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Inverse optimal control for deterministic continuous-time nonlinear systems

Miles Johnson!, Navid Aghasadeghi?, and Timothy Bretl!

Abstract— Inverse optimal control is the problem of comput-
ing a cost function with respect to which observed state and
input trajectories are optimal. We present a new method of
inverse optimal control based on minimizing the extent to which
observed trajectories violate first-order necessary conditions for
optimality. We consider continuous-time deterministic optimal
control systems with a cost function that is a linear combination
of known basis functions. We compare our approach with
three prior methods of inverse optimal control. We demonstrate
the performance of these methods by performing simulation
experiments using a collection of nominal system models. We
compare the robustness of these methods by analysing how they
perform under perturbations to the system. To this purpose, we
consider two scenarios: one in which we exactly know the set of
basis functions in the cost function, and another in which the
true cost function contains an unknown perturbation. Results
from simulation experiments show that our new method is
more computationally efficient than prior methods, performs
similarly to prior approaches under large perturbations to the
system, and better learns the true cost function under small
perturbations.

I. INTRODUCTION

In the problem of optimal control we are asked to find
input and state trajectories that minimize a given cost
function. In the problem of inverse optimal control we are
asked to find a cost function with respect to which observed
input and state trajectories are optimal. Methods of inverse
optimal control are beginning to find widespread application
in robotics. In this paper, we consider this problem under
deterministic continuous-time nonlinear systems and cost
functions modeled by a linear combination of known basis
functions. Three existing methods which solve this problem
are the following:

o The max-margin inverse reinforcement learning method
of Abbeel and Ng [1]. This method is motivated by
the problem of efficiently automating vehicle navigation
tasks which currently require human expert operation.
This method works by trying to learn a cost function
that, when minimized, yields a trajectory with similar
features as the expert. This method recently contributed
to a framework which enables autonomous helicopter
aerobatic flight based on observations of human expert
pilots.

e The maximum-margin planning method of Ratliff, et al.
[2]. This method shares the motivation of Abbeel and
Ng, and works by minimizing a regularized risk function
using an incremental subgradient method. This method
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contributed to a framework which mimics human driv-
ing of an autonomous mobile robot in complex off-road
terrain.

e The method of Mombaur, et al. which we will call bi-
level inverse optimal control [3]. This work is motivated
by the problem of generating humanoid robot behavior
which is similar to natural human motion. This method
works by minimizing the sum squared error between
predicted and observed trajectories. This method is
applied to develop a model of human goal-oriented
locomotion in the plane (i.e. paths taken during goal-
oriented walking tasks) using observations from motion
capture, and implement the model on a humanoid robot.

Despite differences in how learning is performed, these
methods share common structure. One goal of this paper is
to explain this common structure and compare these methods
on a set of example problems. One common component
to these algorithms is particularly important. Each method
contains an inner loop which computes a predicted trajectory
by minimizing a candidate cost function. In other words, each
method solves a forward optimal control problem repeatedly
in an inner loop. This can often lead to a computational
bottleneck. The other goal of this paper is to develop an
approach which does not solve a forward optimal control
problem repeatedly in an inner loop. Our method, inspired by
ideas from inverse optimization in [4], makes the assumption
that observations may arise from a system which is only
approximately optimal. We define how optimal a trajectory
is based on how closely it satisfies necessary conditions for
optimal control. This assumption allows us to define residual
functions based on these necessary conditions which, when
minimized over the unknown parameters, yields a solution
which makes the observations most optimal. As we will
show, this new approach reduces to solving a matrix Riccati
differential equation followed by one least-squares minimiza-
tion.

It is unclear at this point how all of these methods compare
in terms of prediction accuracy, computational complexity
and robustness to system perturbations. In this paper, we
explore the performance of these methods using three ex-
ample systems: (1) linear quadratic regulation, (2) quadratic
regulation of a kinematic unicycle, and (3) calibration of
an elastic rod. We compare the robustness of these methods
by analysing how they perform under perturbations to the
system. To this purpose, we consider two scenarios: one in
which we exactly know the set of basis functions in the
cost function, and another in which the true cost function
contains an unknown perturbation. Results from simulation
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experiments show that our new method is more computa-
tionally efficient than prior methods, performs similarly to
prior approaches under large perturbations to the system, and
better learns the true cost function under small perturbations.

