,

max/min range ]
. : ‘Detailed
.€., not images | Learning
- What else might be needed? = Assurance
: .. ~Process
* Full learning assurance process, similar to AS6983 MLDL or ©(MLDL)
EASA First Usable Guidance (for DAL A-C anyway) ————
- Rigorous data management process ez & R
- Demonstrations of generalization, stability, robustness s (b
- Justification for absence of unintended behavior/function (using s (e ————

formal methods, traditional mathematical reasoning, or extremely
dense training/testing data sets)

- Complex NN will not yet be able to satisfy these objectives

Az .
= = Collins Aerospace
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Q.

TOOLBOX FOR TRUSTWORTHY ML

Formal Methods for robustness/generalization (a,3-Crown, NNV, Marabou, Verinet, as well as other
best-in-class tools identified in the VNN-COMP)

Manifold-based testing based on computation of the lower-dimensional manifold where real-world input
data is concentrated

Run time assurance architecture based on the principles of ASTM F3269-17

Input out-of-distribution monitoring such as Sketching Curvature for Out-of-Distribution Detection
(SCOD) method combining online and offline methods

Gradient-based analysis of the function implemented by the NN to determine the upper bound of
outputs between the training data points

NN property inference and coverage based on extracting patterns of neuron decisions as preconditions
that imply certain desirable output properties

Input quantization: For some low-complexity systems, it is possible to obtain sufficient accuracy by
quantizing inputs to the actual training data set, limiting or eliminating generalization issues.

Input coverage testing: For some low-complexity systems, it is possible to obtain sufficient coverage of
the input operational design domain (ODD) at high resolution.

;mé Collins Aerospace



SCENARIO-BASED COVERAGE

. . Model Parameters FPS AP test (%)
Scenario scripting (million)

language YOLO7-Tiny 6.2 286 38.7
YOLOV7 36.9 161 51.4
YOLOV7-X 71.3 114 53.1
Can we move YOLOV7-W6 70.04 84 54.9
Scene modeling from “pixel space” YOLOV7-E6 97.2 56 56.0
to “scenario YOLOV7-D6 154.7 44 56.6
space” to create YOLOV7-E6E 151.7 36 56.8

new metrics for
completeness of
training datasets?

Current vision ML architectures are HUGE

Rendering

Labeled synthetic
training dataset

W .
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ASSURED NEURO SYMBOLIC LEARNING
AND REASONING (ANSR)

NEURO-SYMBOLIC PERCEPTION, ACTION & REASONING (NEUROSPAR)

Current approaches to machine learning rely on
unsustainable growth in data requirements to achieve
performance improvements yet often lack needed assurance

Hybrid Al approaches that leverage both data-driven

learning and symbolic domain-based reasoning offer new

cape}blll’fles to meet the trustworthllness. needs of DoI_D ADAPTAGLE PLANRING -
applications such as autonomous intelligence, surveillance, & CONTROL ASSURANCE CASE

and reconnaissance (ISR)
ENABLED PERCEPTION

EFFICIENT REASONING- ]
VIDEO }

Compositional reasoning over multi-domain contracts, IMAGES /
design-time and run-time verification and monitoring,
dynamic assurance case approach to hybrid Al

D
=
=
=<
d
S
=
S
=
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zz
=]
S
g
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CONTROL-AWARE PERCEPTION

. . : : . MULTI-TASKVISIUNTRANSFORMER}
Verifiable and efficient hybrid Al algorithms enabling co-

design of perception and control, novel compositional
framework for RL with hybrid Al accommodating multiple

COMPOSITIONAL
MULTI-DOMAIN VERIFICATION

HYBRID Al ALGORITHMS

HIERARCHICAL

symbolic representations and accounts for information AT oM el

limitations
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SUMMARY

Machine learning presents many unique assurance challenges in the aviation
environment (mostly related to unintended behaviors)

EASA (European Aviation & Space Administration) has initiated work to address these
challenges, including First Usable Guidance concept paper

The SAE G34 /| EUROCAE WG114 joint committee is moving forward to produce

industry consensus certification guidance that is intended to address the challenges
posed by Al/ML, enabling its use in increasingly autonomous aircraft

High complexity ML functions (vision) will continue to be a challenge in applications that
require the highest levels of assurance

But we can make progress now on simple / low criticality ML functions
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