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ABSTRACT A significant amount of work is invested in human-machine teaming (HMT) across multiple
fields. Accurately and effectively measuring system performance of an HMT is crucial for moving the design
of these systems forward. Metrics are the enabling tools to devise a benchmark in any system and serve
as an evaluation platform for assessing the performance, along with the verification and validation, of a
system. Currently, there is no agreed-upon set of benchmark metrics for developing HMT systems. Therefore,
identification and classification of common metrics are imperative to create a benchmark in the HMT field.
The key focus of this review is to conduct a detailed survey aimed at identification of metrics employed in
different segments of HMT and to determine the common metrics that can be used in the future to benchmark
HMTs. We have organized this review as follows: identification of metrics used in HMTs until now,
and classification based on functionality and measuring techniques. Additionally, we have also attempted
to analyze all the identified metrics in detail while classifying them as theoretical, applied, real-time,
non-real-time, measurable, and observable metrics. We conclude this review with a detailed analysis of
the identified common metrics along with their usage to benchmark HMTs.

INDEX TERMS Autonomous system, benchmarking, human factors, human-machine teaming (HMT),
metrics, performance metrics, and robotics.

I. INTRODUCTION

The future of technology lies in human-machine collab-
oration rather than on a completely autonomous artificial
intelligence (AI). Dr. Jim Overholt, senior scientist at the
Air Force Research Lab (AFRL), stated, “The US Air
Force Research Laboratory (AFRL) has no intention of
completely replacing humans with unmanned autonomous
systems” [1]. Therefore, to achieve the best results, a human-
machine teaming or collaboration is the only choice we
have, but such a teaming comes with its own set of chal-
lenges. We propose to define HMT as a combination of
cognitive, computer, and data sciences; embedded systems;
phenomenology; psychology; robotics; sociology and social
psychology; speech-language pathology; and visualization,
aimed at maximizing team performance in critical missions
where a human and machine are sharing a common set of
goals. Team members will share tasks, and the machine may

provide suggestions that can play a crucial role in team
decision-making. Such a collaboration requires a two-way
flow of information. Based on the above-proposed definition,
to be deemed as an HMT, a team should contain at least
one human and one machine/intelligent system. Perhaps the
best example of practical use of an HMT can be attributed
to a 2005 game of chess. In this game, two inexperienced
chess players teamed up together with three PCs and won
a chess competition against a group of supercomputers and
grandmasters, which did not form a team. In this scenario,
human team members were able to leverage the machine’s
data mining and information processing capabilities based on
their cognition skills [2]. Although machines have been used
to assist humans for decades, these systems are not collabo-
rative partners but are programmed for specific tasks [3]. The
primary concern of HMT is effective integration of human
and machine tasks so that the team collaboration optimizes
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FIGURE 1. Generalized human machine team model.

the efficiency of critical tasks [4]-[8]. Making successful
outcomes consistent and repeatable with high accuracy would
also demonstrate an effective HMT that is possible only
through comprehensive studies.

A. HMT OVERVIEW

By analyzing various published works [8]-[21]], we iden-
tified six major HMT components, with architectures,
interfaces, and metrics being the highly researched areas.
We present brief definitions and examples of these
components:

1) ARCHITECTURES: The founding principle of building
an HMT architecture is to achieve an optimal machine assis-
tance. Architecture is necessary to set boundaries, assign
duties, and design interfaces to increase the team effec-
tiveness. Through analysis of 19 published frameworks,
we identified nine essential functional blocks for a generic
HMT framework: human-machine interaction (HMI), infor-
mation and data storage, system state control, arbitration,
goal recognition and mission planning, dynamic task alloca-
tion, rules and roles, verification and validation (V&V), and
training [21]-[35]. This is shown in figure 1.

2) INTERFACES: Any focus over interface and interaction
method will enable an effective human-machine communica-
tion. The association for computing machinery defines HMI
as “‘a discipline concerned with the design, evaluation, and
implementation of interactive computing systems for human
use and with the study of major phenomena surrounding
them” [36]. The HMI can be divided into three principal
components: the user, the interface, and the machine. Here,
an interface is a device that typically encompasses both soft-
ware and hardware to streamline an interaction between user
and machine. Examples include a graphical user interface,
web browsers, and various I/O devices [37]. Many published
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studies that have classified and analyzed interfaces used in
HMI are acknowledged in [38]-[40].

3) METRICS: Metrics are crucial measures to track,
assess, and compare a process, task, or system with respect
to performance, usability, efficiency, quality, and reliability
as defined by the system performance goals. Metrics can
also be used to evaluate the effectiveness of an HMT
and its agents (human, machine, and team) on various
levels.

4) ROLES AND RULES: Roles are defined as
assumed or assigned responsibilities within a system,
process, or task. On the other hand, rules are defined as
a set of explicit regulations governing conduct in a situa-
tion or activity. By analyzing published work, we concluded
that requisite and opportunistic are two categories of roles and
rules. Implementing roles and rules in HMT helps generate
a symbiotic human-machine ecosystem that will think as no
human has ever thought and will process the data in a way
that no machine ever processed [4], [31], [41]-[45].

5) TEAM BUILDING: According to the earlier works
of researchers presented in [46], teams are defined not
as just individual parts of machinery but they must be
built together. In an HMT, one can build a systemic team
with compatible team members. Through literature review,
we identified that team development has two dimensions:
(1) the task dimension consisting of forming, conflict reso-
lution, norming, and performing, and (2) the interpersonal
dimension consisting of dependency, conflict, cohesion, and
interdependence [46]-[53].

6) VERIFICATION AND VALIDATION (V&V): For a
team to function optimally, features such as trust, cohesion,
expectations, and motivation must be considered because of
their effects on team performance. V&V is a crucial compo-
nent of HMT that helps validate the team-building features
mentioned above and thus gives key insights for optimizing
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the team formation and performance. The V&V methods can
be further classified into two groups based on their use: during
mission and training [18], [54]-[59].

B. METRICS BACKGROUND

Although the foundations of HMT were laid at Defense
Advanced Research Projects Agency in 2001 [10], it took
five more years for the research community to identify
a set of metrics that facilitates a well-organized structure
of human-robot interactions (HRI). For various metrics,
we found close but different descriptions of the same metric,
primarily for various HMIs in human-robot or robot -only
swarms [20], [60]. The research community uses metrics that
are application and domain specific. For example, researchers
in [61] developed an approach to define human supervisory
control metrics while [62] has identified common metrics for
HRI standardization. Researchers in [63] and [64] focused
on developing false alarm metrics to analyze erroneous HRI.
The robot performance evaluation metrics for understanding
team effectiveness are defined in [65]. Researchers have also
developed metrics from human-computer interaction (HCI)
heuristics to aid information analysis in interactive visu-
alizations [66]. This work made an active effort to define
metrics for specific components of HMT, such as HCI, HRI,
and architectures, whereas research on common metrics is
limited.

