
Improving Undergraduate

Programming Language

Curriculum

Kathleen Fisher

AT&T Labs Research

SIGPLAN Chair

“The programming language problem has been

solved; the name of the solution is C.”

- Dean of a top-3 research university, circa

1991.

“Well, Java”

- Same dean, several years later.

A Common Perception...

The Reality...

C

Java

C++
C#

Haskell

perl
Python

Ruby

PHP

javascript

SQL

Visual Basic

Tcl/TK

regular expressions

F#
XSLT

awk R

S

postscript

latex

make ML

Ocaml

ActionScript

bash

XQuery

Explosive Growth

In the past 20 years, computer science has deepened

intellectually, broadened in scope, and penetrated all

areas of modern life.

The web, electronic commerce, social networks,

graphics, gaming, image processing, security, natural

language processing, bio informatics, machine

learning, low power processing, multi-core

processors, sensor networks, Google-style distributed

processing, XML, software transactions, databases,

operating systems, networks...

This growth puts enormous pressure on undergraduate

curriculum.

Curriculum Revision

In response to expansion, ACM/IEEE revised

its CS Curriculum in 2001 (CC 2001).

Cut required units

Enabled more flexibility

CC 2001 was widely influential.

One of the most often downloaded

documents from the ACM Digital Library.

http://www.sigcse.org/cc2001/cs-overview-bok.html#BOKTable

http://www.sigcse.org/cc2001/cs-overview-bok.html%23
http://www.sigcse.org/cc2001/cs-overview-bok.html%23
http://www.sigcse.org/cc2001/cs-overview-bok.html%23
http://www.sigcse.org/cc2001/cs-overview-bok.html%23
http://www.sigcse.org/cc2001/cs-overview-bok.html%23

CC 2001 Curriculum

PL went from 46 required units to 21:

Required units ended up in introductory programing

and project courses. Many institutions dropped a

separate programming language course.

Description Units, if required

PL1 Overview of PL 2

PL2 Virtual Machines 1

PL3 Introduction to Machine Translation 2

PL4 Declarations and Types 3

PL5 Abstraction Mechanisms 3

PL6 Object-Oriented Programming 10

PL7 Functional Programming

PL8 Language Translation Systems

PL9 Type Systems

PL10 Programming Language Semantics

PL11 Programming Language Design

Possible Explanations

Almost everything was cut to some extent.

PL community doesn’t explain itself well.

Did not participate in 2001 curriculum review until

very late in the process.

Often undervalues collaborations across areas as

“applications” are not of fundamental interest.

Broader community perceives PL as

a “solved problem” (only need C, err..., Java!)

lacking in principles (arising from taxonomy

courses: if it’s Tuesday, it must be COBOL... ?)

How should we respond?

Ignore the situation.

Accept it as inevitable and get back to doing our

day jobs (“real work”).

Accept it as the right state for undergraduate

education.

Reject it and work towards a better standard

curriculum.

ACM SIGPLAN

Workshop on

Programming Language Curriculum

Motivation: Initiate discourse on the role of programming

languages in the undergraduate curriculum.

Co-chaired by Kathleen Fisher and Chandra Krintz

Held May 29 & 30, 2008 at Harvard

Sponsored by NSF, NSA, and SIGPLAN Thanks!!

30 participants

16 steering committee members, 13 authors of selected white

paper contributions, NSF and ACM Ed Board representatives

Participants

Eric Allen (Sun Microsystems)

Mark Bailey (Hamilton College)

Ras Bodik (UC Berkeley)

Kim Bruce (Pomona College)

William Cook (UT Austin)

Matthias Felleisen (Northeastern Univ.)

Kathleen Fisher (AT&T Research)

Kathi Fisler (WPI)

Daniel Friedman (Indiana Univ.)

Stephen Freund (Williams College)

Sol Greenspan (NSF)

Robert Harper (CMU)

Michael Hind (IBM Research)

John Hughes (Chalmers)

Chandra Krintz (UC Santa Barbara)

Shriram Krishnamurthi (Brown)

Jim Larus (Microsoft Research)

Doug Lea (SUNY Oswego)

Gary Leavens (Univ. of Central Florida)

Greg Morrisett (Harvard Univ.)

