Incorrectness Logic for Scalable Bug Detection

Azalea Raad
Imperial College I.ondon

High Contfidence Software and Systems
May 2023

ML azalea@imperial.ac.uk %SoundAndComplete.org gj @azalearaad

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

Incorrectness Logic: Summary

+ Under-approximate analogue of Hoare Logic
+ Formal foundation for bug catching
- Global reasoning: non-compositional (as in original Hoare Logic)

- Cannot target memory safety bugs (e.g. use-after-free)

Incorrectness Logic: Summary

Our Solution

Incorrectness Separation Logic

What Is Separation Logic (SL)?

. Local & compositional reasoning via ownership & separation

¥ ideal for heap-manipulating programs with aliasing

What Is Separation Logic (SL)?

. Local & compositional reasoning via ownership & separation

¥ ideal for heap-manipulating programs with aliasing

-

X
|
|_\

N
|
oy

What Is Separation Logic (SL)?

. Local & compositional reasoning via ownership & separation

¥ ideal for heap-manipulating programs with aliasing

-

|

e
|
w N

N
|

DOSt: {X = 1 /\.y=’2/\Z=3}

What Is Separation Logic (SL)?

. Local & compositional reasoning via ownership & separation

¥ ideal for heap-manipulating programs with aliasing

-

ore: {(X£#VYAX#EZAY #Z}

x] = 1;
v] = 27
7] = 3

bost: {X=1Ay=2Az=23])

What Is Separation Logic (SL)?

. Local & compositional reasoning via ownership & separation

¥ ideal for heap-manipulating programs with aliasing

-

ore: { X1 # X2 A X1 ZX3 A ... |

e
|

What Is Separation Logic (SL)?

. Local & compositional reasoning via ownership & separation

¥ ideal for heap-manipulating programs with aliasing

4)

pre: {{ X1 # X2 A X1 # X3 A l\

n!/2\conjuncts !

e
|

What Is Separation Logic (SL)?

. Local & compositional reasoning via ownership & separation

M ideal for heap-manipulating programs with aliasing

~

ore; {Xe,-xyp-%x2Zp -]}

X
vz
Z.
_‘

pDOSt: { X +» >|;_y

1;
2 ;
37
»2 xZp 3}

What Is Separation Logic (SL)?

. Local & compositional reasoning via ownership & separation

M ideal for heap-manipulating programs with aliasing

~

ownership/
of heap cell at x

X
vz
Z.

DOSt:; { X+ 1 >|;y

pre: {(Xp -pkyr - *x Ze -}

1;
2 ;
37
»2 xZp 3}

What Is Separation Logic (SL)?

. Local & compositional reasoning via ownership & separation

M ideal for heap-manipulating programs with aliasing

:)
ore. {[Xl—)-]* yl—>—Z|—>—}
e
ownership [&5 ’ ‘ |
ofheapcellatx [YV]:= 2; and separately
z]:= 3;
DOST.: {XH1 A *ZHS}
- _

What Is Separation Logic (SL)?

. Local & compositional reasoning via ownership & separation

M ideal for heap-manipulating programs with aliasing

:)
ore. {[Xl—)]*yl—)—l—)—}
S x 1.
ownership ’ |
ofheapcellatx [YV]:= 2; and separately
z | :i= 3
pOSt:{XH“*yl—)Z*ZHS}
- _
! D
VXV X eV ok XV = false

The Essence of Separation Logic (SL)

Frame Rule

(SR OR{e}

p*xrp G {g*r}

~

_

X,pV X XpV & false

~

p % emp & p

The Essence of Separation Logic

(SR OR{e}

(SL)

Frame Rule

p*xrp G {g*r}

~

_

X,pV X XpV & false

~

p % emp & p

Local Axioms

WRITE {X b -} [X]i=V {X » V}

READ {X b V} Y= [X] (X V A Y=V

arroc {emp} x:= alloc() {=

o -Ax=l)

Incorrectness Separation Logic (ISL)