Identifying common metrics will allow benchmarking of
HMT designs, comparison of findings, and development of
evaluation tools. The primary difficulty in defining common
metrics is the diverse range of HMT applications. In this
review, we focus on metrics for all three agents of HMT,
for example, human, machine, and the team. The goals of
this review paper are (1) identification and classification
of metrics, (2) evaluation of the identified metrics to find
common metrics, and (3) proposal of common metrics that
can be used in future HMT benchmarking. The rest of the
paper is structured as shown in figure 3.

Ill. METHOD

A. KEYWORDS AND DATABASES

To limit the scope of this study, we developed a set of
keywords based on pertinent technological and scientific
domains that focus on HMT. The HMTs investigated in
this study account for one or more task-oriented mobile
robots or software agents as machine team member(s) and at
least one human as a team member. Further, the machines that
take part in an HMT must belong to one of the following cate-
gories: unmanned aerial vehicles (UAVs), unmanned ground
vehicles, Al robots, digital assistants, and cloud assistants,
as shown in figure 2. The search was limited to HMT
applications in target search and identification, navigation,
ordinance disposal, geology, surveillance, and healthcare.
The keywords used are listed in Table 1 and the databases
utilized are as follows: IEEE Xplore, Science Direct
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TABLE 1. Keywords used.

Primary Keywords

Core Concepts Keywords
Control metrics, interface metrics, synthetic assistant,
Human . . . .
Machine synthetic mentor, intelligent assistant, rules and roles,
. symbiosis, verification and validation, measuring
Teaming . . .
methods, physiological attributes
Human Metrics, architecture, interface, team building, human
Machine factors, ergonomics, task, automation, shared control,
Collaboration symbiosis, physiological attributes
. Team building, metrics, interface, human factors,
Human in . . .
human-robot collaboration, ergonomics, multirobot
Team . . .
controls, shared control, physiological attributes
. Robot control, software agent, synthetic assistant,
Machine in . . : . .
Team metrics, synthetic mentor, intelligent assistant, team
building, interface, human factors, multirobot teams
. List of all identified metrics in Table IX + measuring
Metrics
methods

Secondary Keywords

UAV, UGV, navigation, surveillance, healthcare, medical assistant,
identification, ordnance disposal, geology

(SCOPUS/ Elsevier), Defense Technical Information Center,
SAGE Publications, and Google Scholar.

Autonomous Car

Robotic Assistant

Digital Assistant

aloxa () Cortana

) )
(% % Cloud Assistant
I Watson

FIGURE 2. Trends in autonomous systems.

B. SELECTION CRITERIA
The following criteria were set to evaluate the articles found
after a detailed search. Firstly, we tried to define the relevance
of the article with our objectives/goals as follows:

o Discusses HMT or human-machine collaboration?

« Discusses one or more HMT components?

« Discusses metrics related to an HMT agent?

« Mentions or discusses core HMT concepts?
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FIGURE 3. Review paper structure.

Articles that satisfied the above criteria were further
filtered based on primary and secondary keywords used in
specific sections. Further, we identified metrics that relate to
teaming and HMT and conducted another refined search to
obtain the most relevant literature. Out of hundreds of articles
identified in the search process, a total of 188 articles were
considered for the review.

C. LIMITATIONS

A key limitation of this review is the breadth of the review
since the area of HMT is extensive and involves many
fields of study. For the sake of this review, a limited
number of primary articles are reviewed here (n = 77).
Such a wide-range review poses a bigger challenge in terms
of comprehensive coverage of various metrics and related
research questions. Therefore, the review focuses on three
agents of HMT that are worthy for an in-depth review.
We selected the most relevant information available from
the literature. Another limitation that entails establishing
common metrics for all HMT types or benchmarking them
on a single scale is the dependence on many factors such as
application, and the number of agents.

IIl. HMT METRICS SURVEY RESULTS

In this section, we present a comprehensive and classified
metric list for the three agents of HMT: human, machine, and
team (or system). This strategy resulted in (1) an analysis that
applies to a specific range of applications, and (2) the ability
to assess the application specific HMT performance.
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A. IDENTIFIED METRICS

1) HUMAN METRICS

This subsection identifies metrics that measure different
human aspects such as system knowledge, performance, and
efficiency that can be used to evaluate a human agent in an
HMT. Most of the metrics we present in this section are well
established by various scientific studies.

Situational awareness (SA) is measured by monitoring task
progress and sensitivity to task dynamics during execution.
The degree of mental computation estimates the amount of
cognitive workload an operator manages to complete a task,
for example, a task that requires object reference associa-
tion in working memory a or user’s cognitive abilities to
perceive projections of the real-time environment [62], [67].
The accuracy of a mental model of an operator depends
on interface comprehensiveness and simplicity in addition
to control and compatibility a machine provides. Attention
allocation measures the attention an operator pays to a team’s
mission and the operator’s ability to assign strategies and
priorities of tasks dynamically. The metric also considers
an operator’s degree of attention over multiple agents. It is
measured using eye tracking, duration of eye fixations to an
area of interest, and task completion rate, while attention allo-
cation efficiency is measured using wait times [61], [68], 69].
Intervention frequency is the frequency with which an oper-
ator interacts with the machine [20]. As per literature, oper-
ators’ intervention frequency is also known as intervention
rate or percentage requests. Stress can be physical or mental.
However, both may indicate the operator workload and are
measured in two ways. First, researchers perform sample
testing of humans’ stress hormones, such as hypothalamic-
pituitary adrenaline, cortisol, and catecholamine, which are
found in blood, saliva, and urine samples [70]. Second,
researchers can perform a detrended fluctuation analysis of
a human’s heartbeat [71].

Human safety metrics involve evaluation of the risk posed
to the human life while working near machines, for example,
the location of the machine relative to the human. These
mostly apply to applications in a high-risk environment such
as threat neutralization. Human factor studies suggest that
humans can establish the best cooperation with a machine
through a 3D immersive environment [72]. In [73] and [74],
researchers suggest that humans can be more effective when
the environment and goals are in their best interest.

Other human performance attributes such as psychomotor
processing, spatial processing, composure, and perseverance
are important to improve the team cohesion through human
performance enhancement. Overall personal (physiological,
cognitive, and psychological) attributes have been classified
into five subdomains after a detailed study by several defense
agencies and are summarized in Table 2 [75]-[78].

2) MACHINE METRICS
All the machine-level metrics related to HMT, such as
efficiency, performance, and accuracy, are well represented
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TABLE 2. Human performance metrics for HMT.