The rest of the paper proceeds as follows. In Section II
we discuss related work and note the variety of problems
to which inverse optimal control and related methods are
applied. In Section III we describe the class of systems we
consider, and the associated inverse optimal control problem.
In Section IV we describe the existing methods of inverse
optimal control with which we compare our new method
[1]-[3]. In Section V we develop our new method based
on necessary conditions for optimal control. In Section VI
we describe simulation experiments,and Section VII presents
results and discussion.

II. RELATED WORK

Inverse optimal control is often used as a solution approach
to the broad problem of learning from demonstration, which
is often referred to as imitation learning or apprenticeship
learning. The problem of learning from demonstration is to
derive a control policy (a mapping from states to actions)
from examples, or demonstrations, provided by a teacher.
Demonstrations are typically considered to be sequences of
state-action pairs recorded during the teacher’s demonstra-
tion.

There are generally two methods of approach within
learning from demonstration. One approach is to learn a
map from states to actions using classification or regression.
Argall, et al. provide a survey of the work in this area [5].
The second general approach is to learn a cost function
with respect to which observed input and state trajectories
are (approximately) optimal, i.e. inverse optimal control
[1]-[4], [6]-[21]. These methods have primarily focused
on finite-dimensional optimization and stochastic optimal
control problems.

In the context of finite parameter optimization, Keshavarz,
et al. [4] develop an inverse optimization method which
learns the value function of a discrete-time stochastic control
system given observations. These ideas were extended to
learn a cost function for a deterministic discrete-time system
in Puydupin-Jamin, et al. [6], and a hybrid dynamical system
in [22]. Similarly, Terekhov, et al. [7], [8] and Park, et al.
[9] develop an inverse optimization method for deterministic
finite-dimensional optimization problems with additive cost
functions and linear constraints. Other recent work formu-
lates an optimization problem which simultaneously learns a
cost function and optimal trajectories [23], [24].

A variety of methods have been developed in the context
of stochastic optimal control problems and, in particular,
Markov decision processes [1], [11], [13], [15]-[17], [19],
[20]. Ng and Russell [11] developed a method for stationary
Markov decision processes based on linear programming.
Abbeel and Ng [1] extends that work by finding a cost
function with respect to which the expert’s cost is less than
that of predicted trajectories by a margin. A further extension
simultaneously learns the system dynamics along specific

trajectories of interest [13]. Ramachandran, et al. [16] takes
a Bayesian approach and assumes that actions are distributed
proportional to the future expected reward. The method de-
veloped in Ziebart, et al. [17] works by computing a probabil-
ity distribution over all possible paths which matches features
along the observed trajectory. Dvjijotham and Todorov [19]
develop a method of inverse optimal control for linearly-
solvable stochastic optimal control problems. Their method
takes advantage of the fact that, for the class of system
model they consider, the Hamilton-Jacobi-Bellman equation
gives an explicit formula for the cost function once the value
function is known. Aghasadeghi and Bretl [20] develop a
method of inverse optimal control that uses path integrals
to create a probability distribution over all possible paths.
The problem is then one of maximizing the likelihood of
observations.

Learning from demonstration methods are applied in three
different areas. First, learning from demonstration has been
applied as a method of data-driven automation [1], [2], [11]-
[15], [17], [19], [25]-[27]. Tasks of interest include bipedal
walking, navigation of aircraft, operation of agricultural and
construction vehicles. Second, learning from demonstration
methods have been applied to cognitive and neural modeling
[3], [7]1-[10], [18], [28]-[31]. Third, learning from demon-
stration methods have been applied to system identification
of deformable objects [21], i.e. learning elastic stiffness
parameters of objects such as surgical suture, rope, and hair.