Benjamin Pierce (Univ. of Pennsylvania)

Lori Pollock (Univ. of Delaware)

Stuart Reges (Univ. of Washington)

John Reynolds (CMU)

Martin Rinard (MIT)

Olin Shivers (Northeastern Univ.)

Peter Sestoft (ITU)

Mark Sheldon (Wellesley College)

Larry Snyder (Univ. of Washington)

Franklyn Turbak (Wellesley College)

Mitchell Wand (Northeastern Univ.)

Mission Statement
Explosive growth in CS in general and PL in particular

Internet, multi-core, managed runtime systems, etc.

Most curricula have not kept pace

Some curricula no longer include a PL course at all

ACM/IEEE curriculum only minimally covers PL concepts

Need to consider as a community

WHY PL should be included in the CS curriculum

Clear articulation for non-PL academics of why every computer science

undergraduate should have a solid PL knowledge base

WHAT topics and concepts should be taught

Broad audience, many constraints, range of career paths and goals

To every student and to those choosing to study PL.

HOW it should be taught

Recommended practices for range of venues, audiences, constraints

Why should we teach PL?

A Plethora of Languages

C

Java

C++

C#Haskell

perl

Python
Ruby

PHP

javascript

SQL

Visual Basic

Tcl/TK

regular expressions
F#XSLT awk

R S

postscript
latex

make

MLOcaml

ActionScript

bash

XQuery

Cryptol

From early on, there have been many

programming languages.

As the field advances, more and more languages

are created.

Today, programmers need to be fluent in multiple

languages.

1) Learning New

Languages

We want to teach our students enduring

knowledge, not the latest fads.

Hence, it is more important that students learn

how to learn a language rather than the

particulars of a single language.

Understanding PL fundamentals makes learning

languages much easier.

Hammers and Wrenches

Each language embodies a computational model.

A task is most easily solved in a language whose

model matches the domain of the task.

C: low-level systems code

Java: user-interfaces, modeling

ML: writing compilers

Choosing a good language

minimizes the conceptual

gap. Domain

Concepts

Language

Concepts

Mental

Translation

Concept

Gap

2) Using the right tool

What language(s) are best suited to the my task?

Is it reasonable to expect my team to accomplish this

task in this language?

If I am stuck in a particular language, can I import ideas

from another language?

Mimicking objects in C.

Mimicking continuations in Java

Knowing PL fundamentals encourages programmers to

ask these questions and then helps to answer them.

Better Wrenches

API Design Configuration Files

Little Languages

Sometimes the best way to solve a problem is

to build a language tailored to it.

Often, such languages are written by domain

experts whose only PL training came as an

undergraduate.

3) Building Languages

Not many people design new general-purpose languages.

But many people design APIs, configuration languages,

and domain-specific languages.

Understanding PL fundamentals allows students to know

when and how to build such “little languages”.

What are the abstractions? How do they interact?

What should be expressible? What should not be?

Language and Thought

Programming languages are relatively simple,

consciously-designed means for

communication.

Yet, they embody concepts common to all

human communication:

abstraction

automation and generality

existence of multiple perspectives

4) Understanding Thought

Studying PL provides a unique opportunity for studying

interactions between language and thought because the

languages are very precise and they can be changed.

For example:

No one perspective is suited to all tasks.

Adopting a particular perspective can make a huge

difference in one’s experience and success.

Incorporating diverse perspectives can increase

chances of success.

Why teach PL?

Students should be able to:

Learn languages quickly.

Evaluate suitability of a language for a task.

Know when and how to design little languages.

Understand the effects of language on thought

and communication.

Other arguments?

What should we teach?

The Traditional Approach

A survey of well-known programming languages.

A taste of Java, Lisp, Prolog, ...

Selection based on current fads.

A taxonomy of “paradigms.”

x-oriented programming languages, for various values of x.

