
Quantifying & Minimizing Attack Surfaces
Containing Moving Target Defenses

Nathaniel Soule, Borislava Simidchieva,
Fusun Yaman, Ronald Watro,

Joseph Loyall, Michael Atighetchi
Raytheon BBN Technologies

Cambridge, MA
{nsoule, simidchieva, fyaman, rwatro,

jloyall, matighet}@bbn.com

Marco Carvalho
Florida Institute of Technology

Melbourne, FL
mcarvalho@cs.fit.edu

David Last, David Myers,
Capt. Bridget Flatley
United States Air Force

Research Laboratory
Rome, NY

{david.last.1, david.myers.35,
bridget.flatley.1}@us.af.mil

Abstract —The cyber security exposure of resilient systems is
frequently described as an attack surface. A larger surface area
indicates increased exposure to threats and a higher risk of com-
promise. Ad-hoc addition of dynamic proactive defenses to dis-
tributed systems may inadvertently increase the attack surface.
This can lead to cyber friendly fire, a condition in which adding
superfluous or incorrectly configured cyber defenses uninten-
tionally reduces security and harms mission effectiveness. Exam-
ples of cyber friendly fire include defenses which themselves ex-
pose vulnerabilities (e.g., through an unsecured admin tool), un-
known interaction effects between existing and new defenses
causing brittleness or unavailability, and new defenses which may
provide security benefits, but cause a significant performance
impact leading to mission failure through timeliness violations.
This paper describes a prototype service capability for creating
semantic models of attack surfaces and using those models to (1)
automatically quantify and compare cost and security metrics
across multiple surfaces, covering both system and defense as-
pects, and (2) automatically identify opportunities for minimizing
attack surfaces, e.g., by removing interactions that are not re-
quired for successful mission execution.

Keywords: cyber security analysis, modeling, threat assessment

I. INTRODUCTION

Cyber security remains one of the most serious challenges
we face to national security and the economy. Systems employ-
ing well-known, but static, defenses have found themselves
increasingly vulnerable to penetration from determined, di-
verse, and well-resourced adversaries launching targeted at-
tacks such as Advanced Persistent Threats (APTs). In recent
years, a class of proactive dynamic defenses known as Moving
Target Defenses (MTDs) [1] has emerged to make entry points
into networks and systems harder to detect, to reduce vulnera-
bilities and make exposure to those that remain more transient,
and to make attacks against systems less effective. MTDs at-
tempt to reduce and dynamically modulate the attack surfaces
of systems, thereby limiting the potentially successful attack
vectors an adversary can use to compromise a target system.

As the number and complexity of these defenses increase,
cyber defenders face the problem of selecting, composing, and
configuring them, a process which to date is performed manu-
ally and without a clear understanding of integration points and
risks associated with each defense or combination of defenses.
The current state-of-the-art approach for evaluating cyber risks
consists of performing structured logical arguments on security
designs, e.g., using attack trees [2] generated during vulnerabil-
ity assessments, and execution of manual or automated security
scanning during penetration testing to detect specific vulnera-
bilities present in actual systems.

There are two problems with this approach. First, it is easy
to fall into the trap of adding defenses that provide little securi-
ty benefit, introduce unacceptable cost or overhead, inadvert-
ently increase the attack surface, or exhibit unintended side
effects when combined with other defenses. Second, empirical-
ly validating and quantifying the attack surface of large com-
plex enterprise systems through red-teaming becomes prohibi-
tively expensive as the rate of legitimate change in those envi-
ronments increases and each configuration needs retesting.

The work presented in this paper describes a new approach
towards modeling and analyzing attack surfaces, called Attack
Surface Reasoning (ASR), which enables a quantification of

Fig. 1. High-Level Approach of Attack Surface Reasoning

Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited). This material is based upon work
supported by the Air Force Research Laboratory under
Contract No. FA8750-14-C-0104.