) L e
] C le: g p*kr} C{g*r}
Xk - %k X - false
_ y _ Xk V ¥k empeXeyV)
ISL p| C le:] % vy e e
[D*F]C[ezq*r] Xk VX empeXeyV

) J

ISL: Local Axioms

/[x - V| [X]:= Vv [ok: X B V] x=null] [X]:=V |er: x:nuH]\

. WRITE

null-pointer-dereference error

ISL: Local Axioms
/[x - V| [X]:= Vv [ok: X+ V] x=null] [X]:= vV |er: x:nuH]\

. WRITE

_

null-pointer-dereference error

/[x H V] vi= [X] [OK: X » vAY=V] x=null|] y:=[x] |er: x:nuH]\

READ
& _

ISL: Local Axioms

/[x - V| [X]:= v [OK: X+ V]

. WRITE

x=null|] [x]:=v |er: x:nuH]\

_

null-pointer-dereference error

READ

/[x H V] vi= [X] [OK: X » vAY=V] x=null|] y:=[x] |er: x:nuH]\

_

lemp] x:= alloc() [ok:=

. I Vv A X=l]

ISL: Local Axioms

Hidden Technical Details

<+ Standard SL model broken for ISL; unsound frame rule

<+ Fix: A monotonic heap model

<+ Advantage: recover completeness for ISL (unlike SL)

ISL Summary

= | + SL for compositional bug catching

= Under-approximate analogue of SL

= [argets memory safety bugs (e.g. use-after-free)
= No-false-positives theorem:

All bugs identified are true bugs

Pulse-X: ISL for Scalable Bug Detection

Pulse-X at a Glance

+ Automated program analysis for memory safety errors (NPEs, UAFs) and leaks
+ Underpinned by ISL (under-approximate) — no false positives*

+ Inter-procedural and bi-abductive — under-approximate analogue of Infer

+ Compositional (begin-anywhere analysis) — important for Cl

+ Deployed at Meta

+ Performance: comparable to Infer

* Fix rate: comparable or better than Infer!

+ Three dimensional scalability

= code size (large codelbases)
= people (large teams, Cl)
= speed (high frequency of code changes)

10

Compositional, Begin-Anywhere Analysis

* Analysis result of a program = analysis results of its parts
|

a method of combining them

11

Compositional, Begin-Anywhere Analysis

* Analysis result of a program = analysis results of its parts
|

a method of combining them

= Parts: Procedures

Compositional, Begin-Anywhere Analysis

* Analysis result of a program = analysis results of its parts
|

a method of combining them

©

= Parts: Procedures 0

._\-.
\'-
.

= Method: under-approximate bi-abduction

Compositional, Begin-Anywhere Analysis

* Analysis result of a program = analysis results of its parts
|

a method of combining them

©

= Parts: Procedures 0

._\\
\‘\

= Method: under-approximate bi-abduction

= Analysis result: incorrectness triples (under-approximate specs)

11

Pulse-X Algorithm: Proof Search in ISL

+ Analyse each procedure fin isolation, find its summary (collection of ISL triples)

= A summary table 7, initially populated only with local (pre-defined) axioms
= Use bi-abduction and T to find the summary of f

= Recursion: bounded unrolling

= Extend T with the summary of f

Pulse-X Algorithm: Proof Search in ISL

+ Analyse each procedure fin isolation, find its summary (collection of ISL triples)

= A summary table 7, initially populated only with local (pre-defined) axioms
= Use bi-abduction and T to find the summary of f

= Recursion: bounded unrolling

= Extend T with the summary of f

+ Similar bi-albductive mechanism to Infer, but:

= Can soundly drop execution paths/branches
= Can soundly bound loop unrolling

12

Pulse-X: Null Pointer Dereference in OpenSSL

l.1nt ssl excert prepend(...){

2 .
3.

