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https://www.youtube.com/shorts/WVh5bxLBX58

O R  A N Y  S A F E T Y - C R I T I C A L  P L A T F O R M

S O  Y O U  WA N T TO  P U T A N E U R A L N E T W O R K  
O N  A N  A I R P L A N E …
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https://www.latimes.com/business/story/2019-09-03/tesla-was-on-autopilot-when-it-hit-culver-city-fire-truck-ntsb-finds

https://www.youtube.com/shorts/WVh5bxLBX58
https://www.latimes.com/business/story/2019-09-03/tesla-was-on-autopilot-when-it-hit-culver-city-fire-truck-ntsb-finds


• Past – gaps and barriers

• Present – mitigations and standards 

• Future – roadmaps and next steps

THE WAY FORWARD
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TRUSTWORTHY MACHINE LEARNING



G A P S  A N D  B A R R I E R S

PAST
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THE GAP
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• Are requirements complete?
• Do we have enough training and test data?
• How to assess completeness and representativeness of datasets?

• Structural coverage metrics for testing don’t work
• Too easy to 100% coverage for a neural network
• Can’t detect unintended behavior
• Can’t detect missing requirements / insufficient data

• Traceability objectives are irrelevant
• Neither ML model elements (e.g., layers, neurons, weights) nor individual lines of code 

represent design choices that can be traced back to specific requirements

ASSURANCE CHALLENGES FOR ML
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How do we show that no unintended behavior has been introduced during the training 
process that produces an ML Inference Model?
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M I T I G A T I O N S  A N D  S T A N D A R D S

PRESENT

8



LEARNING ASSURANCE PROCESS
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Source: EASA First Usable Guidance for Level 1 
and 2 Machine Learning Applications 
(Feb 2023, for comment)
https://www.easa.europa.eu/domains/research-
innovation/ai

https://www.easa.europa.eu/domains/research-innovation/ai
https://www.easa.europa.eu/domains/research-innovation/ai


S A E  G 3 4  /  E U R O C A E  W G 1 1 4
A S 6 9 8 3  P R O C E S S  O U T L I N E

1. Learning Process
Use subsystem requirements to define 
Operational Design Domain (ODD) and 
training/test datasets
§ Data generation/management
§ Data is complete and representative 

relative to ODD
§ Model training to achieve performance 

target
2. Verification of Trained Model

Show absence of unintended behavior
§ Generalization
§ Stability
§ Robustness

3. Inference Model Implementation
Implement model functionality using traditional 
methods
§ Verification using traditional methods

4. Inference Model Integration/Verification
Show that implementation of inference model 
preserves properties of trained model
§ Requirements verification
§ Performance verification
§ Robustness on target hardware
§ Compatibility with target hardware
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Directly related to 
unintended behavior



• Generalization
• How does system respond to novel/unexpected 

inputs that were not included in training dataset?  
• In ODD but “between” concrete training points

• Stability
• How does system respond to perturbations 

around training data points?  
• Can small input disturbances result in large 

output deviations?  
• Related to adversarial inputs

• Robustness
• How does system respond to inputs near 

boundary of ODD?  
• Similar to abnormal inputs (robustness test cases 

in DO-178C) 

U N I N T E N D E D  B E H AV I O R S
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https://www.codingninjas.com/codestudio/library/bias-variance-tradeoff

Performance vs. Generalization



Influence: Proposed formal methods as anticipated
means of compliance for a set of key certification
objectives validated by EASA, positioning Collins as a
tech leader in the area

Inform: Detailed discussion of FM technologies and
applications specific to machine learning

Demonstrate: Practical application on an industrial use
case from Collins MiS (remaining useful life estimation)
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COLLINS–EASA INNOVATION PARTNERSHIP CONTRACT

• Title: Formal Methods use for Learning Assurance (ForMuLA)
• April 2023
• https://www.easa.europa.eu/en/downloads/137878/en

GOALS

https://www.easa.europa.eu/en/downloads/137878/en


• Use case definition: Remaining Useful Life
– Also included in VNN-COMP

• FM for ML – State-of-the-Art review

• FM applications for ML development and V&V
– Mapped to relevant assurance objectives from EASA

• Practical demonstration of FM on the use case
– Data quality verification (with statistical methods)
– Property verification: stability, robustness, monotonicity
– Scalability assessment
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FORMULA – BRIEF OUTLINE



C O L L I S I O N  AV O I D A N C E  D E M O N S T R AT I O N
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RUN-TIME ASSURANCE FOR MULTI-OBJECT COLLISION AVOIDANCE
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Dynamic (moving) weather cellNominal conditions with various 
encounter geometries

Intentionally defective NN Replan to extend assessment horizon

https://www.linkedin.com/posts/collins-
aerospace_our-run-time-assurance-and-formal-
methods-activity-7043652507977351168-Wldr

https://www.linkedin.com/posts/collins-aerospace_our-run-time-assurance-and-formal-methods-activity-7043652507977351168-Wldr
https://www.linkedin.com/posts/collins-aerospace_our-run-time-assurance-and-formal-methods-activity-7043652507977351168-Wldr
https://www.linkedin.com/posts/collins-aerospace_our-run-time-assurance-and-formal-methods-activity-7043652507977351168-Wldr


MODEL CHECKING BOEING NN (NFM 2023)

• Marabou used to analyze behavior of neural network collision 
avoidance algorithm