����������������������������l�����-))) ���

security, performance, and overhead for a composition of sys-
tem components, MTDs, missions, and threats. Fig. 1 illustrates
how the ASR web service prototype can capture models of
underlying systems, cyber defenses, and missions in the form
of unified models. These models are augmented by other mod-
els capturing adversary constraints, potential attack steps, and
definitions of security and cost metrics. ASR provides two cat-
egories of algorithms – attack surface characterization and min-
imization. The characterization algorithms construct attack
vectors and calculate security and cost metrics. The minimiza-
tion algorithm uses system and mission information to identify
opportunities for pruning unnecessary access paths and hence
reducing the resulting attack surface. Using the models, algo-
rithms, and metrics, cyber defenders can compare various de-
ployments of both static and dynamic cyber defenses in a quan-
titative manner and contrast tradeoffs between security benefits
and performance overheads. As such, ASR provides a founda-
tional capability in support of an envisioned cyber planning
tool that (1) automatically suggests and configures defenses
given mission executions over systems, and (2) interacts with
deployment and remote management substrates to dynamically
adjust system configurations during mission execution.

ASR is based on the following innovations:

• Use of ontological semantic models to describe cyber
systems, defenses, attacks, missions, and metrics in a
well-defined, composable, and extensible manner.

• Algorithms to automatically find feasible attack vectors
and attack surface minimization.

• Automatic computation of metrics capturing both secu-
rity and cost tradeoffs at different granularities.

• Relative comparison interfaces enabling rapid multi-
dimensional comparison of metrics across multiple
configurations, including visualizing comparisons.

A. ASR Concept of Operations

When analyzing a system and assessing its attack surface,
one must consider (1) the potential adversary capabilities and
starting points, e.g., distinguishing external threats from insider
threats, (2) the intra- (among processes) and inter-host connec-
tivity that allow legitimate or malicious actors to move from
element to element within the system, (3) which elements are
required for operational use, and among those which are re-
quired for a given mission, (4) the application- and mission-
level requirements that if unmet lead to degraded operation or
failure, and (5) the defenses available for deployment, the po-
tential deployment locations, and the protection they provide.

The typical ASR concept of operations in the context of
such a system start with analyzing the system without any addi-
tionally deployed MTDs (or other defenses) to compute a set of
metrics to serve as a baseline. The metrics include the number
of listening ports, number of data flows, and the average attack
vector length, among others. Subsequent analyses then focus
on incremental changes exploring what-if scenarios. For exam-
ple, the ASR user can analyze the system with an IP hopping
defense deployed. IP hopping MTDs introduce randomness
into IP addresses assigned to participating nodes. All legitimate
nodes are made aware of the hopping scheme (or explicitly

updated by the MTD itself) such that communication among
these nodes can continue unhindered. From the perspective of
nodes not included in the MTD, such as an adversary, the pro-
tected nodes have short-lived IP addresses, which hop to new
randomly selected addresses. The ASR user can investigate the
impact of this deployment under various configurations (e.g.
varying the hopping frequency, or changing the set of protected
hosts). Each analysis provides the user with high-level infor-
mation such as an overall cost score, security score, and impact
on the mission, as well as detailed low-level metrics that can be
used to understand the differences in results. Deployment of
defenses potentially introduces additional latency, CPU and
memory requirements, or configuration complexity. IP hop-
ping, for example, may introduce latency to communications as
network address changes occur. In addition, while modulating
certain areas of a system’s attack surface, defenses may in fact
extend the attack surface in unexpected ways, e.g., by introduc-
ing new interactions that are not known and not protected.

II. RELATED WORK

The ASR modeling, analysis, and metric computation func-
tionality shares common goals with other measures, frame-
works, and tools that wish to quantify attack surface character-
istics. Frameworks based on formal methods approaches such
as [3][4], which employ I/O automata to formalize attack sur-
faces and provides a metric for measuring such surfaces, seek
to achieve the same form of surface measurements as ASR.
Other formal approaches such as [5] use discrete event simula-
tion to explore the attack space. These approaches differ from
our work in that they (1) are based on less user-accessible for-
malisms than the ASR semantic web approach, (2) require
high-granularity functional models of systems, and (3) only
provide metrics but no recommendations for approaches to
minimize a system’s attack surface. Approaches such as [6]
that do focus on exposing trade-offs in order to provide rec-
ommendations for mitigation operate at lower abstraction lay-
ers than ASR, providing precise results, but focusing on al-
ready-deployed systems, requiring knowledge of the exact set
of vulnerabilities present in those systems, and assuming that
all supplied defenses can be composed. Other attack surface
measures and frameworks such as [7] focus on a single applica-
tion and operate at lower levels concentrating on source code or
software modules. Approaches to runtime MTD behavior such
as [8] share similar tactics, but focus on guiding an MTD to-
wards optimal reconfiguration behavior, as opposed to provid-
ing design time configuration and composition decision sup-
port. The work described in [9] focuses on a specific class of
web applications rather than entire distributed systems. Numer-
ous manual threat modeling and analysis frameworks
[10][11][12] provide common terminology, diagrammatic nota-
tion, and process descriptions for threat modeling. However,
these frameworks do not perform any automated analysis, or
necessarily provide specific metrics and measures.

