
HCSS – April 13-15, 2004 Page 1Advanced Technology Center

Formal Verification of AAMP7 Intrinsic Partitioning

Rockwell Collins Advanced Technology Center
David Greve, Raymond Richards, Matthew Wilding

April 13-15, 2004

HCSS – April 13-15, 2004 Page 2Advanced Technology Center

Rockwell Collins

Advanced Communication and Aviation Equipment
– Air Transport, Business, Regional, and Military Markets
– $2.5 Billion in Sales

Headquartered in Cedar Rapids, IA
– 14,500 Employees Worldwide
– Advanced Technology Center

• Advanced Computing Systems

HCSS – April 13-15, 2004 Page 3Advanced Technology Center

RCI Advanced Technology Center

The Advanced Technology Center (ATC) identifies, acquires, develops and transitions
value-driven technologies to support the continued growth of Rockwell Collins.

The Advanced Computing Systems department addresses emerging technologies for high
assurance computing systems with particular emphasis on embedded systems.

The Automated Analysis section applies mathematical tools and reasoning to the problem
of producing high assurance systems.

Commercial Systems Government Systems

Advanced Technology Center

HCSS – April 13-15, 2004 Page 4Advanced Technology Center

Outline

AAMP7 Intrinsic Partitioning
Separation Kernel Formal Security Policy
AAMP7 low-level design model
Proof Architecture
Future Efforts

HCSS – April 13-15, 2004 Page 5Advanced Technology Center

RC Microprocessor Technology
High assurance, Security, Determinism, Hard Real Time, Low power

HCSS – April 13-15, 2004 Page 6Advanced Technology Center

The AAMP7

AAMP7 microprocessor
High Code Density (2:1 Over CISC, 4:1 Over RISC)
Low Power Consumption
Long life cycle relative to other commercial processors
Screened for full military temp range (-55 C to +125 C)
Supports legacy software applications
Implements intrinsic partitioning

Intrinsic partitioning
Computing Platform Enforces Data Isolation
“Separation Kernel in Hardware”

AAMP7 use
AAMP7 to be used in variety of applications that require

separation of data at different classification levels.
Formal verification may be needed for system certification

HCSS – April 13-15, 2004 Page 7Advanced Technology Center

Separation Kernel

Concept First Published in 1980’s
– Building Block for Secure Systems
– Decomposes Challenge of Building Secure System

• Allows Applications to Enforce and Manage Own Security Policy
– Provides High Assurance Separation

Effective Security Policies Must Be NEAT
– Non-Bypassable
– Evaluatable
– Always Invoked
– Tamper Proof

Separation Kernels Support Security Policies through
– Information Flow Control
– Data Isolaton
– Sanitization (Periods Processing)

“Security is about separation
Computers are about sharing”
Brian Snow, Dept. of Defense

April, 2003

HCSS – April 13-15, 2004 Page 8Advanced Technology Center

Application Level Security Policy

- Non-Bypassable
- Evaluatable
- Always Invoked
- Tamper Proof

X Y Z

Firewall

HCSS – April 13-15, 2004 Page 9Advanced Technology Center

Separation Kernel Services

Sanitization

X Y Z

Information Flow

- Non-Bypassable
- Evaluatable
- Always Invoked
- Tamper Proof

Data Isolation

HCSS – April 13-15, 2004 Page 10Advanced Technology Center

Multi-Tasking OS

Process State

Heap

Call Stack

Variables

Operating System
BIOS

Functions

Scheduling Data Structures

Peripherals

System Data Structures

Hardware System Configuration

Processor Configuration

HCSS – April 13-15, 2004 Page 11Advanced Technology Center

Intrinsic Partitioning

Microcoded Security Kernel
– Minimal Code, Functionality, and State
– Analyzable, Fast, and Efficient
– Implemented by the AAMP7

Simple Data Structures
– Supports “Virtual Machine” Partitioning

• Each Partition Has Its Own Operating System
– Hierarchical Scheduling

Dedicated Interrupts
– Partition Switch Interrupt
– Power Down Warning Interrupt
– Access Violation Interrupt
– Partition-Aware Interrupts

Supports High Assurance, Evaluatable Architectures

HCSS – April 13-15, 2004 Page 12Advanced Technology Center

Outline

AAMP7 Intrinsic Partitioning
Separation Kernel Formal Security Policy
AAMP7 low-level design model
Proof Architecture
Future Efforts

HCSS – April 13-15, 2004 Page 13Advanced Technology Center

Formalized Separation Kernel Security Policy

Informal Security Policy
– Information Flow Control
– Data Isolation
– Sanitization

Need for Formalize
– Precise Mathematical Description
– Suitable for Formal Analysis
– Adapting Existing Security Policy

Formal Security Policy
– Infiltration
– Exfiltration
– Mediation

X Y Z

X Y Z

X Y Z

HCSS – April 13-15, 2004 Page 14Advanced Technology Center

Validation: Using Specifications

Showing correctness means relating a specification for how a
system should behave to an implementation description.