III. INVERSE OPTIMAL CONTROL: PROBLEM
STATEMENT

In the rest of this paper, we consider the following class
of optimal control problems

.
minimize / " Tl w(t), u(t)dt

z,u to

subject to  z(t) = f[t, z(¢), u(t)] (1)
IE(O) = Tstart
z(ty) = Tgoal

where z(t) € X C R" is the state, u(t) € U C R™ is the
input, o : Rx X xU — Ri are known basis functions, and
c € R* is an unknown parameter vector to be learned. We
assume, without loss of generality, that ||c|| < 1. We assume
that the system equations

&(t) = flt x(t), u(t)] 2)

are well posed, that is, for every initial condition xg:q,t
and every admissible control u(t), the system @(t) =
flz(t),u(t)] has a unique solution z on ¢t € [0,¢y]. This
is satisfied, for example, when f is continuous in ¢ and u
and differentiable (C') in z, f, is continuous in ¢ and w, and
u is piecewise continuous as a function of ¢ [32], [33]. The
objective basis function ¢ is assumed to be smooth in z and
u. This problem also assumes there are no input and state
constraints. These constraints are often important in practice,
and will be the subject of future work.
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The problem of inverse optimal control is to infer the
unknown parameters with respect to which a given trajectory,
the observation, is a local extremal solution to problem (1).
This observed trajectory is denoted by

(x*,u") = {z"(t),u"(t) : t € [0,¢f]}. (3)

For convenience, we will often drop the asterisk and refer to
an optimal trajectory as (z,¢). We also consider observing
multiple trajectories, each local minima of problem (1) for
different boundary conditions. We will refer to a set D of
M observations as follows

D= {(m*(“,u*(”)} fori=1,...,.M 4
where each trajectory has boundary conditions

(xg?arﬁ x;lo)al

) fori=1,..., M. (5)

An important quantity in the methods discussed in this paper
is the accumulated value of the unweighted basis functions
along a trajectory, which we call the feature vector of a
trajectory p(x,u), and define by

() = / " olt, x(t), u(t)dt. ®)

In practice, one would generally have sampled observations
of the behavior of the system, but for the analysis in
this paper, we assume we have perfect observations of the
continuous-time system trajectories.

In practice, the solution of (1) is typically obtained using
a numerical optimal control solver such as direct multiple
shooting or collocation. In this paper, we use the pseudospec-
tral optimal control package GPOPS [34] to numerically
solve the forward problem in the prior methods which require
1t.

IV. THREE PRIOR METHODS

In this section we formally describe the three prior meth-
ods of inverse optimal control with which we compare
the new method developed in Section V. In their original
form, the method of Abbeel and Ng, and the method of
Ratliff, et al. were developed in the context of Markov
decision processes. The general structure and theoretical
guarantees of the methods apply with slight modification
to the deterministic continuous-time class of problems we
consider in this paper, specified in Equation (1).

A. Method of Mombaur, et al.

The method of Mombaur, et al. [3] works by searching
for the cost function parameter ¢ which minimizes the sum-
squared error between predicted and observed trajectories.
This method has two main components. In the upper-level,
a derivative-free optimization technique is used to search for
the cost function parameter c. In the lower-level, a numerical
optimal control method is used to solve the forward optimal
control problem (1) for a candidate value of c. We will now
discuss the two levels in detail.

The objective of the upper-level derivative-free optimiza-
tion is given by the following

tr
minimize/ [z (); uc(t)] — [z*();u* (O] |1Pdt (7)
c to
where [z*(t);u*(t)] is the vector concatenation of the
state and input of the observed trajectory at time ¢, and
[x¢(¢); uc(t)] is the solution to the forward problem (1),
given the parameter vector c. Mombaur, et al. [3] discuss
high performance derivative-free algorithms to minimize
this upper-level objective. For our baseline analysis in this
paper, however, we use the Matlab fminsearch imple-
mentation of the Nelder-Mead simplex algorithm. Iterations
of the Nelder-Mead algorithm constitute the upper-level of
this method. Upon selecting a new candidate value of c,
the lower-level proceeds by solving (1) for the candidate
value, generating a predicted trajectory (x¢, u¢). Given this
trajectory, the upper-level objective can be evaluated, and
the search for a new candidate c¢ continues. This method
is easily extended for the case where multiple trajectories
are observed by considering the sum of predicted errors
with respect to each observed trajectory in the upper-level
objective.

