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he world is becoming increasingly instru-

mented with sensors, monitoring, and

other methods for generating data describ-
ing social, physical, and natural phenomena. So,
data exist that could be analyzed to uncover, or
discover, the phenomena from which they were
created. However, as the analytic models lever-
aged to analyze these data continue to increase in
complexity and computational capability, how can
visualizations and user interaction methodologies
adapt and evolve to continue to foster discovery
and sensemaking?

User interaction is critical to such visual data
exploration’s success because it lets users test as-
sertions, assumptions, and hypotheses about the
information, given their prior knowledge about
the world. This cognitive process can be generally
called sensemaking. Visual analytics (VA) em-
phasizes sensemaking of large, complex datasets
through interactively exploring visualizations gen-
erated through a combination of analytic models.
(For more on this, see the related sidebar.) So, a
central focus is understanding how to leverage hu-
man cognition in concert with powerful computa-
tion through usable visual metaphors.

My PhD dissertation coined the term semantic
interaction in the context of a user interaction
methodology for model steering in VA systems.!
It made three primary contributions. First, it ex-
plained the interactions users commonly employ
when analyzing text information spatially without
computational layout models, and the meaning
they externalize into the manually crafted spatial
constructs.>® Second, it enabled bidirectionality
of spatializations by inverting popular dimension
reduction models.*"® Finally, it evaluated seman-
tic interaction’s impact on sensemaking through
the synchronization of the analytic-model param-
eters, the visualization, and the user’s insights in
the text analysis domain.”
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Semantic Interaction

Semantic interaction aims to enable co-reasoning
between the user and the analytic models (cou-
pling cognition and computation) without requir-
ing the user to directly control them. To do this, it
utilizes the visual metaphor in two ways:

m the metaphor through which the insights are
obtained (that is, the visualization of informa-
tion created by computational models) and

m the interaction metaphor through which hypoth-
eses and assertions are communicated (that is,
interaction occurs within the visual metaphor).

Users directly manipulate data in visualizations;
semantic interaction then captures tacit knowl-
edge of the user and steers the underlying analytic
models. These models can be adapted incremen-
tally on the basis of the user’s sensemaking pro-
cess and domain expertise explicated through the
user’s interaction. (For semantic interaction de-
sign guidelines, see the related sidebar.)

That is, the visualization’s visual constructs ex-
pose the underlying analytic models’ parameters.
On the basis of common visual metaphors (such
as the geographic, spatial metaphor in which prox-
imity approximates similarity), we can infer tacit
knowledge of the user’s reasoning by inverting
these analytic models. So, users are shielded from
the underlying complexities and can interact with
their data through a bidirectional visual medium.
The interactions users perform in the visualiza-
tions to augment the visual encodings within the
metaphor enable the inference of their analytic
reasoning, which is systematically applied to the
underlying models.

The Semantic Interaction Pipeline

The information visualization pipeline in Figure 1
shows how data characteristics are extracted and
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assigned visual attributes or encodings, ultimately
creating a visualization.® Visualizations following
this pipeline exhibit two primary components of
the visual interface: the visualization showing the
information and a GUI. The GUI’s graphical con-
trols (sliders, knobs, and so on) let users directly
manipulate the parameters they control.

For example, direct manipulation user interfaces
let users directly augment the values of data pa-
rameters and see the corresponding change in the
visualization.” (One example is using a slider to
set the range of home prices and observing the
filtered results in a map showing homes for sale.)
This model has been a successful user interaction
framework for information visualizations. Figure
2a shows an example of such an interface.

VA systems have adopted this approach. How-
ever, a distinct difference is the added complex-
ity of the models (and their parameters) being
controlled. For example, instead of filtering the
data by selecting ranges for home prices, users
employ graphical controls over model parameters
such as weighting the mixture of eigenvectors of
a principal component analysis (PCA) dimension
reduction model to produce 2D views of high-
dimensional data. To users without expertise in
such models, this poses fundamental usability
challenges. Figure 2b shows an example of this
type of direct manipulation interface.

The semantic interaction pipeline (see Figure
3) directly binds model-steering techniques to
the interactive affordances created by the visual-
ization. For example, a distance function used to
determine the relative similarity between two data
points (often visually depicted using distance in a
spatial layout) can be the interactive affordance to
let users to explore that relationship. So, the user
interacts directly with the visual metaphor, creating
a bidirectional medium between the user and the
analytic models. This interaction method is similar
to “by example” interaction because users can di-
rectly show their intention using the visualization’s
structure. This adds to visualization’s role in the
reasoning process, in that it’s not only a method for
gaining insight but also one for directly interacting
with the information and the system.