Performing quantitative reachability analysis has been stud-
ied extensively in the academic literature, using domain-
specific languages such as Alloy [13], Lobster [14], or Cross
Domain Entitlement Language (CDEL) [15]. Such reachability
analysis serves as an underpinning mechanism in ASR’s attack
vector finding algorithms, but it is not the goal, rather it is in-
cluded as support of the larger attack surface measurement tool.

���

Identifying potential attack vectors through the use of attack
graph generation (both manual and automatic) and analysis has
been explored in [16]–[19] among numerous others. Decision
support analysis systems for cyber defense, such as [20], em-
ploy probabilistic techniques by annotating attack trees with
defense information. Mathematical frameworks over attack
graphs such as that described in [21] attempt to identify optimal
defender responses to interdict adversary actions in the graph.
ASR focuses less on determining or enumerating attack success
feasibility or probability over a given system and instead fo-
cuses on supporting comparative and recommendation based
analytics. The attack surface quantification process used by
ASR does employ information on potential attack vectors,
however, and so in theory could use attack graphs as a partial
alternative or supplemental data source.

Security analysis involves many variables whose exact val-
ues are dynamic and difficult to model with any general ap-
plicability, as they are dependent upon very targeted and spe-
cific elements of a system, defense, or adversary. These chal-
lenges have led to probabilistic models and metrics
[22][23][24]. ASR is currently primarily a deterministic tool.

Beyond attack surface measurement, quantifying security in
general is a long-running and difficult line of research. Both
[25] and [26] outline some of the complexities and undertake a
survey of potential directions forward.

III. MODELS

The ASR algorithms and metrics operate over a set of
models that together describe the system under examination,
its defenses, the assumed capabilities and starting point(s) of
the adversary, and optionally a mission, which may operate
over the defined system. In addition, the set of metrics is itself
described in a model to allow for easy user-defined extension.

ASR models are defined in the World Wide Web Consor-
tium (W3C) semantic Web Ontology Language (OWL). Using
a semantic web substrate provides a number of benefits such
as inference capabilities, easy and clean multi-domain ontolo-
gy integration, mature standards-based tooling and communi-
ties, and existing scalability and performance benchmarks.

One of the key challenges of modeling distributed systems
is identifying the level of abstraction most appropriate for the
models, the algorithms that operate over them, and the results
that are provided to stakeholders. Modeling at the extreme of
detail allows specific and exact answers to be derived, but cre-
ates models that are difficult to create accurately and to keep up
to date, and leads to analysis brittle to system changes. Model-
ing at too coarse of a level of abstraction on the other hand
leads to models that are easily created, but can tell interested
parties little about questions of importance.

With ASR, a middle road was taken. A number of the con-
cepts, and the level of granularity, were modeled after Mi-
crosoft’s STRIDE [27] threat classification framework and
related modeling languages described in [10]. Notions of ele-
ments such as processes, hosts, networks, endpoints, and data
flows, represent the abstraction level commonly used with
STRIDE and employed in ASR. ASR models an attack surface
through a strategic combination of system, defense, attack,
mission, adversary, and metric models.

A. System Models

System models describe the business system against which
attacks can be executed and within or around which defenses
can be deployed. These models detail the hosts in the system,
the networks that connect these hosts, and the processes that
run on them. Data flows are modeled here at three different
levels: process, network, and physical. The three levels are
interconnected in the model such that one can determine for a
given process-level data flow that the described data is sent out
through a given network endpoint which is bound to a particu-
lar network interface card (NIC) at the physical layer.

B. Defense Models

Defense models describe which static and dynamic defens-
es are in place, what elements of the system they protect, what
types of coverage they provide, and what cost is incurred. A
single defense model can incorporate multiple defenses.

C. Attack Models

Attack models describe the generic activities performed by
adversaries as a collection of potential attack steps. Each attack
step is described by a number of attributes such as its attack
type (in STRIDE), the pre-condition for the attack step to exe-
cute, the post-condition that holds once it successfully exe-
cutes, and other attributes including side effects.