Sub Domain  Attributes
Physical Health  general health; stamina; stress; fatigue
Cognitive  cognitive proficiency; attention; spatial processing;
Perception  memory; psychomotor processing; reasoning

Intra-Personal ~ composure; resilience; self-certainty;
conscientiousness; success oriented; perseverance;
decisiveness; impulsiveness; cohesiveness;
assertiveness; adaptability; self-confidence
extraversion; judgment; team oriented; adaptability

moral interest; occupational interest

Inter-Personal
Motive

in literature. A few more are detailed as follows: machine self-
awareness, or the degree to which a machine is aware of itself
(limitations, capacities), is a precursor to reducing the human
cognitive load and measured based on autonomous operation
time, the degree of autonomy, and task success [62], [79].
Technically, unscheduled manual operation time may either
be an interruption period in current plan execution or an
unexpected assigned task [80]. Neglect tolerance (NT) is
interpreted in numerous ways, such as machine perfor-
mance falling below expectation, time to catch-up, the idle
period, or operation time without user intervention. State
metric helps track the machine or plan state based on four
dynamic states: assigned, executed, idle, and out of the plan.
Robot attention demand (RAD) is a measure of the fractional
“task time” a human spends to interact with a machine.
Fan out (FO) is a measure of how many robots with similar
capabilities a user can interact with simultaneously and effi-
ciently and is inverse of RAD [81]. Interaction effort (IE) is a
measure of the time required to interact with the robot based
on experimental values of NT and FO and is used to calculate
RAD [81], [82]. Although humans can communicate through
visual cues, gestures, etc., most machines need accurate infor-
mation to act. Such information is mostly sent over wireless
channels for various cyber-physical or cloud-robotics systems
such as UAVs [83], [84]. Studies suggest that communication
with machines in real time can be accomplished successfully
by adapting to 5G communication technologies in hardware
and software implementation [85]-[87].

Additional machine metrics that do not have a quan-
titative representation yet, and are difficult to measure,
include resource depletion, subgroup size, collision count,
usability, adequacy, sensory-motor coefficient, level of
autonomy discrepancies, physical constraints, and intellec-
tual constraints [20], [61], [80].

3) TEAM METRICS

Conventionally, a feam has two primary components: a leader
and one or more team members. A team leader is someone
who provides guidance and instruction and leads the group to
achieve set goals. In contrast, a team member is an individual
who works under the supervision of a team leader [88].
Although there is no quantitative validation or representation
of a team member, many guidelines and studies define the
characteristics of an ideal team member who serves as a
reference to evaluate or prepare a machine as a team member.
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Five essential features of a human team member are defined
as follows: functional expertise, teamwork, communication
skills, job assignment flexibility, and personality traits [89].
In contrast, a well-defined or established machine team
member feature list seems to have not been researched well
due to the nascent nature of HMT research.

The key focus of team metrics is mission assignment
and execution. Task difficulty represents the mental load a
particular task generates [90]. The task difficulty metric for
a machine depends on FO and requires three factors for
measurement: recognition accuracy, situation coverage, and
critical time ratio of a machine [65]. Recognition accuracy is
the ability of the machine to sense its I/O parameters. Situa-
tion coverage (SC) is the percentage of situations encountered
and accomplished by the robot. SC is defined based on plan
and act stages of the mission. Critical time ratio is the ratio
of time spent by a robot in a critical situation to the total
time of interaction [65]. Network efficiency is the rate of
flow of information between the human and the machine and
determines the efficiency of interaction. It also influences
time taken for scheduled and unscheduled manual opera-
tions, accuracy of mental computation, negligence tolerance,
and human-machine ratio [20]. Four well-known subclasses
of false alarms are true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) [63]. While false
alarms measure complex communication between humans
and machines in a team, people may ignore false alarms.
A human factor study presented a trade-off between ignoring
false alarms and misses and concluded that alarms are
strongly situation dependent [91]. Some other team metrics
that can be used in effective interactions are hits, misses,
automation bias, and misuse of automation or metrics based
on application scenario [92]. Robustness measures the ability
of the team to adapt to the changes in task and environ-
ment during task execution [93] while productivity measures
productive time compared to total invested time. Task success
ratio indicates the number of completed versus allocated
tasks [80].

Additional team metrics include team effectiveness,
human-robot ratio,  cohesion, neighbor overlap, total
coverage, critical hazard, autonomy discrepancies, TP, TN,
FP, and FN interaction rates (TPIR, TNIR, FPIR, FNIR),
cognitive interaction, cryptic coefficient and degree of mono-
tonicity [20], [94].

B. METRICS META-ANALYSIS

To identify common metrics, we need to analyze the metrics
for properties such as aspect of measure, measurement tech-
nique, reliability and dependability of measurements, perfor-
mance, and suitability for selected application area. These
characteristics are identified through meta-analysis.! Metrics
can be primarily classified based on either the measurement
technique (subjective, objective, direct, indirect, nominal,
ordinal, interval, ratio, process, resources, and results), or

n this meta-analysis we study well-known published research works and
reviews and identify the metric types defined here.
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TABLE 3. Functional classification of HMT metrics.

Functionality List of Metrics

Efficiency attention allocation; decision accuracy; mental workload; mental computation; workload; mental models; usability; sensory motor

metrics coefficient; plan execution; interaction efficiency; monotonicity; effort; cryptic coefficient; network efficiency; accuracy and
coherence of mental models; recognition accuracy; fan out; span of control; flexibility; level of autonomy discrepancies; false alarms;
true positive interaction rate false positive interaction rate; true negative interaction rate; false negative interaction rate; collision
count; percentage request by operator; percentage request by machine; mode error; team productivity

Timing neglect tolerance; critical time ratio; autonomous operations time; manual operation time; scheduled operation time; unscheduled

metrics operation time; completion time; execution time; productive time; team performance; task success; intervention response time;
intervention frequency; mutual delay; settling time; operator to robot time ratio; Mean Time Between Interventions (MTBI); Mean
Time Completing an Intervention (MTCI); Mean Time Between Failures (MTBF)

Mission reliability; trust; total coverage; task allocation; plan state; plan execution; plan idle; plan out; neighbor overlap; similarity; task

metrics difficulty; situation coverage; robot attention demand; resource depletion and task success

Safety metrics Risk to human; general health; critical hazard; fatigue; stress; self-awareness; human awareness; situation awareness

the quantity they measure (efficiency, safety, cognition, and
time) [95], [96]. Here, we analyze the identified metrics
based on measurement techniques, reliability, and perfor-
mance and classify them as functional, subjective, objective,
and real-time.