The bidirectionality afforded by semantic in-
teraction comes through binding the parameter
controls traditionally afforded by the GUI di-
rectly within the visual metaphor. Through this
binding, the system can infer the user’s analytic
reasoning from the user’s interaction with the
visualization regarding the underlying math-
ematical model’s parameters. Specifically, a spa-
tial layout is one visual metaphor in which my
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Figure 1. The information visualization pipeline.® Users can directly
interact with the data (for example, filtering or correcting values),
algorithm (for example, adjusting weights of relationships or changing
parameter values), or visualization (for example, selecting a different
encoding or modifying zoom levels).
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Figure 2. Examples of two types of direct manipulation interfaces.

(a) Spotfire employs direct manipulation for dynamic querying (ranges
for data values, such as the portfolio value or number of trades) for
information visualization. (b) iPCA applies direct manipulation to visual
analytics (VA)—for example, directly controlling each dimension’s
relative contribution for principal component analysis."

colleagues and I have conducted much semantic
interaction research.*¢’

Semantic Interaction with Spatializations
A spatial visual metaphor (a spatialization) dem-
onstrates the bidirectionality afforded by semantic
interaction. A spatial metaphor lends itself to com-
mon dimension reduction models to reduce the di-
mensionality of complex data to two dimensions.
For example, relationships and similarities be-
tween high-dimensional data objects can be shown
in two dimensions by leveraging such dimension
reduction models as PCA, multidimensional scal-
ing, and force-directed layouts. Generally, these
models try to approximate the distance between
data objects in their true, high-dimensional rep-
resentation using fewer dimensions.

Researchers have applied semantic interaction
methods to this visual metaphor. For example,
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ensemaking is the process of someone acquiring an un-

derstanding of the world based on that person’s concep-
tual model of events, actions, and information. Researchers
have developed visual-analytics (VA) systems that support
aspects of this process. This support can be characterized by
the systems’ user interactions, especially as they pertain to
the visual metaphor and underlying models. Sensemaking
has two primary subprocesses: foraging and synthesis.!

Foraging

During foraging, users filter and gather collections of
interesting or relevant information. Scientists categorize
VA tools that support foraging by their ability to pass data
through complex analytic and statistical models and visu-
alize the dataset’s computed structure for the user to gain
insight (see Figure A). So, users interact with these tools
primarily by directly manipulating the models’ parameters.

For example, interfaces that apply the information
visualization interaction methodology of direct manipula-
tion? present users with a set of graphical controls (slid-
ers, knobs, and so on) to control and modify the model
parameters’ values. In VA tools, understanding these
parameters (and the result of changing their values) can
be difficult and is often outside the area of expertise for an
expert in the specific data domain (for example, genom-
ics and international politics). In these cases, users must
translate their domain expertise and semantics about the
information to determine which parameters to adjust (and
by how much)—a fundamental usability concern.

VA tools leverage such models as entity extraction,
topic modeling, link analysis, dimensionality reduction,
clustering, and labeling. These models use various distance
metrics to measure similarity between data objects. You
can use these models to spatialize data. For example, you
can represent unstructured text as a bag of words, high-
dimensional data in which each dimension is a unique
keyword or phrase in the text. Visualizations such as
IN-SPIRE’s Galaxy View? organize points representing text
documents such that nearby points represent similar docu-
ments. This helps users recognize relationships between
documents and between clusters of documents.

Statistical
Model

Figure A. Interaction with foraging tools. Users interact directly with
the statistical model (red), then gain insight through observing the

change in the visualization (blue).
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Figure B. Interaction with synthesis tools. Users manually create a
spatial layout of the information to maintain and organize their insights
about the data.

Synthesis

On the basis of the information acquired from foraging, us-
ers advance through the synthesis stages. In these stages,
they construct and test hypotheses about how the foraged
information might relate to their understanding of the
world. Synthesis tools let users organize and maintain their
hypotheses and insight regarding the data (see Figure

B). These tools often employ a flexible, informal spatial
medium or canvas.