D. Mission Models

Mission models describe expected flows between actors
and services at the process layer. The mission models are a
strict subset of process-level system entities and data flows
contained in the system model and can be thought of as use
cases. The flows specify requirements on performance and
security of mission-critical information exchanges.

E. Adversary Models

Adversary models describe assumed constraints on the ad-
versary, such as attacker starting point and optionally a goal.

F. Metric Models

Metric models enumerate all ASR metrics and define, for
each metric, its name, the domain over which it is executed,
and the SPARQL query used to compute it. Metrics are com-
puted by querying other models, and some are then post-
processed to compute statistical values such as mean or max.

IV. METRICS & ALGORITHMS

A. Attack Vector Finding Algorithm

The purpose of the attack vector finding algorithm is to find
all applicable ways an adversary may cause harm, given (1) an
optional adversarial objective, and a starting position, (2) a set
of generic attack steps available to choose from, (3) a specific
system that is being targeted, and (4) optionally, defenses.

The attack vector finding algorithm is a recursive depth-
first search that constructs a set of attack vectors, each of which
is an ordered sequence of instantiated attack steps. An instanti-
ated attack step is an instance of the generic attack step previ-
ously described in the attack model with certain properties
bound to specific elements of the system. For a generic attack
step to be instantiated, all constraints of the step need to be
satisfied. For instance, the start and target endpoints must have

���

the right characteristics, such as type, connectivity, resources,
and vulnerabilities. In particular, all requirements of a step
must hold throughout the execution of that step. For attack
steps, determining this amounts to executing a SPARQL query
associated with the attack step. MTDs may invalidate the ad-
versary’s knowledge periodically (e.g., through IP hopping)
and thus prevent successful attack step execution. Attack vector
finding may optionally include either a goal (or set of goals), or
a maximum attack vector length, or both.

B. Metrics

A core goal of ASR is to allow for the quantification of at-
tack surfaces, and to facilitate user-guided exploration of how
changes in the system, defense, or other models can effect
change in the attack surface. Attack surfaces are quantified
with respect to over thirty system- and mission-wide metrics
that are computed during the analysis of a configuration. Be-
cause ASR aims to provide users with actionable information,
these metrics are organized hierarchically and presented in a
way that facilitates easy comparison between and among con-
figurations. ASR metrics are defined as OWL models and thus
are easily modified to 1) fit custom user requirements, and 2)
reflect the results of current validation efforts of ASR analyses.

Each low-level metric (e.g., mean attack vector length, total
number of entry points) supports one or more higher-level val-
ues that cover the security and cost of both the system in an
unbound context, and that system with respect to a particular
mission. Because too many metrics can overwhelm a user,
composite metrics are computed over the sub-metrics in order
to provide users with information about the fitness of the con-
figuration with respect to both cost and security at a glance.

ASR quantifies an attack surface with two high level num-
bers reflecting cost and security because a single number can
easily convolute complex relationships and tradeoffs between
these two dimensions. In many cases, after seeing the at-a-
glance cost and security scores of a configuration, a user wants
to investigate the individual metrics comprising these index
values. ASR provides a convenient heat map display to com-
pare multiple configurations side by side and easily visualize
the differences in each individual metric.

In addition to the system-focused set of metrics, ASR pro-
vides mission-oriented metrics. These mission metrics mirror
their system counterparts in their support of either high-level
mission security or mission cost indexes.

Mission security requirements optionally specify con-
straints over confidentiality, integrity, and availability of a sub-
set of flows. Security metrics are evaluated on a binary scale
where a data flow either meets its security requirement or vio-
lates it. A data flow is considered to violate one of its require-
ments if an attack step can compromise that requirement.

The mission-specific cost metrics consist of latency and
throughput values calculated for mission-critical data flows.
Mission cost metrics are rated on a three-band ranking of pass,
degraded, or fail, depending on user-specified threshold values.

C. Minimization Algorithm

Attack surface minimization provides a way to identify sys-
tem elements that are not required for system operation, or for

execution of a given mission. Note that once identified, actual
removal of the non-essential entities from the system can be
accomplished in many ways, e.g., disabling a port, changing
firewall configurations or turning off a process/host. ASR pro-
vides recommendations for removal, and will automatically
create updated models based on user-approved removal selec-
tions, but does not assist in actual removal of the real elements.