SSL EXCERT *exc=(épp_mallcc(sizeof(*exc), "orepend cert”);
memset (exc, 0, sizeof (*exc)):;

calls CRYPTO_malloc (a malloc wrapper)

13

Pulse-X: Null Pointer Dereference in OpenSSL

l.1nt ssl excert prepend(...) {

2 .
3.

null pointer
dereference

SSL EXCERT *exc=(?pp_malloc(sizeof(*exc), "orepend cert”);
memset (exc, 0, sizeof (*exc)):;

calls CRYPTO_malloc (a malloc wrapper)

CRYPTO_malloc may return null!

13

Pulse-X: Null Pointer Dereference in OpenSSL

l.1nt ssl excert prepend(...) {

2 .
3.

So L

- EXCERT *exc=(épp_mallcc(sizeof(*exc), "orepend cert”);
memset (exc, 0, sizeof (*exc)):;

| calls CRYPTO_malloc (a malloc wrapper)
null pointer
dereference

CRYPTO_malloc may return null!

-~

N
[emp] “exc= app malloc(sz, ..) [OKZ exc = null]

+

[GXC = null] memset (exc, —, —) [er: exc = null]

13

Pulse-X: Null Pointer Dereference in OpenSSL

l.1nt ssl excert prepend(...) {

2 .
3.

So L

memset (exc,

| calls CRYPTO_malloc (a malloc wrapper)
null pointer
dereference

- EXCERT *exc=(épp_mallcc(sizeof(*exc), "orepend cert”);
0, sizeof (*exc));

CRYPTO_malloc may return null!

-~

N
[emp] “exc= app malloc(sz, ..) [OKZ exc = null]

[GXC = null] memset (exc, —, —) [er: exc = null]

[emp] SS._

+

g

~excert prepend(..) ler: exc = null |

13

Pulse-X: Null Pointer Dereference in OpenSSL

apps/1ib/s_cb.c QOutdated .= Hide resolved

@@ -956,6 +956,9 @@ static int ssl_excert_prepend(SSL_EXCERT **pexc)

{
SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
+ if ('exc) {
g paulidale 13 days ago Contributor ®

False positive, app_malloc() doesn't return if the allocation fails.

& lequangloc 13 days ago Author ®

Our tool recognizes app malloc() in test/testutil/apps mem.c rather than the one in apps/lib/apps.c. While the former
doesn't return if the allocation fails, the latter does. How do we know which one is actually called?

9 paulidale 13 days ago Contributor ®,

It would need to look at the link lines or build dependencies to figure out which sources were used.

We should fix the one in test/testutil/apps_mem.c .

14

Pulse-X: Null Pointer Dereference in OpenSSL

apps/1lib/s_cb.c Oytdated .= Hide resolved

@@ -956,6 +956,9 @@ static int ssl_excert_prepend(SSL_EXCERT **pexc)

{
SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
+ if ('exc) {
g paulidale 13 days ago Contributor ®

False positive, app_malloc() doesn't return if the allocation fails.

& lequangloc 13 days ago Author ®

Our tool recognizes app_malloc() irf test/testutil/apps_mem.c)rather than the one ir{ apps/lib/apps.c) While the former
doesn't return if the allocation fails, the latter does. How do we know which one is actually called?

% paulidale 13 days ago Contributor ®,

It would need to look at the link lines or build dependencies to figure out which sources were used.

We should fix the one in test/testutil/apps_mem.c .

14

Pulse-X: Null Pointer Dereference in OpenSSL

apps/1ib/s_cb.c QOutdated .= Hide resolved

@@ -956,6 +956,9 @@ static int ssl_excert_prepend(SSL_EXCERT **pexc)

{
SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
+ if ('exc) {
G paulidale 13 days ago Contributor ®

False positive, app_malloc() doesn't return if the allocation fails.

Q lequangloc 13 days ago Author ®

Our tool recognizes app_malloc() irf test/testutil/apps_mem.c)rather than the one ir{ apps/lib/apps.c) While the former
doesn't return if the allocation fails, the latter does. How do we know which one is actually called?

G paulidale 13 days ago Contributor ®,

It would need to look at the link lines or build dependencies to figure out which sources were used.