For example, by organizing spatial layouts, users can
externalize their insights about a dataset on the basis of
the information’s position.* Users frequently organize such
layouts by complex schemas and mixed metaphors, often
organized topically according to the semantics relevant
to their analysis needs. Analysts use tools that support
manually constructing spatializations to visually synthesize
hypotheses.® That is, they create spatial structures (often
mixing clusters, timelines, connections, geography, order
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inverting PCA, multidimensional scaling, and gen-
erative topographic mapping can enable semantic
interaction in bidirectional spatializations.*!! The
ability to understand each model’s parameters
that can be exposed through the visual encoding
(in this case, the relative distance between data
points) enabled this affordance. Further research
has explored the tradeoffs between the various
ways to map the user feedback of changing the
relative distance between data objects to the un-
derlying dimension reduction models.>!?
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Impact: Current and Future

Semantic interaction to increase the usability of com-
plex VA systems has evolved along with VA’'s growth
and maturity as a research discipline. Interactivity has
become increasingly important, and users’ attempts
to communicate their hypotheses and assertions
about the data to foster sensemaking have contin-
ued to employ (if not depend on) analytic models.
Semantic interaction has helped foster this commu-
nication between the user and the model, having an
impact beyond that at the time of my dissertation.



of discovery, process waypoints, and so on) that
carry meaning to them regarding their sense-
making process.

Such informal relationships in the spatial
layout are beneficial because they don't require
users to overformalize relationships too early in
the process. This gradual increase in relationship
formality is called incremental formalism.S This
approach directly presents the user interaction
to users both in the visual metaphor and on the
data. So, the users can leverage their domain
expertise to make sense of the information.
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Making Insights in Big Data Accessible

The ForceSPIRE system demonstrates how a spa-
tialization of text documents can be the pri-
mary interface for user interaction (see Figure
4).° ForceSPIRE uses relative distance to indicate
documents’ similarity. It computes the distances
through force-directed layout. The single spatial
layout is the primary view, through which most
interaction occurs. We chose the user interactions
specifically to correspond with those found during
studies observing users performing text analysis

User

Algorithm
[Hard data H (project)

(perceive)
- Spatialization ‘
Algorithm User
Soft data (interpret) (interact)

Figure 3. The semantic interaction pipeline. Users interact directly
with the visualization, from which inferences are made to update the
model or algorithm. Semantic interaction uses the stored “soft data” in
conjunction with the “hard data” (raw data) to incorporate the user’s
expertise into the VA system.

Search T

Highlight
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Figure 4. With ForceSPIRE, users can search,
highlight, annotate, and reposition documents
spatially. Documents can appear as minimized
rectangles (see the yellow, blue, and teal rectangles
in the enlarged region at the bottom) and as full-
detail windows (resizable by the user). ForceSPIRE
makes model inferences on each user interaction,
creating machine and human co-reasoning.

using a spatial metaphor.?® The studies found that
users reposition documents, highlight phrases,
take notes, and perform text searches while ac-
tively reading. ForceSPIRE couples each of these
interactions with model updates.®

My colleagues and I directly extended the find-
ings from this research into work in analyzing large
volumes of text. We used multiple tiers and styles of
analytic and mathematical models to process and
retrieve data, extract features, and so on. Each of
these stages in the data-processing pipeline presents
opportunities to steer the model on the basis of the
inference of the user interaction.!* For example, a
challenge in large data volumes is retrieving only
the most relevant subset of the data to maintain
locally and visualize. Thus, how can semantic in-
teraction steer information retrieval techniques to
locally maintain and visualize only the most rel-
evant information with respect to the user’s ana-
lytic process? Many such techniques can benefit
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H ere are guidelines for semantic interaction for spatializations:'

m A visua

I//

near = similar” metaphor supports analysts’ spatial
cognition and is generated by statistical models and similarity
metrics.?

Use semantic interactions within the visual metaphor, based on
common interactions occurring in spatial analytic processes®
such as searching, highlighting, annotating, and repositioning
documents.

Interpret and map the semantic interactions to the model’s
underlying parameters, by updating weights and adding
information.

Shield users from the complexity of the underlying mathemati-
cal models and parameters.