“declarative” vs “non-declarative”

“scripting” languages, “domain-specific” languages.

... and various other distinctions according to taste.

There are many textbooks written in these styles.

Credit: Bob Harper drafted the what slides.

What’s Wrong With This?

Students accumulate vitae items, but little understanding.

How to transfer ideas to a new setting?

Fad-driven, quickly obsolete.

More importantly, it is unscientific.

Based on a superficial morphology (Gould’s Zebra).

No theory of what is going on.

No permanent results, but lots of opinions.

What We’re Advocating

A scientific theory of programming languages based on

abstract models of computation.

Supports precise definitions and rigorous analysis.

Transfers to new problem domains.

Separates abstraction from implementation.

Enables verification.

Emphasizes enduring principles, not current trends.

The field of programming languages has changed

dramatically over the past 25 years!

A Formalism-Based

Approach

A programming language model is specified by

A static semantics defining the structure of the model.

A dynamic semantics defining the execution steps.

The key to such a model is

Abstract: highlights essence, not accident.

Analyzable: supports rigorous proof.

Example: Parallel Computing

Theme: parallelism is about performance, not concurrency.

Deterministic: same meaning as sequential

Efficient: makes better use of processors.

Two ingredients:

Abstract cost semantics: sequential and parallel cost

measures.

Concrete realization: communication and scheduling

costs.

Example: Parallel Computing

Sequential execution:

Idealized parallel execution:

Theorem [Implicit Parallelism]:

Example: Parallel Computing

Time complexity = number of steps:

Sequential:

Parallel:

Theorem [Efficient Implementation] If sequential complexity

of e is w and parallel complexity is w, then e runs on a p-

processor RAM in time O(w/p + d).

A Selection of Topics

Abstract and concrete syntax, binding and scope.

Semantic specification of models: static and dynamic.

Finite and infinite data structures.

Modularity, genericity, and data abstraction.

Time and space complexity, cost semantics.

Laziness, speculative parallelism.

Deterministic parallelism.

Indeterminism and concurrency.

Mutable storage

Continuations, exceptions, and coroutines.

Run-time systems, storage management, scheduling.

An interim approach to what

we should teach

Can we do something now?

We were in a heated debate about curriculum, with Matthias

Felleisen, Shriram Krishnamurthi, and Stuart Reges arguing.

Stuart said “I wish we could agree on something simple, like

asking the ACM to require functional programming in the CS

core.

Matthias hugged Stuart (really).

Matthias, Shriram, and Stuart wrote a proposal.

It was unanimously approved by workshop participants.

We all sang “Kumbaya”

Credit: Stuart Reges drafted the ACM proposal slides.

(Okay, that part is not true).

What did we mean by

“functional programming”?

“I shall not today attempt further to define the kinds

of material I understand to be embraced within that

shorthand description; and perhaps I could never

succeed in intelligibly doing so. But I know it when I

see it.”

–Justice Potter Stewart on “obscenity”

These are a few of my

functional things

Functions as first-class entities in a language

(e.g., can be passed as parameters)

Higher-order functions (map, filter, reduce)

Avoidance of mutable state

Closures (combination of code and context)

Anonymous functions (lambdas)

Use of lambda calculus for formal definitions

Why functional programming?
FP stretches students’ understanding of programming.

FP constructs are appearing in popular programming

languages (Python, Ruby, JavaScript).

FP is showing up in industry

Microsoft: F#, LINQ

Google: MapReduce

Yahoo: Hadoop

FP has deep intellectual roots dating back to Alonzo

Church (1936) and with significant interest ever since

(LISP-1958, ML-1973, Scheme-1975, Erlang-1987,

Haskell-1990)

Proposal: Revenue Neutral

Adjustment to ACM/IEEE CC 2001

Affected Knowledge Units (of 59 in PF/PL) Current Proposed

PF4 Recursion 5 2

PF5 Event-driven programming 4 2

PL1 Overview of PL 2 0

PL2 Virtual Machines 1 0

PL3 Language Translation 2 0

PL6 Object-oriented programming 10 10

PL7 Functional Programming 0 10

Total Number of Units 24 24

Community Comments

ACM/IEEE CC Interim Review Committee

accepted proposal for inclusion in draft revision.