CWe should fix the one in test/testutil/apps_mem.c)

Created pull request #15836 to commit the fix.

14

Pulse-X: Bug Reporting

No False Positives: Report All Bugs Found?

Not quite...

Pulse-X: Bug Reporting

()

1l.wvoid foo(int *x) {
2 . *x = 42;
}

. J

Pulse-X: Bug Reporting

g N . *\, __ TR
| void foo(int %) 1 [WRITE Ix=null] *x = v |er: x_nuH]]

2 . *x = 42; @
}

\ . x=null] foo(x) |er: x=null]

Pulse-X: Bug Reporting

N * — o —
| void foo(int %) 1 [WRITE Ix=null] *x = v |er: x_nuH]]

2 . *x = 42; @
}

x=null] foo(x) |er: x=null]

Should we report this NPD?

Pulse-X: Bug Reporting

-

_

1.void foo (int *x) { \ (WRITE [XZHUH] =V [GFZ XZHUH]]
2 . *x = 42; @
}

. x=null] foo(x) |er: x=null]

Should we report this NPD?

&

“But | never call foo with null!” *Which bugs shall | report then?”

16

Pulse-X: Bug Reporting

Problem

Must consider the whole program
to decide whether to report

Solution
Vianitest Errors

16

Pulse-X: Manifest Errors

+ Intuitively: the error occurs for all input states

17

Pulse-X: Manifest Errors

* Intuitively: the error occurs for all input states

* Formally: [p] C [er: q] is manifest iff:

Vs.d5. (5,8)€|Cler A S €(q ™ true)

17

Pulse-X: Manifest Errors

* Intuitively: the error occurs for all input states

* Formally: [p] C [er: q] is manifest iff:

Vs.d5. (5,8)€|Cler A S €(q ™ true)

+ Algorithmically: ...

17

Pulse-X: Null Pointer Dereference in OpenSSL

l.1nt ssl excert prepend(...) {

2 .
3.

| calls CRYPTO_malloc (a malloc wrapper)
null pointer
dereference

CRYPTO_malloc may return null!

[emp] ssl excert prepend(...) [er: exc = null]

SSL EXCERT *exc=(?pp_malloc(sizeof(*exc), "orepend cert”);
memset (exc, 0, sizeof (*exc)):;

18

Pulse-X: Null Pointer Dereference in OpenSSL

l.1nt ssl excert prepend(...) {

2 . SSL EXCERT *exc=(épp_malloc(sizeof(*exc), "orepend cert”);
3. memset (exc, 0, sizeof (*exc)):;

| calls CRYPTO_malloc (a malloc wrapper)
} null pointer
dereference

CRYPTO_malloc may return null!

[emp] ssl excert prepend(...) [er: exc = null]

. J

Manifest Error (all calls to ss1 excert prepend can trigger the error)!

FPulse-X: Latent Errors

An error triple [p| C |er: gl is latent iff it is not manifest

19

Pulse-X: Latent Error

1.1nt chopup args (ARGS *args,..) {

if (args->count ==)

args—->count=20;
args—>data= (char**)ssl excert prepend(..)

}
for (1=0; 1<args—->count; i1++) {
args—->data[1]=NULL;

O O O & W I

4

20

Pulse-X: Latent Error

1.1nt chopup args (ARGS *args,..) {

if (args->count ==)

args—->count=20;
args—>data= (char**)ssl excert prepend(..)

J
for (1=0; 1<args—->count; 1i++)
args—->data[1]=NULL;

{

O O O & W I

null pointer
} dereference

[

20

Pulse-X: Latent Error

1.1nt chopup args (ARGS *args,..) {

if (args->count ==)

args—->count=20;
args—>data= (char**)ssl excert prepend/(..):

J
for (1=0; 1<args—->count; 1i++)
args—->data[1]=NULL;

{

O O U1 & W N

null pointer
} dereference

Latent Error:
only calls with args->count ==0 can trigger the error

20

Pulse-X: Memory Leak in OpenSSL

static int www body (..) {

10 = BIO new(BIO f buffer());
ssl bio BIO new (BIO £ ssl());