Minimization is an iterative and mixed-initiative process
with two main types ‒ minimization based on the mission re-
quirements and minimization on the system model itself. In
each iteration ASR algorithms find a set of candidates for re-
moval, and then the user selects a subset of candidates to re-
move from the system. The need for iteration comes from the
fact that the entities are connected to each other in non-trivial
ways and the removal of one entity might trigger a minimiza-
tion rule that was not active in the previous iteration. For ex-
ample if a process is removed in one iteration because it is not
necessary for the mission, then a listening port in a server that
this process is connecting through may become unnecessary in
the next iteration if there are no other data flows going through
it. The minimization eventually reaches a fixed point where no
more new candidates are identified.

Minimization over the mission model involves finding pro-
cesses that are not critical from the mission’s perspective.
These processes and the data flows associated with them are
then removed if the user chooses to do so. System-level mini-
mization involves identifying system concepts and their de-
pendencies that do not interact with the rest of the system yet
add to the attack surface, such as unused listening sockets.

V. PROTOTYPE

A. Tool Description

The ASR tool allows users to create, manage, and analyze
configurations. Each configuration describes a collection of
models over which the ASR analysis algorithms operate. The
user interface is divided into two primary areas. The first area
allows for the creation and manipulation of configurations and
the second allows for exploration of the analysis results of one
or more analyzed configurations.

Users can define new configurations and delete, query, vis-
ualize, and initiate analysis of existing configurations. Configu-
rations are composed of the six models described in section III.
Users craft these models in existing off-the-shelf OWL/text
editors. As part of the configuration creation process, users
select these models from local storage and upload them to ASR
for persistence in a triple store. Once a configuration is created,
it can be queried using an ASR built-in SPARQL submission
tool, visualized and explored in an interactive graph layout, or
analyzed to compute security, cost, and mission related metrics.

When a user selects a configuration for analysis, the ASR
engine processes this request and displays the results. The user
can view a set of high-level metrics related to the cost, security
benefit, and mission impact. Selecting an analysis result allows
for further drill down into the lower-level metrics, which are
used to compute the high-level scores (cost, security, mission).
The lower-level metrics provide information such as the aver-
age length of successful attack vectors, and the number of dis-
covered open endpoints. For a more detailed exploration, users

���

can also view the actual attack vectors ASR found in a popup
window. Results can be compared with one or more others via
a heat map based difference exploration tool (shown in Fig. 2)

B. Architecture

The ASR tool was developed as a three-tier web service
based application in order to support a scalable system decou-
pled from client tooling and capabilities, multiple concurrent
users who may wish to share data, and a system that can take
advantage of new triple store advancements without impact to
the design, architecture, or clients. The ASR architecture,
shown in Fig. 3, is organized in the following core layers:

The presentation tier is a client-facing front end that runs
within any modern web browser and employs JavaScript and
HTML to create a flexible and lightweight interface. This layer
interacts using AJAX with the backend through a set of web
services that can exchange JavaScript Object Notation (JSON)
formatted data.

The business logic tier performs the real heavy lifting, and
is where the attack surface reasoning algorithms are imple-
mented. This tier is written in Java and exposes a web services
interface through the use of the Jetty embeddable HTTP server.
Interaction with the data layer is achieved through the use of
the Apache Jena library for semantic/linked data. Jena is used
to both construct/manipulate models, and to query them using
the SPARQL query language.

The data tier is fulfilled by a triple store implementation. By
default, ASR works with the all-Java Jena TDB triple store,
which can be embedded within the ASR application itself thus
eliminating any need for native code and simplifying ASR de-
ployment. The Java library used by the logic tier abstracts away
the implementation details of the triple store, and thus this
component is pluggable. In addition to TDB, ASR has been
tested with BBN’s Parliament triple store.

VI. EXPERIMENTAL RESULTS

The initial focus for ASR was on establishing feasibility of
attack surface quantification using semantic web models. The
work described in this section aims to understand the current
unoptimized system’s limits, as well as uncover which attrib-
utes of a model (the number of hosts, processes, networks,
servers, etc.) have the potential to lead to exponential behavior.

Due to space constraints here we provide only a high level de-
scription of the tests to give the reader a sense of the type and
character of our initial experiments, and provide a glimpse into
the results as an indicator of our future focus areas.