Properties

Implementation

Specification

Specifications can be “stacked” by using a specification in one proof
as the implementation of another

Specifications can be both “proved” and “used”

HCSS – April 13-15, 2004 Page 15Advanced Technology Center

Validating our Security
Policy by Using It

We changed our separation kernel security policy many
times because we could not prove anything with our early
attempts at specifying separation.
Only an interesting use of our separation kernel
specification would meaningfully validate it, and
complete separation just won’t do.
We formalize and prove correct a firewall that is
implemented using a separation kernel

X F B

HCSS – April 13-15, 2004 Page 16Advanced Technology Center

Formal Security Policy

The firewall proof led us to our current formalization of
correctness for the separation kernel
(defthm separation
(let ((segs (intersect (dia seg) (segs (current st1)))))

(implies
(and
(equal (selectlist segs st1) (selectlist segs st2))
(equal (current st1) (current st2))
(equal (select seg st1) (select seg st2)))

(equal
(select seg (next st1))
(select seg (next st2))))))

This specification is enough to prove everything
– Example firewall correct
– infiltration, exfiltration, and mediation

“A Separation Kernel Formal Security Policy in PVS”
John Rushby, SRI

Described in more detail in
ACL2 workshop paper reprinted

In the HCSS proceedings

HCSS – April 13-15, 2004 Page 17Advanced Technology Center

Outline

AAMP7 Intrinsic Partitioning
Separation Kernel Formal Security Policy
AAMP7 low-level design model
Proof Architecture
Future Efforts

HCSS – April 13-15, 2004 Page 18Advanced Technology Center

Purpose

Model the Behavior of the AAMP7 Privileged Microcode
– Think of it as a simulator
– Level of Detail: A Microcoder’s View of the World

Acknowledge Partition Events
– Partition Interrupt
– Power-Down Interrupt
– Cold/Warm Start

Perform Partition Scheduling
– Load Partition State
– Run Partition Code
– Save Partition State

System Bookkeeping
– Maintain Global System State/Status
– Mark Power-Down List

HCSS – April 13-15, 2004 Page 19Advanced Technology Center

Low-Level Model

Model Written in Functional Common Lisp (ACL2)
– Parenthesis, LET bindings and prefix notation
– Just Another Programming Language

• A Language with no Side-Effects
– Lisp Macros Employed to Simplify Presentation

• Minimize Parenthesis

Includes State Pertinent to Space Partitioning
– RAM
– Selected PMU Registers
– Selected Processor Registers
– Selected Processor Inputs

Models Behavior Pertinent to Space Partitioning
– Loading, Clearing and Saving Partition State
– Loading and Clearing PMU
– Setting and Clearing Privileged (System) Bit

HCSS – April 13-15, 2004 Page 20Advanced Technology Center

Partition Execution Model

Begins with the Loading of the Current Partition
Ends with the Saving of the Current Partition State
– And the updating of the value of “current partition”

LOAD SAVERUN

Partition Event

System Step

HCSS – April 13-15, 2004 Page 21Advanced Technology Center

Top-Level Function
(defun Step-System (spex st)

(%
(st = (cond

((Imminent-Asynchronous-Event? st)
(bsp spex))

((idle_system? st) (idle-system st))
(t

(%
(st = (load-partition-state st))
(st = (run-until-partition-event st))
(if (Power-Down? st)

(do-power-down st)
(do-partition-switch st))

))))
(step-free-running-systems st)

)
) Model is approximately 3000 lines of code

HCSS – April 13-15, 2004 Page 22Advanced Technology Center

Validation of Low-Level Model

Validation of Low-Level Model
– Is Low-Level Model an Accurate

Representation
– No “Proof of Correctness”
– Must be done informally

Number of Validation Possibilities
– Correct by Construction
– Simulation
– Code-to-Spec Review

Code-to-Spec Review
– Verify that the “code” implements the

“specification”
– Requires some understanding of both
– Implementers have a “meeting of the

minds” with verifiers

More Detailed Model is Easier to
Validate

?
=

HCSS – April 13-15, 2004 Page 23Advanced Technology Center

Microcode

;=== ADDR: 052F

(st. ie = nil)
(Tx = (read32 (vce_reg st) (VCE.VM_Number)))

;=== ADDR: 0530

(st. Partition = Tx)

;=== ADDR: 0531

(TimeCount = (read32 (vce_reg st) (VCE.TimeCount)))

;=== ADDR: 0532

(PSL[0]= TimeCount st)

;--
;=== ADDR: 052F
A]

CONT ;
H] clear InterruptEnable, read VM number

IE=0 \
T=BADDR.READ32(T) ;

L] hold VM number (a.k.a. partition number) in T
\
T=T ;

;--
;=== ADDR: 0530
A]

CONT ;
H] load VM number into MSQ partition register

P=T \
T=T ;

L] unused
\
T=T ;

;--
;=== ADDR: 0531
A]

CONT ;
H] locate TimeCount in VCE

R=VCE.TimeCount W=RFB(VCE_REG) \
T=R+W ;