Models should learn incrementally by taking into account inter-
action during the entire analytic process, supporting analysts’
process of incremental formalism.*

m Provide visual feedback of the updated model and learned

parameters within the visual metaphor.

m Reuse learned model parameters in streaming data or future data.
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from the information inferred about the user to
more accurately query within, and across, databases
containing relevant information. That is, how can
semantic interaction scale the inferred reasoning of
the user into the larger data volumes through the
malleability of information retrieval techniques?
Furthermore, this might require additional visual
representations (or aggregations) of information.
Semantic interaction has impacted projects at
Pacific Northwest National Laboratory that stem
from user needs to understand these large volumes
of text data. Semantic interaction’s capability to
capture the analytic reasoning associated with a
user interaction and amplify that reasoning into
the analytic model lets users extend their reach
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and coverage into the larger data scales. These us-
ers’ domain expertise generally does not include
knowledge in statistics or the data sciences. So,
placing their user interaction directly onto the vi-
sual data representations enables them to reason
on the data using the visualization and to commu-
nicate their hypotheses and assertions directly in
the visualization. Anecdotal feedback from these
users has been positive, with a user evaluation
in progress. Similarly, research at Virginia Tech is
investigating how semantic interaction can help
steer information retrieval techniques to address
big-data challenges. This research is fundamen-
tally advancing our understanding of semantic
interaction and evolving ForceSPIRE as a testbed
for prototyping and evaluating specific pairings of
user interaction and computation.

Semantic interaction techniques have also af-
fected big-data challenges that emphasize a vari-
ety of data (for example, multimedia). Phenomena
that are captured, collected, and encoded digitally
often span multiple media types. So, promoting
sensemaking through VA technologies often re-
quires users to reason across multiple media types.
One challenge with such heterogeneous datasets is
to correlate, or fuse, the data types’ feature spaces
that represent a cognitively cohesive concept or
topic. Through inferring the higher-level analytic
reasoning from user interaction tailored toward
each of these data types, the opportunity exists to
successfully decode phenomena whose discovery
and understanding require multiple data types.

From Streaming Data to Streaming Insights
The continuous sensing and collecting of informa-
tion poses streaming-data challenges and oppor-
tunities. A specific challenge is how to understand
evolving and changing phenomena in real time.
In terms of steering and adapting the underlying
models using semantic interaction, challenges ex-
ist regarding the temporal nature of the data and
the reasoning process. As users generate hypothe-
ses and reason about the data, how can the models
interpret the temporal nature of those hypotheses
and assertions? How can VA systems working with
streaming data understand the temporal impor-
tance of what information to retain and what to
delete as a user progresses through sensemaking?
Researchers are applying semantic interaction
to streaming-data challenges (following the last
design guideline in the sidebar “Semantic Interac-
tion Design Guidelines”). Instead of using seman-
tic interaction to understand the features users
are interested in over time, the goal here might
be to understand the features or data that users



don’t show interest in. So, semantic interaction
enables streaming models to determine what in-
formation to “forget.” For example, dimension re-
duction models can understand what dimensions
carry little if any weight, given the user’s context.
Similarly, reasoning models can learn what rules
or assertions are no longer valid, weight them ac-
cording to a belief propagation network implicit
from the user, or create new ones from the user’s
domain expertise.

Evaluating Visual Analysis

VA technology has evolved from visualizing infor-
mation to visualizing an analytic model’s approxi-
mation of data (the model’s output). Such a model
approximates, or fits, the information given a spe-
cific parameterization of that model. The ability
to steer, select, and refine such models is critical
because they result in the generated visualizations.
This poses the challenge of measuring the similar-
ity between a user’s conceptual model of a topic or
domain and the analytic model’s approximation of
the information.

My colleagues and [ have evaluated how semantic
interaction affects the analytic process. Semantic
interaction is intended primarily for sensemak-
ing and discovery tasks. So, the goal is to foster
the creation of insight. Prior research has inves-
tigated the challenges of evaluating visualizations
intended for open-ended discovery.!*?® Thus, to
evaluate semantic interaction (specifically, in the
context of text analysis using ForceSPIRE), we can
observe the analytic process and the analytic prod-
uct. For example, my colleagues and I evaluated
semantic interaction’s ability to couple cognition
and computation through visualization by analyz-
ing the evolution of three components throughout
a user study: the model parameter weights, the vi-
sualization, and the user’s insights.” Our research
showed that semantic interaction could incremen-
tally steer the underlying model, and in turn the
visualization, to coincide with the user’s analysis
and insights.

This raises the question, does temporal synchro-
nization between the model parameter weights,
the visual representation, and the user’s insights
represent a valuable metric for evaluating VA tools
for discovery? Such an approach for evaluating vi-
sual data exploration performs well in conjunction
with methods such as insight-based evaluation,®
to understand the evolution of a user’s insight over
time. Additionally, whereas much semantic inter-
action research has focused on implicitly steering
models, the holistic design of VA tools will likely
combine explicit, direct manipulation interactions

in concert with semantic interactions to provide
users with both direct manipulation controls and
implicit knowledge amplification when desired.