A. Test Setup

The random model generation framework takes a set of
configuration parameters that describe the system, defense, and
adversary, and then executes a defined procedure to construct
models of the required hosts, processes, networks, defenses,
etc. The configuration parameters cover 17 different dimen-
sions such as the number of hosts, the number of processes per
host, and the number of network interface cards per host. Val-
ues for each dimension can be defined as a fixed integer, or an
integer distribution. All tests were run on a Dell Mobile Preci-
sion M4700 with a 2.7GHz Intel i7 processor, and 32 GB
DDR3-1600MHz SDRAM.

B. High Level Results

Over 300 individual experiments were run, each varying an
element or elements of the configuration. As exploring the
complete configuration space is not feasible (even artificially
tight bounds restricting each variable to range over only 10
values results in a 1017 space), an initial probing phase was
undertaken to conduct ad hoc experiments aimed at illuminat-
ing the rough edges of the feasible execution space. As we
gained insight into these edges, more targeted testing began.

The high-level take away from the testing is that the ASR
tool can currently support enclave sized models consisting of
fewer than 30 hosts, each running 1-2 modeled processes, and a
total of fewer than 10 servers. Beyond these numbers, execu-
tion times quickly increase to multiple hours or longer.

As can be expected given the nature of the current analysis
algorithms, configuration elements that expose entry points,
and thus increase the attack surface, showed greater than linear
impacts on runtime. In particular elements that can be bound to
the start or end points of an attack step have the greatest direct
impact. Process counts, as seen in Fig. 4, show an example of
this pattern where in low numbers the combinatorial impacts
are less pronounced, but as the counts increase, the runtime
shows dramatic climbs.

Fig. 2. ASR Analysis Results Heat Map system, defense, attack-steps, adver-
sary, and mission models are currently built manually. To truly test the system

Fig. 3. ASR Architecture

���

VII. CONCLUSION AND NEXT STEPS

As the number and complexity of defenses (including
MTDs), system configurations, and potential attacks continual-
ly increase, cyber defenders face the problem of manually se-
lecting and configuring defenses for a distributed mission-
critical system without a clear understanding of the
seams/integration points, residual risks, and costs (in terms of
impact on performance and functionality). Integration of de-
fenses performed in a non-structured way bears the risks of
adding defenses with no value, inadvertently increasing the
attack surface, or negatively impacting critical functionality.

The current ASR web service prototype capability provides
means for automatically characterizing variant attack surfaces
for security and performance and enables cyber defenders to
perform relative comparisons between attack surfaces. Numer-
ous ASR extensions and enhancements are already underway,
including (1) reasoning over probability distributions to better
incorporate the probabilistic nature of attacks and defenses, (2)
automated creation of system and mission models from actual
implemented systems and preexisting mission descriptions, (3)
extending the library of modeled systems, attacks, and defenses
in order to further test and refine the ASR system, (4) perform-
ing in-depth profiling and subsequent optimization to support
increased scalability – this effort having already gained a 2
orders of magnitude decrease in analysis run times over the
system reported here, (5) providing various user interface en-
hancements to support a user-friendly and intuitive experience,
and (6) automatically exploring the defense selection and con-
figuration space to reduce reliance on user-driven exploration,
and (7) verify and validate the results that ASR provides by
executing missions that correspond to the test models in a vir-
tual environment.

REFERENCES

[1] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Moving

target defense: creating asymmetric uncertainty for cyber threats, vol.
54. Springer Science & Business Media, 2011.

[2] B. Schneier, “Attack trees,” Dr Dobb’s J., vol. 24, no. 12, pp. 21–29,
1999.

[3] P. Manadhata and J. Wing, “A Formal Model for a System’s Attack
Surface,” in Moving Target Defense - Advances in Information Security,
vol. 54, Springer, pp. 1–28.

[4] P. Manadhata and J. Wing, “An Attack Surface Metric,” IEEE Trans.
Softw. Eng., vol. 37, no. 3, pp. 371–386, 2011.

[5] M. D. Ford, K. Keefe, E. LeMay, W. H. Sanders, and C. Muehrcke,
“Implementing the ADVISE security modeling formalism in Moebius,”

in Dependable Systems and Networks (DSN), 2013 43rd Annual
IEEE/IFIP International Conference on, 2013, pp. 1–8.

[6] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic Security Risk Man-
agement Using Bayesian Attack Graphs,” IEEE Trans. Dependable Se-
cure Comput., vol. 9, no. 1, pp. 61–74, Jan. 2012.