1) FUNCTIONAL CLASSIFICATION

Through this review, we found that several identified metrics
can be employed in all three HMT agents with subtle
modifications in measurement techniques; for example,
the time taken by a human to complete a task can be measured
using an external observer.? In contrast, machines use an
automatic timer for the same purpose. We identified effi-
ciency, time, mission, and safety as four functional classes
of HMT metrics, as shown in Table 3. Metrics to eval-
uate efficiency will give the observer the required V&V to
tune each agent to operate with maximum efficiency [20],
[62], [63], [80], [81], [93], [97], [98]. Time metrics provide
data related to the time taken for different operations by
machine, human, and team, and these metrics are very impor-
tant in decision-making and performance and status deter-
mination [20], [62], [65], [80], [81], [99]-[101]. Mission
metrics measure attributes related to a task such as plan-
ning [20], [65], [80], [81]. Safety of the team is the highest
priority for any mission, especially in stochastic and dynamic
mission environments. Safety metrics measure the agent
and mission safety during task execution [64], [71], [72].
Another class of metrics, termed as applied metrics, deals
with the practicality and research on metrics and is divided
into research and non-research metrics. Table 4 classifies the
applied metrics with respect to the HMT agents.

2) SUBIJECTIVE
Subjective metrics (SM) are used to measure abstract quali-
ties based on human perception. These metrics may include
feedback or judgment from observers (superiors or expe-
rienced professionals), for example, self-feedback, evalua-
tion, or ratings.

Table 5 summarizes a few available well-documented
SM scales. Adaptability is measured using a five-scale

2Qbserver is defined as a human or equipment with methods and tools to
monitor the operation, performance, and progress of an HMT and provide
standard feedback to improve HMT performance.
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TABLE 5. Scales for subjective metrics.

Scales Subjective metrics

Rathus assertiveness scale Assertiveness

Resilience, Self-
Confidence, Composure

Connor-Davidson resilience scale; student
motivation scale; resilience scale for adults

Chernysenko scale Conscientiousness
Big 5-factor model, Eysenck, HEXACO

Bratts Impulsiveness scale-11

Extraversion

Impulsiveness

Situation Awareness Global Assessment

Technique (SAGAT) Situational Awareness

Kuder occupational interest survey Interest
Motivation-perseverance-grit scale Perseverance
NASA Task Load Index Workload

rating from the experts [102]. Assertiveness is measured
based on the Rathus assertiveness scale [103], [104], while
resilience, composure, and self-confidence are measured
using 19 different scales, such as the Connor-Davidson
resilience scale, student motivation scale, and resilience scale
for adults [105], [106]. Conscientiousness is computed using
the Chernyshenko scale, which is a 60-item question inven-
tory, with each question rated by subjects on a 4-point
scale [107]. Decisiveness is measured with subject ratings on
the need of information, confidence in decision-making, and
self-appraisal. It is also notable that peers can rate subjects’
decisiveness as well [108].

Extraversion is measured using various rating scales
such as the Big Five-Factor Model, Eysenck, and
HEXACO [109], [110]. The emotional state of a person
is calculated by ratings on behavior, facial expressions,
and startle response [111]. Impulsiveness is measured using
Bratts Impulsiveness scale-11 (BIS-11), which is the 11th
version of the original 30-question inventory proposed by
Bratt in 1985 [112]. Situational awareness is measured
using the simulation technique called Situation Awareness
Global Assessment Technique, which includes subjective
inputs as well as objective measures [113]. Perseverance
is measured by the scores obtained from the motivation-
perseverance-grit scale that requires self-ratings [114].
Human awareness can be measured on a scale with the help
of self or expert ratings [62], [115]. The workload is calcu-
lated using a multidimensional self-rating scale, for example,
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TABLE 4. Applied metrics.

Machine Team
Adaptability Usability Cohesion
Assertiveness Fan Out Interventions

Impulsiveness

Cohesiveness

Robot Attention Demand

Collision Count

Intervention Response Time
Neglect Tolerance
Unscheduled Operations Time

Perseverance Plan Execution Time Autonomous Operations
Extraversion Plan Idle Time in Manual Operations
e Plan State
Conscientiousness Plan out Situation Coverage
Humility Plan State Task success

Occupational Interest

Psychomotor processing

Stamina
General health
Fatigue

Stress

Situation Awareness

Attention Allocation Efficiency

[ ] Research Metrics

the NASA-TLX [62], [116]. Among machine metrics, self-
awareness and adequacy are SM, as they require human
expert ratings on deviations [61].

Table 6 illustrates the pros and cons of a few popular self-
reporting scales. One of the biggest drawbacks of SM is
being biased in self-reported scales. For example, individuals
with high neuroticism traits are expected to report more
distress, pressure, etc., than others [117]. Other biases may
include different socioeconomic strata, introspective ability,
and image management [118], [119].

3) OBIJECTIVE

Objective metrics (OM) are task-specific tools, functions,
and formulae to measure task performance quantitatively.
OM are developed to measure an activity that can be
changed, customized, or expressed by a value for compar-
ison [120]. Most identified machine and team, as well as
a few human, metrics, are OM. In human metrics, general
health can be considered an objective measure because
it is measured by recording blood pressure, temperature,
and heart rate [61], [121]. Similarly, physiological fatigue
can be measured using heart rate, blood pressure, galvanic
skin response, and adrenaline level. Visual fatigue is cali-
brated using Swedish occupational fatigue inventory, which
employs parameters such as cardiovascular response, energy
expenditure, skin temperature, and blink rate [122]. Stress
is measured as a function of blood pressure, vocal tone,
salivary alpha-amylase levels, heart rate, and blood cortisol
levels [123]. Stamina measurement may involve taking into
account parameters such physical activity (push-ups and
running-speed [61]), shift length (the time span in which one
needs to be attentive [124], [125]), or vigilance (through tradi-
tional human factors or modern eye-tracking methods [126]).
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Resource Depletion
Interaction Effort
Mutual Delay Time
Neglect Tolerance
Settling Time
Time in Autonomous Operations
Time in Manual Operations
Unscheduled Operations Time

Task Difficulty
False Alarms
False Positive Interaction Rate
False Negative Interaction Rate
Interaction Efficiency
Network Efficiency
Recognition Accuracy
Team Productivity
True Negative Interaction Rate
True Positive Interaction Rate

Non-Research Metrics

The memory of an individual is measured by the degree of
recognition, relearning, and reconstruction that is determined
using the formulae to measure memory [127]. Cognitive
proficiency is measured using the cognitive proficiency index,
which is defined as an auxiliary scale by Wechsler intelli-
gence scales [128].

Various time metrics such as intervention response time
(time taken by the human to intervene if a problem
occurs) [20], overhead time (time spent by the machine in
idle state or unplanned activities) [80], and productive time
(cumulative sum of time spent by the team in scheduled
manual, unscheduled manual, and autonomous operations
time) are also relate to objective metrics. Neglect impart (NI)
is calculated from the NT graph by measuring the neglect
time, or the average time before the robot’s performance falls
below a threshold [68]. Settling time is the time taken to
reach the required accuracy by the machine [100]. In contrast,
completion time is calculated for the time taken by an HMT
to complete a given task. The critical time ratio is the ratio
of the duration of the critical mission section to the duration
of interaction [65]. Task success is calculated as the
percentage of the successful tasks [80].