B. Method of Abbeel and Ng

The method of Abbeel and Ng [1] was originally devel-
oped for infinite-horizon Markov decision processes with
discounted reward. The goal of this method is to find a
control policy which yield a feature vector close to that of the
observed trajectory. The method is initialized by selecting a
random cost function parameter vector ¢(?) and solving the
forward problem (1) to obtain an initial predicted trajectory
(2 4()) and associated feature vector (%), On the i-th
iteration, solve the following quadratic program:

minimize [|()|?
(), b()

subject o (c)Tp < ()T b o)
for j=0,...,i—1
b >0

where b(® is the margin on the ¢-th iteration, and p* and
u9) are the feature vectors of the optimal trajectory and j-
th trajectory, respectively (recall the definition given in (6)).
If b < ¢, then terminate. Otherwise, given the result from
the quadratic program, ¢(*), solve the forward optimal control
problem, Equation (1), with ¢ = ¢(¥) to obtain the predicted
trajectory (z(*),u(?) and associated feature vector p(*). Set
1 =1+ 1 and repeat.

As shown in [1], this method terminates after a finite
number of iterations (the theorems stated and proved in
[1] carry over with minor modification to the deterministic
continuous-time case, which we omit for brevity). Upon
termination, this algorithm returns a set of policies II, and
there exists at least one policy in II that yields a feature
vector differing from the expert’s by no more than e.
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C. Method of Ratliff, et al.

The maximum margin planning method of Ratliff, et al.
[2] is an inverse optimal control method that learns a cost
function for which the expert policy has lower expected cost
than every alternative policy by a margin that scales with the
loss of that policy. As in the method of Abbeel and Ng, we
begin with the following quadratic program

minimize | c||?
c,b
It < plwu) —b
forall (x,u) €S

subject to

where S is some set of trajectories. However, instead of
considering a finite collection of trajectories, consider all
possible trajectories (z,u) s.t. ©(t) = f(¢t,z(t),u(t)). Then
the constraints in the quadratic program are satisfied if

'p* < min (cT,u(ac,u) —b)
(z,u)
z=f(z,u)
Also, instead of trying to find the maximum fixed mar-
gin b, consider a margin which depends on the trajectory,
let b = L(x,u), where L(x,u) denotes a loss function.
This loss function typically specifies the closeness of a
trajectory (x,u) to the observed trajectory (z*,u*), i.e.
the loss function is zero near the observed trajectory and
increases gradually to 1 away from the observed trajectory.
Finally, slack variables ¢ are introduced to allow constraint
violations. The problem is now given by

o A2
minimize C+§||c||

subject to ¢’ p* < min (¢’ p(z,u) — L(z,u)) +

z=f(z,u)
)

where A > 0 is a constant that trades off between the
penalizing constraint violations and a desire for small weight
vectors. Since the slack variables are tight, they can be pulled
into the objective function to obtain:

J(e) = Ae||* + T p® — (Igrﬁllil) {CT,u(a:,u) — L(z,u)}
)
(10)

This convex program can be solved using subgradient de-
scent. As shown in [2], a subgradient g(c) of J(c) is given
by g(¢) = p* — i + Ac, where [i represents the solution
to argmin,, ("' p + L(p)), i.e. the solution to the forward
optimal control problem (1) with cost function augmented
by the loss function. The unknown parameter ¢ is then
updated iteratively using subgradient descent c(i+1) = () —
aig(c®).

Ratliff, et al. [2] show that for constant step size «, this
method achieves linear convergence to some neighborhood
of the minimum cost. In addition, they show that for dimin-
ishing step size a; = 1/j, the method will converge to a
local minimum at a sub-linear rate.

V. A NEW METHOD BASED ON NECESSARY
CONDITIONS FOR OPTIMALITY

The three methods described in the previous section shared
common structure. In particular, each method solves a for-
ward optimal control problem repeatedly in an inner loop.
They do this in order to compare the observed trajectory (or
feature vectors) with predicted trajectories given a candidate
cost function. In this section, we derive another approach
inspired by recent work in inverse convex optimization by
Keshavarz, et al. [4]. The key idea in our approach is that we
assume that the observations are perfect measurements of the
system evolution, and that the expert is only approximately
optimal, where we define what it means to be approximately
optimal below. Under this new set of assumptions, we can
immediately say how optimal the agent is by looking at
how well the demonstration trajectory satisfies the necessary
conditions for optimal control. To do this, we use the
necessary conditions to define a set of residual functions. The
inverse optimal control problem is then solved by minimizing
these residual functions over the unknown parameters. In the
remainder of this section, we will describe these different
stages in detail.