BIO push (1o, ssl bio);

BIO free all(10);

return ret;

J

Pulse-X: Memory Leak in OpenSSL

static int www body (..) {

10 = BIO new(BIO f buffer());
ssl bio BIO new (BIO £ ssl());

BIO push (1o, ssl bio);

BIO free all(10);

return ret;

J

does nothing when io is null

Pulse-X: Memory Leak in OpenSSL

static int www body (..) {

10 = BIO new(BIO f buffer());
ssl bio BIO new (BIO £ ssl());

BIO push (1o, ssl bio);

BIO free all(10);

return ret;

does nothing when io is null

leaks ss1 bio

Pulse-X: Memory Leak in OpenSSL

static int www body (..) {

J

10 = BIO new (BIO
BIO new (!

ssl bio

return ret;

BIO push (1o, ssl bio);

BIO free all(10);

does nothing when io is null

leaks ss1 bio

f buffer()); |
310 £ ssl());

| Pulse-X performs ur

426 lines of complex code:

and multiple loops

with bounded

der-approxi

oop unrollir

i io manipulated by several procedures

mation
9

Pulse-X Summary

= Automated program analysis for detecting memory safety errors and leaks
= \Manifest errors (underpinned by ISL): no false positives™

= compositional, scalable, begin-anywhere

ISL. Extension:

Concurrent Incorrectness Separation Logic (CISL)
&
Incorrectness Non-Termination Logic (INTL)

ISL. Extension:

Concurrent Incorrectness Separation Logic (CISL)
&
Incorrectness Non-Termination Logic (INTL)

Termination vs Non-lermination

+ Showing termination is compatible with correctness frameworks:

= Every trace of a given program must terminate
= |nherently over-approximate

skip + x:=1

24

Termination vs Non-lermination

+ Showing termination is compatible with correctness frameworks:

= Every trace of a given program must terminate
= |nherently over-approximate

skip + x:=1

+ Showing non-termination compatible with incorrectness frameworks:

= Some trace of a given program does not terminate
= |nherently under-approximate

skip + while(true) skip

24

Incorrectness Non-Termination Logic (INTL)

+ A framework for detecting non-termination bugs

+ Supports unstructured constructs (goto), as well exceptions and breaks

<+ Reasons for non-termination:

= |nfinite loops
= |nfinite recursion
= Cyclic goto soups

IN TL Proof Rules and Principles

INTL Proof Rules

ISL. Proof Rules
|

Divergence (Non-Termination) Rules

INTL Divergence Proof Rules

p] C

-~

&

Starting from some state s in p, C has a divergent trace

~

_

27

INTL Divergence Proof Rules

p] C

-~

&

Starting from some state s in p, C has a divergent trace

~

_

27

INTL Divergence Proof Rules (Sequencing)

p] G

o] C1; Co

INTL Divergence Proof Rules (Sequencing)

P] G Pl C1ok: g [q] G2

o] G1; Co p] C1; Co

INTL Divergence Proof Rules (Branches)

] Gi some i €{1, 2
p| C1 + Co

+ Drop paths/branches (this is a sound under-approximation)
+ Scalable bug detection!

29

INTL Divergence Proof Rules (Loops)

p] G
p] G

[p] C [OK: p] [extra condition omitted]
p] C

Conclusions

+ Incorrectness Separation Logic (ISL)

= Combining IL and SL for compositional bug catching (in sequential programs)

= no-false-positives theorem

<+ Pulse-X

= Automa

'ed progra

= Nanites

T alna

L errors (ur

derpir

ysis for detecting memory safety errors and leaks
ned by ISL): no false positives™

= compositional, scalable, begin-anywhere

* INTL

= |SL for detecting non-termination bugs

= no-false-positives theorem

= |nfinite loop/recursion detection

P> azalea@imperial.ac.uk

Thank You for Listening!

%SoundAndComplete.org

gj @azalearaad

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