The decision-analysis approach follows a Bayesian view
of probabilities associated with the possible events, making
it an objective measure [62], [129]. Inferred mental work-
load takes into account eye movement activity, cardiac
functions (ECG), brain activity (EEG), and Galvanic skin
response (GSR) [61]. Previously discussed metrics such as
attention allocation, situation coverage, state metrics, false-
alarm metrics (TP, TN, FP, and FN), RAD, and IE are also
can be objective. Human trust and reliability on a machine
are derived (i.e., inferred) from its FO factor and RAD. As the
RAD increases, the user trust and reliability on the machine
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TABLE 6. Pros and cons of using subjective scales.

Scale
Connor-Davidson resilience
scale (CD-RISC); and student
motivation scale;

Pros
The scale is well defined, and the factor analysis of this scale yielded the big
five factors. The scale also demonstrates that with proper training resilience
can be improved [105, 106].

Cons
The scales focus on resilient
qualities at the individual level and
these scales prompt speculation.

Chernyshenko scale

Uses unified scores of 6 major factors, with each factor scored using analysis
of 7 personality inventories, for conscientiousness computation. In-depth
analysis of its effect on human performance studied in [107].

Difficulties in assessing facets and
measuring through scales due to
their non-orthogonal nature.

Big Five-Factor model; the
smaller seven; HEXACO

These models define the personality traits of a human, which have been used
in designing scales for human performance as an SM.

These scales prompt the user to
speculate in self-reporting.

Bratts Impulsiveness scale-11

The score obtained can be used to calculate impulsiveness, which can in turn
help in assessing the human performance [112].

Self-reporting limitations that leaves
room for speculations.

Situation Assessment Global
Assessment Technique
(SAGAT)

SAGAT is a well-documented tool to measure an SA, possesses a high
degree of content validity based on the SA requirements analyses and is used
to create the queries that were found to have predictive validity.

Limited to simulation environment
most of the times.

Motivation-perseverance-grit

Grit scale enables prediction of perseverance and motivation for long-term
goals. It was found to be the best predictor among many other indicators of

Self-reporting limitations that leaves
room for speculations.

1
seate which cadets will drop out after first difficult summer training [114].
The NASA Task Load Index Initially introduced in 1984, efforts have been put in to make it more flexible | Self-reporting limitations that leaves
(NASA-TLX) and robust. Use of this metric since its inception is well-studied [62, 116]. room for speculations.

TABLE 7. Parameters to metric mapping.
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interaction frequency

true positive
false Positive
true negative
false negative
interaction time
plans level

Neglect Impart

Attention allocation

M ental workload

Interaction effort

TPIR

FPIR

FNIR

TNIR

RAD/FO

State

decreases, for example, IE, and NT inversely affect human
trust and reliability. Another OM, tofal coverage, is a measure
of the area or environment used by all the sensors simultane-
ously at a specific time during the mission execution [94].
Neighbor overlap can help measure how much a machine
affects the performance of other machines. Network efficiency
can be measured using bandwidth and latency.

All identified objective metrics are presented in Table 7,
mapping the metrics to their corresponding parameters.

38644

Researchers can use this table to identify redundant param-
eters and eliminate bias.

4) REAL-TIME METRICS

Real-time metrics are crucial in any time-sensitive, real-time
applications such as engineering, defense, and healthcare.
Purposes include, but are not limited to, improving commu-
nication, response times, information transfer accuracy, and
mission success rate.
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TABLE 8. Comprehensive color-coded classification matrix of HMT metrics.

Adaptability Success oriented Self Awareness Cohesion Situation Coverage
Assertiveness Psychomotor Processing Adequacy Cognitive Interaction Task Allocation
Composure Situation Awareness Usability Coordination Demand Task Difficulty
Conscientiousness Stress Decision Accuracy Elongation Task Success
Decisiveness General Health Fan Out Human Robot Ratio Total Coverage
Extraversion Human awareness Sensory motor Coefficient Robot Attention Demand Similarity

Emotional State Fatigue Collision count

Critical Hazard Autonomy Discrepancies

Impulsiveness Intervention Frequency Plan State

Robot Awareness

Monotonicity

Productive Time

Moral Interest Network efficiency

Human Risk Effort

Occupational Interest Overhead Time False Alarms

Critical Time Ratio False Alarms

FPIR

FNIR

Flexibility/Robustness

Interaction Efficiency

Perseverance Reliability Robot Adaptability Interventions
Reasoning Trust Resource Depletion Interventions Time
Resilience Total Coverage Interaction effort Neglect Tolerance
Self-Confidence Attention Allocation Mutual Delay Time Unscheduled time
Self-Certainty Decision Accuracy Neglect Tolerance Productive time

Network Efficiency

Cognitive Proficiency Mode Error Settling Time

Time Autonomous Operations| Recognition Accuracy

Cohesiveness

Span of Control

Time Autonomous Operations

Time in Manual Operations Requests by Operator

Judgment Mental workload

Time in Manual Operations

Time to complete Requests by Robot

Memory

Mental Computation

Unscheduled Operations Time

MTBI

Team Productivity

Workload RAD

Spatial Processing

MTCI TNIR

Stamina Guesses to Success Errors

Neighbor Overlap TPIR

Team oriented Mental Models

Plan State

Cryptic Coefficient

. Performance

- Safety

. Efficiency
. Real Time

Human

44 22 Machine

Efficiency Performances Mission

. Subjective

Contact

Subjective

. Objective

Invasive

. Mission - Time

Safety _ Real Time Time

FIGURE 4. Quantitative graphical representation of overall metrics classification (summary of Table 8.

Psychomotor processing calibrates human psychomotor
speed during the mission along with spatial processing.
These, along with stress, fatigue, general health, and various
time metrics, are also known as real-time metrics. Although
situation and self-awareness are crucial for a system, they
cannot yet be measured in real time. Subjective measures
and human attributes or traits are tough to measure in real
time because they depend on the observer scale measurement,
for example, adaptability, assertiveness, composure, cogni-
tive proficiency, conscientiousness, and decisiveness. Few
other metrics such as memory, decision accuracy, autonomy
discrepancies, and cognitive interaction can be evaluated only
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after the accomplishment of the mission. Research reviewed
did not indicate any of these being measured in real time
even though there is a possibility of real-time measure-
ment through recent developments in prediction models and
computing. Therefore, these can be classified as non-real-
time metrics [130].

5) SUMMARY

In general, subjective and objective measurement techniques
do not measure the same parameter. However, there are a
few parameters, such as cognitive load and stress, which
may employ both of these measurement techniques. Based
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on the accuracy of the technique, one might be preferred over
the other. For example, subjective measurement techniques
work better on task load despite the availability of objec-
tive measurement techniques [106], [107]. Subjective metrics
are recommended in combination with objective metrics for
human performance. At the same time, we avoided metrics
which are either derivatives of, or involve parameters similar
to other metric(s). Thus, ensuring that the selected common
metric set will somewhat represent those avoided metrics
during the HMT performance evaluation.