[7] M. Howard, “Attack surface: Mitigate security risks by minimizing the
code you expose to untrusted users,” MSDN Magazine, Nov-2004.

[8] Q. Zhu and T. Başar, “Game-Theoretic Approach to Feedback-Driven
Multi-stage Moving Target Defense,” in Decision and Game Theory for
Security, vol. 8252, S. K. Das, C. Nita-Rotaru, and M. Kantarcioglu,
Eds. Cham: Springer International Publishing, 2013, pp. 246–263.

[9] T. Heumann, S. Turpe, and J. Keller, “Quantifying the Attack Surface of
a Web Application,” Sicherheit, pp. 305–316, 2010.

[10] A. Shostack, Threat Modeling, Designing for Security. Wiley, 2014.
[11] J. Ingalsbe, L. Kunimatsu, T. Baeten, and N. Mead, “Threat Modeling:

Diving Into the Deep End,” IEEE Softw., vol. 25, no. 1, pp. 28–34,
2008.

[12] P. Saitta, B. Larcom, and M. Eddington, “Trike v. 1 methodology doc-
ument,” 2005. [Online]. Available:
http://www.octotrike.org/papers/Trike_v1_Methodology_Document-
draft.pdf.

[13] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Trans. Softw. Eng. Methodol., vol. 11, no. 2, pp. 256–290, Apr. 2002.

[14] J. Hurd, M. Carlsson, B. Letner, and P. White, “Lobster: A domain
specific language for selinux policies,” Galois, 2008.

[15] J. Beal, J. Webb, and M. Atighetchi, “Adjustable autonomy for cross-
domain entitlement decisions,” in Proceedings of the 3rd ACM work-
shop on Artificial intelligence and security, 2010, p. 65.

[16] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to
attack graph generation,” in Proceedings of the 13th ACM conference on
Computer and communications security, 2006, p. 336.

[17] S. Noel and S. Jajodia, “Managing attack graph complexity through
visual hierarchical aggregation,” in Proceedings of the 2004 ACM work-
shop on Visualization and data mining for computer security, 2004, p.
109.

[18] Bingrui Foo, Yu-Sung Wu, Yu-Chun Mao, S. Bagchi, and E. Spafford,
“ADEPTS: Adaptive Intrusion Response Using Attack Graphs in an E-
Commerce Environment,” in SN 2005. Proceedings. International Con-
ference on Dependable Systems and Networks, 2005, pp. 508–517.

[19] K. Ingols, R. Lippmann, and K. Piwowarski, “Practical Attack Graph
Generation for Network Defense,” in ACSAC’06. 22nd Annual Comput-
er Security Applications Conference, 2006, pp. 121–130.

[20] “Cyber Security Risks Assessment with Bayesian Defense Graphs and
Architectural Models,” in HICSS’09. 42nd Hawaii International Con-
ference on Systems Sciences, 2009, pp. 1–10.

[21] J. Letchford and Y. Vorobeychik, “Optimal Interdiction of Attack
Plans,” presented at the The 2013 International Conference on Autono-
mous Agents and Multi-agent Systems (AAMAS 2013), St. Paul, MN,
USA, 2013, pp. 199–206.

[22] Peng Xie, J. H. Li, Xinming Ou, Peng Liu, and R. Levy, “Using Bayesi-
an networks for cyber security analysis,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2010, pp.
211–220.

[23] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An Attack
Graph-Based Probabilistic Security Metric,” in Data and Applications
Security XXII, vol. 5094, V. Atluri, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 283–296.

[24] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack
graphs,” in Computer Security Foundations Workshop Proceedings.
15th IEEE, 2002, pp. 49–63.

[25] M. Torgerson, “Security metrics for communication systems,” presented
at the 12th ICCRTS, Newport, Rhode Island, 2007.

[26] W. Jansen, Directions in Security Metrics Research. Diane Publishing,
2010.

[27] L. Kohnfelder and G. Praerit, “The Threats To Our Products,” 01-Apr-
1999. [Online]. Available: http://blogs.msdn.com/cfs-
file.ashx/__key/communityserver-components-postattachments/00-09-
88-74-86/The-threats-to-our-products.docx. [Accessed: 02-Mar-2015].

Fig. 4. Impact of Process Count on Analysis Time

���

4S[IVIH�F]�8'4(*��[[[�XGTHJ�SVK