L] read TimeCount
\
T=BADDR.READ32(T) ;

Formal Model

HCSS – April 13-15, 2004 Page 24Advanced Technology Center

Outline

AAMP7 Intrinsic Partitioning
Separation Kernel Formal Security Policy
AAMP7 low-level design model
Proof Architecture
Future Efforts

HCSS – April 13-15, 2004 Page 25Advanced Technology Center

Proof Outline

Validation of Formal Security Policy
– Firewall Proofs

Proof that Abstract Model satisfies Security Policy
– High Level Proofs are less detailed, easier

Proof of correspondence with Low-Level Model
– Low-Level Model Implements Abstract Model
– Implementation Details make this more difficult

Code-to-Spec review of microcode
– Verify that the Low-Level model accurately reflects the behavior of the

microcode
– Implementation Details make this easier

HCSS – April 13-15, 2004 Page 26Advanced Technology Center

Primitive Data Structures

NODE NODE NODE

Hx034

STATE STATEWhat is the formal
representation?

How do I reason
about operations?

HCSS – April 13-15, 2004 Page 27Advanced Technology Center

GACC: Generalized Accessor Library

A means of describing linearized data structures
– Really just a list of addresses
– Distinguishes pointer and data locations

Rules for resolving read/write operations
– (read list1 (write list2 values ram)) = (read list1 ram)
– (read list1 (write list1 values ram)) = values

Rules for preserving structure
– Writes to data locations don’t change data structure shape

Efficient rules for disjoint/subset/unique relations
– Linear Time/Space
– Free-variable matching
– Meta-rules

HCSS – April 13-15, 2004 Page 28Advanced Technology Center

Theorem Proof

We have checked all proofs using the ACL2
theorem prover.

This has been a substantial effort
– Major technical innovation of this work is the automation of

reasoning about data structures
– Checking all the proofs requires about 4 hours using ACL2

2.7 built on GCL running on our fastest PC.

ACL2 is freely available, and will be used to
replay our proofs, which we are providing in a
machine-readable format for that purpose.

Getting ACL2 to generate these proofs was the
focus of 95%+ of our efforts, but the resulting
proofs are easy to evaluate.

HCSS – April 13-15, 2004 Page 29Advanced Technology Center

Final Formal Separation Theorem

We have proved a mathematical theorem about the
AAMP7’s intrinsic partitioning mechanism.

(implies
(and
(secure-configuration spex)
(spex-hyp :any :trusted :raw spex fun::st1)
(spex-hyp :any :trusted :raw spex fun::st2))

(implies
(let ((abs::st1 (lift-raw spex fun::st1))

(abs::st2 (lift-raw spex fun::st2)))
(and
(let ((segs (intersection-equal

(dia-fs seg abs::st1)
(segs-fs (current abs::st1) abs::st1))))

(equal (raw-selectlist segs abs::st1)
(raw-selectlist segs abs::st2)))

(equal (current abs::st1)(current abs::st2))
(equal (raw-select seg abs::st1)(raw-select seg abs::st2))))

(equal
(raw-select seg (lift-raw spex (fun::next spex fun::st1)))
(raw-select seg (lift-raw spex (fun::next spex fun::st2))))))

Our ACL2 model represents the low-level design of the
AAMP7. Trusted-mode operations that must respect

intrinsic partitioning are modeled in sufficient detail to be
related to the AAMP7 microcode implementation.

This particular theorem is an
instantiation of the basic separation
theorem is described in the HCSS

proceedings.

HCSS – April 13-15, 2004 Page 30Advanced Technology Center

Outline

AAMP7 Intrinsic Partitioning
Separation Kernel Formal Security Policy
AAMP7 low-level design model
Proof Architecture
Future Efforts

HCSS – April 13-15, 2004 Page 31Advanced Technology Center

Future Efforts

Continued Library Development
– Data Structure Representation
– Proof Automation is Essential

Increased Automation: vFaat
– Proof Structure Management
– Data-Flow Analysis
– Allows Analysis of Larger, More

Complex Systems

Stronger Links to Development
Tools: SHADE

– Instruction-Level Proofs
– Certifying Compilers

	Formal Verification of AAMP7 Intrinsic Partitioning
	Rockwell Collins
	RCI Advanced Technology Center
	Outline
	RC Microprocessor Technology
	The AAMP7
	Separation Kernel
	Application Level Security Policy
	Separation Kernel Services
	Multi-Tasking OS
	Intrinsic Partitioning
	Outline
	Formalized Separation Kernel Security Policy
	Validation: Using Specifications
	Validating our Security Policy by Using It
	Formal Security Policy
	Outline
	Purpose
	Low-Level Model
	Partition Execution Model
	Top-Level Function
	Validation of Low-Level Model
	Outline
	Proof Outline
	Primitive Data Structures
	GACC: Generalized Accessor Library
	Theorem Proof
	Final Formal Separation Theorem
	Outline
	Future Efforts