Table 8 summarizes this section as a color-coded matrix
representing a taxonomy in which one can look for popular
metrics, relationships among metrics, selection of metric rele-
vant to HMT agent, measurement techniques, and measure-
ment aspects. Such a taxonomy is expected to allow the
research community to study HMT metrics and develop a
better set of common metrics. The metrics in bold are the
common metrics we identify and discuss in detail in the

next section. Figure 4 summarizes the color-coded table
quantitatively and shows the total number of metrics repre-
sented in the table, the different aspects they measure, and
measurement methods.

IV. COMMON METRICS FOR HMT BENCHMARKING

It is understood that establishing a set of common metrics for
all possible types of HMT is difficult and may not enable
benchmarking for every application. Keeping that in mind,
we define a set of metrics that are common to selected
application areas. Nonetheless, this set may apply to a wider
range of tasks or areas. Although several works attempted to
identify HMT applications, our survey found only a few to
either establish common metrics or at least provide guidelines
for such an identification [62], [131]. Customary practices
include identifying common metrics from experience, using
metrics that researchers are familiar with, or attempting to
measure all available aspects of a system. These approaches
may lead to inefficiency due to the possible use of inappro-
priate measurement methods, cost of implementation, or lack
of strong face validation of a measure.

In [132], researchers proposed a set of common metrics
to measure the performance of interaction with the limita-
tion of targeting only the robot or the human. Researchers
identified common metrics for three agents using subjective
rating scales for HRI [62], [133], which come with their
share of limitations such as less performance estimation
accuracy, poor reliability, spillover effects, and perspective
measures (that vary based on perspective) [134]-[136], and
which can sabotage the entire benchmarking. Another earlier
work detailed a supervisory control system and proposed
generalized metrics for specific examples, such as single
human and HRI for multi-robot teams [137]. Later, a set
of metrics for measuring supervisory control performance
was selected [96]. Selection criteria of proposed common
metrics are listed in Table 9. To summarize, each metric is
selected based on five major aspects: total attributes a metric
represents, measurement method, strong face validation of
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the metric, well documented in literature and practice, and
supports the selected applications. Moreover, metrics must
represent a team dynamics rather than an individual agent.

A. COMMON HUMAN METRICS

The common metrics for human performance should give an
analytical representation of human performance in an HMT.
For common human metrics, we eliminated all the metrics
that are invasive and only subjective to make the measurement
practical. In additions to the selection criteria defined above,
we focused on measurement methods for human metrics
because relating activity measures to human performance
is difficult [75]-[78]. Our research also agrees with that of
several researchers in presenting trust, cognitive load, and
human fatigue as important HMT metrics. However, due
to lack of concrete objective measurement methods, and a
strong correlation between resulting measurements and HMT
performance, we excluded those from our selection. We iden-
tified four potential common human metrics: judgment, atten-
tion allocation, mental computation, and mode error.

1) JUDGMENT

Judgment, or decision-making, is the process of observing
and assessing situations, drawing conclusions, and predicting
action consequences. It can be measured subjectively, objec-
tively, or via mixed measurement methods. In HMT, judg-
ment can be classified as situational or practical and may
require measurement while selecting a human teammate,
and in team-building and task execution, respectively. Using
a combination of measurement techniques can yield a
better result, including up to 90% accuracy in measuring
judgment [138]. Compared to practical judgment, multiple
studies have been carried in fields such as healthcare and
defense to measure situational judgment. With test samples
ranging from 1200 to 10600, most tests yielded accurate
results [138]-[144]. Limitation of the method includes simu-
lations not being representative of a practical scenario.
In addition, it is known that an individual may compromise
judgment for an experimental scenario and judge differently
in the real world [138], [139]. Further, the Test of Prac-
tical Judgment [145] was found to be a prominent test for
safety, social and ethical issues, and financial issues, with
134 samples showing promising results. However, the exis-
tence of only a few studies that used this method indicates a
lack of widespread usage. Judgment is a mission metric that
directly correlates to the human performance and efficiency
in an HMT. As described above, judgment is well researched
and has various studies proving the correlation with reliable
results. Moreover, judgment as a mission metric represents
human action in an HMT and should be able to provide the
human factor analysis needed in HMT benchmarking.

2) ATTENTION ALLOCATION

In stressful situations with complex systems, it is possible
that focus is shifted from an important task to a minor or an
unimportant task [69]. Therefore, it is expected that
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TABLE 9. Common metric selection criteria.

Items analyzed
Category
Measurement method
Research performed
V&V of results

Application scenarios

Attributes
Safety, efficiency, time, mission and performance
Subjective and/or objective, invasive and non-invasive
Publish research report, reviews, project data
Sample size in user evaluation, accuracy of measurement,
agreement in results
Search, navigation, target identification, ordinance disposal,
geology, surveillance, healthcare training, and tour guiding

Selection criteria
Performance and efficiency (preferred if it includes others)
At least one objective method and must be non-invasive
15+ peer reviewed publications considered
High sample size is preferred but multiple evaluation is
mandatory
Must be applicable in all application scenarios, measuring
method can vary

tracking real-time attention allocation will improve an HMT.
A 2008 review discussed a few attention metrics including
eye tracking, verbal protocols, and tracking resource allo-
cation cognitive strategies (TRACS) [61]. Several studies
were performed in TRACS, with a maximum participant
size of up to 45, showing a correlation with attention
allocation. TRACS is achieved by measuring HCI with a
2D representation of a human [146], [147], and a common
limitation involves customization for each interface and
task [61]. Various researchers have studied and correlated
eye tracking, attention allocation, and human performance
using fixations, saccades, pupillometry, and blinks for appli-
cation areas such as UAVs, supervisory control, and health-
care [61], [148]-[151], while encountering limitations such
as limited correlation between gaze and thinking, intensive
data analysis, and noise in the measured data [152]. In conclu-
sion, an effective measure of attention can be achieved
through combining eye tracking and TRACS. As described
above, attention allocation is a well-studied metric that has
different measurement methods and satisfied the criteria to be
selected as a common metric. In addition, it is noteworthy that
attention allocation deals with human parameters that directly
affect HMT performance.

3) MENTAL COMPUTATION

Mental computation, mental workload, and cognitive load
are well-studied theories and recent studies establish their
correlation with human performance [153], satisfying our
criteria of common metric selection. However, since mental
computation is a non-real-time metric, HMT developers
need to perform mental computational studies and adjust
their design for peak performance. Primary measurement
methods use subjective scaling and physiological perfor-
mance parameters. Performance measures can be used to
measure relative speed, accuracy, and elapsed time [153].
Physiology studies involving mental computation and human
performance are overwhelming, as studies include EEG,
ECG, GSR, eye tracking, etc., with participants ranging from
28 to 300 and tasks ranging from defense and medicine
to controls [154]—-[159]. Studies successfully differentiated
between multiple and increased mental workload based on
task demand but failed to show a consistent correlation
between efficiency and identified cognitive load patterns.
Therefore, these measurement methods should be used only
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for minimizing mental workload at the HMT design stage,
which may result in better performance during operation.