A. Inverse Optimal Control Formulation

Consider a trajectory (x,u) of the system given in Equa-
tion (2). The minimum principle gives us necessary condi-
tions for (x,u) to be a local minimum of Eq. (1) [35], [36].
The Hamiltonian function for the problem we consider is

H (z,u,p) = Lo (t,x,u) +p f(t,x,u) (11)
For a given c, if (z*,u™) is optimal, the necessary conditions
for optimal control state that there exists a costate trajectory
p* : R — R™ such that

0=p"(t)" + V. H (z*(t), u*(t), p*(¢))
0=V, H (z*(t),u"(t),p"(t))

12)
13)

We apply these necessary conditions to our problem (1) to
obtain

0=pt)" + " Vao [t,2(t),u(t)] + p(t)" Va f [t x(t), u(t)]
0 ="V [t, 2(t), u(®)] + pt)" Vuf [t, (1), u(t))

if (x(t),u(t)) is optimal, these conditions will be satisfied.
If the trajectory is approximately optimal, these conditions
are approximately satisfied. We formalize this by defining
residual functions from these necessary conditions. Our
method consists in minimizing the extent to which observed
trajectories violate these necessary conditions, i.e. minimiz-
ing the extent to which the residual functions are not equal
to zero (where we define what it means to be close to zero
in Section V-B). Let

2(t) = {pc } € Rk o(t) = p(t) € R”
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The residual function 7[z(t), v(t)] is then defined as

Vi ’ Vaof ’
ORI B ] R G
u¢ o) v“f(mm

= F(t)z(t) + G(t)v(t)
(14)

where we have just rearranged the necessary conditions. The

notation ()‘ (w0) is shorthand for evaluating the particular

function along the trajectory given in the observation, i.e.
xas\ o = Vb ltoa(t),u(0)]

Th1s formulation can also be extended to handle multiple
observations. Consider M trajectories, which may have dif-
ferent boundary conditions, but have the same fixed final time

gx(z) u(z) i = , M with each (z() 4()) =

{x( ul? ) 1t €0, t f } The development is the same
and the unknown parameters z(t) and v(t) are simply ex-
tended to include the unknown costate trajectories of the M
observations. The particular structure of the residual function
is such that the amount of computation grows linearly with
the number of observations, just as it does with the three
prior methods of inverse optimal control. We now describe
how our method minimizes these residual functions over
the unknown parameters ¢, p(t), p(t) in order to best satisfy
necessary conditions for optimality.

B. Residual Optimization

To solve for the unknown parameters z(¢) and v(¢) that
cause the observed trajectories to best satisfy necessary con-
ditions for optimal control, we solve the following problem

[ Irlet, vionPar

s,
subject to 2(t) = B.] v(t) (15
2(0) = 2o (unknown)
where
[r[z(t),v()]||? = 2T FTFz +0vTGTGv + 2T FTGv (16)

where the argument ¢ has been dropped for brevity. If z(0)
were known, this would be a standard LQR problem (with
Cross terms)

ty
{ZTQZ +vTRv + ZTSU} dt
( ) ( ) Ji

subject to 2(t) = Az + Bo
Z(O) = 20

a7

where

Solving this LQR problem yields the linear control policy
and quadratic value function

olt) = K(t)z(1) V(z0) = 2 P(0)z

where

E(t) =—(GM)"G) ™ (GOTF(t) + B(t)" P(1))

and where P(t) represents the solution to the LQR Riccati
equation. We complete our solution for z(t) by solving the
following problem

minimize 28 P(0) 0.

0

Without normalization, this quadratic program is satisfied
by the trivial solution zy = 0. Normalization is performed
by using prior knowledge about the problem domain. For
example, when the forward optimal control problem has a
quadratic cost function, one can often assume that one of
the weights is equal to 1.

VI. SIMULATION EXPERIMENTS
A. Evaluating Methods under Noise-free Observations

To evaluate the performance of the three recent inverse
optimal control methods described in Section IV and the
new method introduced in Section V, we perform numerical
simulations in which we observe optimal trajectories of three
different systems and learn the objective function for each
system. For each system, we collect the optimal trajectories,
i.e. noise-free observations, by simulating the system acting
under the optimal control policy for particular boundary
conditions and fixed terminal time. We collect simulations
for 50 random boundary conditions. These experiments form
a baseline of comparison, whose results can be used to
understand the fundamental behavior of each method.