Toward a Science of Interaction

The need to understand, measure, and quantify
the analysis process has created a study, or science,
of interaction.!” (For more on this, see the sidebar
“Inferring Reasoning from User Interaction.”) The
underlying claim is that user interactions embody
and externalize aspects of the analysis process. Se-
mantic interaction can help further this scientific
understanding of user interaction by systemati-
cally quantifying the interaction and binding it to
model parameters.

The research I've been describing has looked at
how to analyze user interaction directly within
the visual metaphor to reveal analytical reasoning.
However, other scientific areas have studied user
interaction data captured from other metaphors,
such as clickstream data for Web browsing, physi-
cal and social movement for behavioral analysis
of groups of people, and product purchase trends
for marketing.

Also, beyond direct model steering, the analysis
of the user interaction can include understanding
user biases and cognitive stages during a sense-
making task. The “soft data” (see Figure 3) col-
lected from user interaction can be the basis of
study. Theories and models for analysis (for ex-
ample, task models and user models) can be de-
veloped in a data-driven way. That is, through
exploring additional mappings between user inter-
action data and cognitive processes, this science of
interaction can continue to evolve and solidify as
theories continue to form.

Other Visual Metaphors and Analytic Models
Semantic interaction research has focused largely
on spatializations that show similarity using the
relative distance between data objects. Other visual
metaphors and representations can be leveraged
in a similar, bidirectional nature. In transition-
ing semantic interaction design guidelines (see
the related sidebar) to such metaphors, a critical
component is the model used for generating the
visualization.

For example, using a sparkline to show the tem-
poral trend of the abundance of a specific term
or hashtag on social media might not directly
benefit from semantic interaction. This is because
the visualization generation doesn’t involve model
translation (the count of terms is directly visu-
alized). However, if we use an analytic model to
determine the trend as an aggregate of terms or

IEEE Computer Graphics and Applications
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wo challenges for information visualization are how to gain

a deeper understanding of how users interact with visualiza-
tions and, what’s more important, how these interactions are
integrated into their analytic process.' To investigate this science
of interaction, researchers have used several methodologies. Ji Soo
Yi and his colleagues extensively categorized the user interactions
available in popular exploratory visualization tools.> However,
categorizing interaction in visualization is inherently complicated.?
Wenwen Dou and her colleagues showed that by logging user
interactions with a financial-data visualization, they could recon-
struct low-level analytical processes.* These results indicate that
during visual data exploration, a detectable connection exists be-
tween low-level user interaction and the users’ analytic processes.
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hashtags (or even a weighting of some terms as
more important than others), we can steer the
technique for determining that trend. For exam-
ple, users could directly manipulate the sparkline’s
height at specific places to inject their subjective
domain expertise around that time or topic.

Extending semantic interaction to additional vi-
sual metaphors and encodings is particularly valu-
able in VA, which typically leverages one or more
analytic models to produce a visualization. Such
advancements could improve interactivity for ex-
ploratory data analysis in visualization tools such
as Tableau or Spotfire.

Semantic interaction principles can also apply
to models that might not be directly invertible.
For example, topic detection models might not
have a clean, mathematical inversion. However,
augmenting their parameterization is still criti-
cal to foster sensemaking and discovery. So, we
can couple their parameterization with the visual
affordances created in the visualization to enable
semantic interaction. For example, we can show
topics in a word cloud, in which users can create
and adjust the hierarchical topic detection and ag-
gregation methods used by the specific model. We

14 July/August 2014

can then infer the reasoning of such visual aug-
mentations and use it to parameterize the model
in accordance with the user’'s domain expertise.
Additional such models might include those used
for anomaly detection, standard deviation and er-
ror, entity extraction, storytelling, and network
structure detection.

The work on semantic interaction has presented
the visual-analytics community a set of con-
tributions that can seed idea spaces for further
work. This work poses challenges to multidisci-
plinary research projects and institutions to un-
derstand couplings between not only cognitive and
computational processes of systems being built but
also disciplines including human-computer inter-
action, information visualization, data mining,
and statistics. In reflecting on this work in the
context of the visual-analytics community’s cur-
rent needs and directions, opportunities exist to
continue to promote the usability and effective-
ness of systems that enable users to gain insights
in impactful domains. e
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