4) HUMAN ERROR

An error has a direct correlation with performance and effi-
ciency. Every system needs to rectify mistakes if any in
real-time and post-mission completion. Along with the previ-
ously mentioned selection criteria, the above two factors
led to the selection of human error as a common metric.
This category of error is one of the most prominent and
important metrics. There are several types of errors presented
in the literature. However, mode error is one of the most
studied metrics. Mode error represents the human error that
affects HMT operation. Mode error is defined as the differ-
ence in actual and intended operation mode as a result
of either a human-machine miscommunication or a human
selecting an incorrect mode of operation [99]. Mode error is
a widely studied and prominent human error that can affect
the human-machine relationship and depends on the applica-
tion scenario. Mode error can adversely affect performance
based on the severity of the error. If unchecked, a mode
error may result in total system failure. Researchers have
measured mode error during system operation in various
ways [99], [160], [161]; for example, mode of operation must
change when flying conditions change while flying a single-
engine airplane with focus on airspeed, altitude, and routing
by controlling thrust, ailerons, elevators, and rudder. Other-
wise, a mode error occurs and might leads to catastrophic
system failure. Mode error can be converted to an empirical
value for some applications. However, it is noteworthy that
all scenarios cannot be easily generalized.

B. COMMON MACHINE METRICS

To select a common metric from the identified metrics,
an application-specific primary analysis was conducted.
A machine parameter can be easily measured; however, iden-
tifying a metric that may apply in broad application space is
quite challenging. In this section, we identified metrics that
have a maximum number of mutually exclusive parameters in
addition to the selection criteria defined in Table 9. The goal
is to provide metrics that measure performance, efficiency,
and accuracy of task operations while minimizing param-
eter redundancy. We have identified three potential common
machine metrics described below.
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1) ROBOT ATTENTION DEMAND (RAD)

RAD represents the relationship of the machine with human

teammate and is measured using NT and IE, as shown in

equation 1 [ 132], [162], [163]. We further discuss these in
detail.
IE

T IE+NT )

o Neglect tolerance (NT) is a unique characteristic
graph of machine performance that is measured
for each autonomous system individually, as shown
in figure 5 [132], [164]. NT usually decreasing trend
with time, while the rate of change varies from
machine to machine [132], [162]. Although no stan-
dards have been established or adopted for NT measure-
ment, several researchers have adopted NT in their
studies [122], [153], [155].

« Interaction effort (IE) is the capability of the machine
to understand the higher human communication level.
It is not just a physical input or account for stages of
understanding information and decision-making; it can
be inferred from secondary parameters. For example,
eye tracking can be used to determine whether a human
was looking at the display before an input. There-
fore, including time for these tasks would be more
accurate. A hypothetical interaction effort characteristic
graph is one of the prominent models many researchers
have adapted, where IE is estimated using RAD and
interaction time [162]. However, in practice, researchers
have measured the interaction time as the IE [163].

RAD
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In relating RAD to autonomous systems’ performance,
studies state [132] and experimentally found that a lower
RAD value results in a better performance [162], [163]. Most
of the experiments conducted in this area are related to robots
and software agents. The metric has not been evaluated with
humans or an HMT. RAD is another well-documented metric
in HMT literature that can measure machine performance
and real-time efficiency while the machine is operating in an
HMT setting. RAD is a unique metric developed solely for
machine teammates in an HMT. Even though primary results
satisfy the selection criteria for RAD, several mathematical
models suggest further possible development.

2) MACHINE STATE METRIC

Machine state metric was coined and first used for an airplane
in 2010 [80]. However, measuring or identifying a machine
state and its changes is a widespread practice. Possible states
for a given autonomous system are represented as a state
chart, and popular types include the rendezvous manager state
chart (four states), data flow manager state chart (five states),
and unified modeling language statechart (varying number
of states) [165]-[167]. State measurement is helpful in real-
time system observation and correlating machine clock time
and machine performance. Machine state can also provide a
sense of a machine’s operation level and facilitate monitoring.
Following is an example of how the state of a machine could
be measured. For example, if a machine has four states—
assigned, executed, idle, and out of plan—only one state
can be true at a single point in time, and enumerated task
status values are indicated as the following: failure = >0,

successful = 0, executing = — 1, paused = —2, and pending =
—3[80], then:

plan assign status = —3

plan execution status = —1

State at time t = ]
plan idle state = —2

out of plan status > 0

3) ERRORS

The error is one of the prominent metrics that can be repre-
sented in several ways based on the machine and applica-
tion type. An error has a direct correlation with machine
performance, efficiency, and task success. Machine errors
also affect the team performance in several ways, ranging
from affecting user trust to increasing workload, stress, and
fatigue. If the errors are high and frequent, creating an HMT
would be counterproductive to the mission or task. Machine
errors include various types of faults and defects and vary
based on the application [168]. For example, hardware fault
in a vehicle may lead to a hardware error, while interpretation
error appears due to the environmental conditions, which are
difficult to model [169]. Researchers have also described a
few other errors related to software intelligent assistants such
as interaction errors, data entry errors, cumulative calcula-
tion errors, cognitive overload, misrepresentation of infor-
mation, and security errors [170], [171]. Error correction
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methods rely on error types, and the popular methods include
simulation, modeling, testing, verification, and validation;
for example, modeling errors can be avoided using simula-
tion while hardware faults are identified through verification
during design and development [169], [172], [173]. There
is no empirical formulation for errors, in general; however,
based on application and error type, a unique value can be
awarded to an error to represent the effect of the error on
performance.

C. COMMON TEAM METRICS

After careful analysis, we identified three potential common
team metrics that can be used in measuring the performance
of a team or system that satisfies the selection criteria estab-
lished in Table 9. The combination of these three metrics,
along with human and machine metrics, will provide an
overall HMT performance score level and are discussed
below:

1) PRODUCTIVE TIME

Measuring time is a relatively simpler and more reliable way
to achieve higher accuracy when compared with other metric
measurement techniques. Productive time is a metric that is
used widely to measure team productivity by measuring the
time spent by the machine and the human on a mission, and
it is represented by the following equation:

Productive time = Z Autonomous operation time
+ Manual operation time

+ Unscheduled manual operation time

Many researchers have used productive time and total
task time to measure their robot and teams’ perfor-
mance [8], [80], [174], [175]. For example, in a task of trans-
ferring an object from location A to location B, productive
time involves object retrieval time, travel time, and replace-
ment time. Other times such as planning, rerouting, and
delays in communication will be added to task completion
time but not productive time. Productivity is calculated as the
ratio of productive time and total task time. Productive time
evaluates team productivity and efficiency, which is a key
parameter defining the team success. It is also a well-studied
metric, measurable in real time, and can be objective with
stronger face value. All of these contribute to its selection as
a common metric.