• Property verification and robustness analysis
• How to improve Reinforcement Learning results?
• Coverage of input space?
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Results align with expectations:
Own-ship always turns away 
from intruder when they fly in the 
same direction and are 
dangerously close (< 2750m)

Unintended behavior:
Own-ship does not turn away 
from incoming intruder when 
they are at MIN_DIST

Cong Liu, Darren Cofer, Denis Osipychev, Verifying an Aircraft Collision Avoidance Neural Network with Marabou, NFM 2023



R O A D M A P  A N D  N E X T  S T E P S

FUTURE
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• Report published January 2023
• Identifies V&V needs related to assurance 

and certification of technologies supporting 
autonomous operations, including machine 
learning

• Short/mid/long-term research needs
• https://ntrs.nasa.gov/citations/20230003734

AUTONOMY VERIFICATION
ROADMAP (NASA)
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https://ntrs.nasa.gov/citations/20230003734


AV I AT I O N  M L A P P L I C AT I O N S
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Perception is a strong point for ML/DNN, but also 
hardest to verify (size, requirements)

https://xkcd.com/1425/

ML not necessary (there are existing 
alternatives) but is used to save memory 
or compute time 
We may actually be able to demonstrate 
absence of unintended functionality

SC
AL

E-
U

P



• Software is a “black box”
• Testing to show that software meets its requirements

• Very little about implementation details
• Nothing related to unintended function

• What else might be needed?
• Operational Design Domain (ODD)
• Training data set
• Verification data set
• Basic architecture (e.g., 3-layer feed-forward neural 

network with tanh activation functions, trained with 
PyTorch) 

F I R ST STEPS  :  L OW C R I T I C A L I T Y
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Black
Box

DAL D =  MINOR



• Criticality up to DAL A supported
• Limited to NN with “simple” ODD (or “small” model)

• Small number of well-defined scalar-valued sensor inputs with 
max/min range

• I.e., not images
• What else might be needed?

• Full learning assurance process, similar to AS6983 MLDL or 
EASA First Usable Guidance (for DAL A-C anyway)

• Rigorous data management process
• Demonstrations of generalization, stability, robustness
• Justification for absence of unintended behavior/function (using 

formal methods, traditional mathematical reasoning, or extremely 
dense training/testing data sets)

• Complex NN will not yet be able to satisfy these objectives

F I R ST STEPS  :  L OW C OMP L EXI TY
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Detailed
Learning

Assurance
Process
(MLDL)

SIMPLE NEURAL NETWORK



• Formal Methods for robustness/generalization (a,b-Crown, NNV, Marabou, Verinet, as well as other 
best-in-class tools identified in the VNN-COMP)

• Manifold-based testing based on computation of the lower-dimensional manifold where real-world input 
data is concentrated

• Run time assurance architecture based on the principles of ASTM F3269-17
• Input out-of-distribution monitoring such as Sketching Curvature for Out-of-Distribution Detection 

(SCOD) method combining online and offline methods
• Gradient-based analysis of the function implemented by the NN to determine the upper bound of 

outputs between the training data points
• NN property inference and coverage based on extracting patterns of neuron decisions as preconditions 

that imply certain desirable output properties
• Input quantization:  For some low-complexity systems, it is possible to obtain sufficient accuracy by 

quantizing inputs to the actual training data set, limiting or eliminating generalization issues.  
• Input coverage testing:  For some low-complexity systems, it is possible to obtain sufficient coverage of 

the input operational design domain (ODD) at high resolution. 

TOOLBOX FOR TRUSTWORTHY ML
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SCENARIO-BASED COVERAGE
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Current vision ML architectures are HUGE

Scenario scripting 
language

Scene modeling

Rendering

Labeled synthetic 
training dataset

Can we move 
from “pixel space” 
to “scenario 
space” to create 
new metrics for 
completeness of 
training datasets?



• Current approaches to machine learning rely on 
unsustainable growth in data requirements to achieve 
performance improvements yet often lack needed assurance  

• Hybrid AI approaches that leverage both data-driven 
learning and symbolic domain-based reasoning offer new 
capabilities to meet the trustworthiness needs of DoD 
applications such as autonomous intelligence, surveillance, 
and reconnaissance (ISR)

• Compositional reasoning over multi-domain contracts, 
design-time and run-time verification and monitoring, 
dynamic assurance case approach to hybrid AI

• Verifiable and efficient hybrid AI algorithms enabling co-
design of perception and control, novel compositional 
framework for RL with hybrid AI accommodating multiple 
symbolic representations and accounts for information 
limitations
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A S S U R E D  N E U R O  S Y M B O L I C  L E A R N I N G  
A N D  R E A S O N I N G  ( A N S R )
N E U R O - S Y M B O L I C  P E R C E P T I O N ,  A C T I O N  &  R E A S O N I N G  ( N E U R O S P A R )



• Machine learning presents many unique assurance challenges in the aviation 
environment (mostly related to unintended behaviors)

• EASA (European Aviation & Space Administration) has initiated work to address these 
challenges, including First Usable Guidance concept paper  

• The SAE G34 / EUROCAE WG114 joint committee is moving forward to produce 
industry consensus certification guidance that is intended to address the challenges 
posed by AI/ML, enabling its use in increasingly autonomous aircraft

• High complexity ML functions (vision) will continue to be a challenge in applications that 
require the highest levels of assurance

• But we can make progress now on simple / low criticality ML functions

SU M M ARY