Committee ran an open comment period from

6/9/08 to 7/16/08.

The FP10 proposal received the most comments

(by an order of magnitude).

Of the 135 people who commented, at least 130

were supportive.

Where do we stand now?

“The review committee was divided in its response to the

SIGPLAN proposal. On the positive side, the committee was

convinced that students need exposure to more than one

programming paradigm, for precisely the reasons outlined in the

proposal. At the same time, there was no consensus within the

review committee that the functional programming paradigm

needed to be required in all undergraduate computer science

curricula…We did not believe that we could justify making so far-

reaching a change, particularly at the level of an interim review.

Our consensus recommendation is therefore to add a new

requirement that students acquire facility with more than one

programming paradigm…The review committee also plans to

forward both the SIGPLAN proposal and the notes from our

discussions to the next full-scale curriculum committee.”

How should we teach PL?

Answer

Teach a dedicated, modern, programming language

course that includes the core unit recommendations

Credit: Mark Bailey drafted the how slides.

Not Always the Answer

Course slots are scare resources:

Expansion of the field

Growing importance of other subfields

Emphasis on “trendy” topics

Development of “track” curricula

Small departments, limited resources

Charge

How can an institution provide core units of

programming languages in a curriculum that does

not require a dedicated programming languages

course for all students?

Alternatives

Advanced programming in CS3

Targeting Courses

Sprinkling topics throughout curriculum

Advanced Programming in

CS3
Introduce a third course in the intro sequence:

Focus: programming-in-the-large, or advanced

programming techniques

Topics: threading, event-driven programming, hot

current languages

Core units: interpreters, exceptions, concurrency,

managing state, security, etc.

Advantages:

Easy integration

Acknowledges key role of PL in advanced programming

Shortcomings: May conflict with other plans for CS3.

Targeting Courses
Teach related courses using a PL-centric approach

Examples:

Web services, software engineering, formal methods,
virtual machines, databases, compilers.

Advantages

Efficient

Builds connections

Shortcomings

Difficult to get other faculty to do

Unlikely to give sufficient coverage of core units

Sprinkling
Integrate core units into required courses

Advantages

Highly efficient

Demonstrates PL impact throughout curriculum

Shortcomings

Requires careful planning and coordination

Makes curriculum “brittle”

Conclusion: Unlikely to be effective

Departments with large faculties

Programs with very few courses

Recommendations

Recommendations, in order of preference:

1.Dedicate a course to programming languages

2. Include a CS3 Advanced Programming Course

3.Provide one or more targeted courses

We recommend against sprinkling because of the

faculty coordination requirement.

Workshop Outcomes

Published findings in Nov. 2008 issue of SIGPLAN

Notices.

Why, What, and How Summaries

White papers from each workshop participant.

Initiated interactions with ACM/IEEE Curriculum

Review Committee.

FP 10 proposal

Presented panel at SIGCSE 2009 to engage computer

science education community.

Recommended creation of SIGPLAN Education Board.

SIGPLAN Ed Board: Charter
Create “Why” document for non-PL people.

Create detailed “How” documents

Sample curricula

Encourage authors to write appropriate texts.

Create web page to present material and

encourage discussion.

Eventually expand focus from undergraduate

courses to graduate courses.

Encourage inclusion of appropriate PL material in

curricula standards.

SIGPLAN Ed Board:

Members

Kim Bruce (chair), Pomona College

Kathleen Fisher (ex officio), AT&T

Kathi Fisler, WPI

Steve Freund, Williams College

Dan Grossman, University of Washington

Matthew Hertz, Canisius College

Gary Leavens, University of Central Florida

Andrew Myers, Cornell University

Larry Snyder, University of Washington

Your Turn

Feedback, stories, and suggestions

are much appreciated!