2) COHESION

Cohesion is defined as a dynamic process that is reflected
in the tendency of a group to remain united in the pursuit
of its instrumental objectives and for the satisfaction of
member affective needs [176], [177]. Our survey identi-
fied hundreds of published research studies and books on
cohesion in human teams, indicating its importance in team
performance evaluation. We have selected it as a common
metric based on our review of both human team studies and
HMT studies because of cohesion’s strong and direct relation
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to team performance. It also satisfies all the requirements
established in Table 9 and represents the effect of a team
on each HMT agent. Cohesion has been studied in human
teams to improve team performance since 1978. The group
environment questionnaire is a widely used self-reporting
subjective method for measuring cohesion [177]. According
to a review, cohesion demonstrated a significant effect on
team performance [178] and can be measured unidimen-
sionally or multidimensionally, with the latter being better.
Asan SM, itis difficult to incorporate it in real time. However,
team measurements prove that cohesion is a function of time
and plays a key role in measuring the extent to which a
team can work together before deploying a team. A stan-
dard method of measuring cohesion in HMTs has still to be
developed. Several researchers used communication patterns
between teammates and connected members to measure
cohesion [94], [179], [180]. In conclusion, cohesion plays a
key role as a metric to measure team performance or teaming
nature.

3) INTERVENTIONS

Although human intervention may have a negative impact on
the overall HMT performance, it is necessary to resolve errors
made by a machine. It has been used widely to represent
autonomous system performance and correlates the number
of interventions to the performance of a machine [181].
Timely and optimal number of interventions by a teammate
will lead to better performance in an HMT [182]. It can
be measured in intervention time or intervention response
time, which is measured as the total time a machine spent
responding to interventions. In both methods, simple timers
or counters can be used [62], [183]. However, this metric
needs more in-depth studies before a standard to measure
HMT performance can be developed. Based on analyzed
studies, we hypothesize that intervention is a nonlinear func-
tion with an inverted U-shaped dose-effect curve drawn
against a performance of an HMT as shown in figure 6. For
example, too many interactions in a synthetic assistant-based
learning environment may cause interruptions in learning
while too few may give reasons to repeat earlier mistakes.

D. DISCUSSION

Selected common metrics in all three agents of HMT
may be helpful to measure the HMT performance and
derive an empirical value to allow comparison with another
HMT [184]. This measurement is multidimensional (appli-
cation, scenarios, agent, etc.) and will give an in-depth anal-
ysis of difficulties in HMT applications that need to be
improved to achieve better performance. We have identified
10 common metrics among more than 100. These metrics
have many parameters as sub-metrics that allowed detailed
HMT analysis for aspects such as safety, performance, and
efficiency. In [131], researchers attempted to analyze the
possibility of a machine as a teammate. Their concluding
remark suggests that future HMT researchers may need to
identify the uniqueness of a machine and design an HMT such
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TABLE 10. Summary of identified common metrics.

Metric Agent Selection criteria Description

Judgement Human Objective, non-real-time, user studied, reviews, and Measures human judgement skills and trust levels, can be
correlation with team performance measured at design or application stage

Attention Human Objective, real-time, user studies, reviews, and Proven measurement techniques will measure human attention

allocation correlation with human performance allocation efficiency that can be related to human performance

Mental Human Objective and/or subjective, user studies, reviews Using EEG techniques, we can create human mental models that

computation and correlation with HMT design will be useful in HMT design and development

Human Human Objective, real-time, published results, relation with Real-time mode error measurement will help HMT execute its

Error task execution tasks with precision

RAD Machine  Objective, real-time, published results, characteristic RAD monitoring will provide significant results that can be used
graphs and relation with machines performance to measure machine performance

State Machine  Objective, real-time, published results, characteristic Machine state can be used by human to understand the machine,
graphs and relation with machines performance and help improve machine and team performance

Errors Machine  Objective, real-time, published results, characteristic Being a generalized metric that gives all machine errors as a
graphs and relation with machines performance quantitative value and can be used in performance evaluation

Productive Team Objective, real-time, published results, characteristic Being a time metric, it can be used to significantly identify team

time graphs and relation with team performance success

Cohesion Team Objective, real-time, published results, characteristic =~ An observer metric and helps in identifying HMT teaming nature
graphs and relation with team performance quantitatively

Interventions | Team Objective, real-time, published results, characteristic Can be positive or negative in performance score formula and
graphs and relation with team performance plays a crucial role in understanding team

that members (human/robot) complement each other rather
than designing a system in which a robot merely imitates a
human. In this context, selected common metrics may help
measure each agent individually, measure the HMT indepen-
dently, and help future engineers design tailored HMTs and
benchmarks. Through this study, we found that the perfor-
mance of the HMT is rated based on a performance-score,
which is a weighted combination of common metrics [96],
184, [185]. This score can act as an application-specific HTM
benchmark and provide a relative performance score, thus
providing a platform for HMT comparison [186], [187].

V. CONCLUSION

Synthetic teammates are moving from personal voice assis-
tants that answer questions such as “How’s the weather
outside?”’ and set meeting reminders to assistants that can be
used in healthcare, large-scale industrial production systems,
military surveillance, threat neutralization, and national secu-
rity. These application areas typically entail a threat to the
human life along with huge investments that make use of a
standardized HMT essential for task execution. To conclude,
we would like to point out the importance of an application-
specific HMT performance evaluation that could use the
identified common metrics.

Through this review, we proposed a definition and iden-
tified the components and functional blocks of an HMT.
At the beginning of the review, we posed three goals to
achieve through this review: (i) identify available metrics
in HMT, (ii) analyze and classify identified metrics, and
(iii) propose common metrics. Available metrics were identi-
fied in section 3.1; analysis and classification were achieved
in section 3.2; and finally, we proposed 10 common metrics
to evaluate HMTs in section 4. The common metrics have
also been summarized in Table 10. Metric versus parameter
table, and color-coded metrics table are ancillary results of
the review.

Although a common metric may be used for various appli-
cations, the interpretation of the scores might be application
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specific; for example, a UAV HMT will have a different
scoring mechanism than a healthcare assistant. In conclusion,
selecting appropriate test populations when benchmarking an
HMT is very important. Specifically, as robots are increas-
ingly deployed in applications where the target user is not an
expert roboticist [188], it becomes critical to recruit subjects
with a broad range of knowledge, experience, and expertise.
The continuing work under this effort will expand and refine
the material presented here. The eventual plan is to provide
a living, comprehensive document that future research and
development efforts can utilize as an HMT metric toolkit and
reference source.
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