B. Robustness under Cost Perturbation

To evaluate the robustness of the four methods, we perform
the following perturbation to the inverse optimal control
problem. Up to this point we have considered the true cost
function to be perfectly modeled by the weighted combina-
tion of known basis functions, as shown in Equation (1). In
our perturbation simulations, we assume that the given cost
basis functions are only an approximation to the true cost
function. In particular, we set the true cost function to be

tr
J(u) = / Tolt, x(t), u(t)] + dTple(t) u(D)dt.  (18)
to

where p : X x U — [0,1]" are perturbation basis functions
and d € R! are perturbation weights such that ||d|| < e for
some € > 0. In particular, we model a general perturbation
with a linear combination of k-th order multivariate Fourier
basis functions. The multivariate basis functions are defined
as

1 ifi=0
pilz(t)] = ¢ 1+ cos (27Tai . z) for odd 4 (19)
1+ sin (27rai . z) for even ¢
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for i = 1,...1, where @' = [a1,...,an+m), €ach a; €
[0,...,1]. Here z is the concatenation of the state and input
vectors at time ¢, z(t) = [x(t), u(t)]. A particular set of basis
functions is formed by systematically varying the elements
in each a’, and assuming only one nonzero element of a’ for
each 1.

C. Three Example Systems

The three systems we use are (a) linear quadratic regula-
tion, (b) regulation of a kinematic unicycle, (c) calibration of
an elastic rod. We now describe the forward optimal control
problem of each of these systems.

1) Linear Quadratic Regulation: In our first system, we
consider a linear system with quadratic cost

ty

minimize / 7 Qz + v Ru

T,u to

subject to x(t) = Ax(t) + Bu(t),
iC(O) = Tstart

x(ty) = Free,

(20)

where states are denoted by z(¢) € R™ and control inputs are
denoted by u(t) € R™. The matrices A and B are assumed
time-invariant, with elements drawn from a N (0, 1) Gaussian
distribution for each trial. Matrix A is scaled such that
[Amaz(A)] < 1, and controllability of the system is verified
manually. The initial state of the system x( for each trial is
drawn from a N(0,5), and the final time ¢; = 10 is fixed
for all trials. Moreover, for each trial we select cost matrices
@ and R, with diagonal elements generated according to the
uniform distributions of U[0,1] and Ule, 1] respectively, to
obtain nonnegative-definite and positive-definite matrices @
and R.

2) Quadratic Regulation of the Kinematic Unicycle: As
our second test system, we consider quadratic regulation of
the kinematic unicycle

minimize
x,u

ty
/ 2TQz + u Ru

to

21

cos z3(t)

sinxs(t) | ,
u(t)

(E(O) = Tstart

x(ty) = free,

subject to ©(t) =

where states are denoted by x(t) € R3 (with x;(¢) represent-
ing the i-th element of the vector x(t)), and control inputs
are denoted by u(t) € R. We generate initial conditions and
cost parameters in a similar manner to the linear quadratic
regulation problem.

3) Calibrating an Elastic Rod: Our third test system
considers a thin, flexible wire of fixed length that is held
at each end by a robotic gripper, which we call an elastic
rod [37]. Assuming that it is inextensible and of unit length,
we describe the shape of this rod by a continuous map
q: [0,1] — G, where G = SE(3). As defined in [37], let L,
denote the left translation map L, : G — G. Let e denote

the identity element of G, and let g = T.G and g* = T)'G.
Abbreviating T, L,(¢) = ¢¢ as usual for matrix Lie groups,
we require this map to satisfy

G = q(ur X1 +upXo + uz Xz + Xy) (22)
for some u: [0,1] — U, where U = R? and X are the usual
basis for g. We refer to ¢ and u together as (g, u): [0,1] —
G x U or simply as (q,u). Each end of the rod is held by
a robotic gripper. We ignore the structure of these grippers,
and simply assume that they fix arbitrary ¢(0) and ¢(1). We
further assume, without loss of generality, that ¢(0) = I;x4.
Finally, we assume that the rod is elastic in the sense of
Kirchhoff [38], so has total elastic energy

1 1
5 / (clu% + coud + 03u§) dt

0
for given constants ¢y, ca,cs > 0. For fixed endpoints, the
rod will be motionless only if its shape locally minimizes
the total elastic energy. In particular, we say that (g, u) is in
static equilibrium if it is a local optimum of

minimize

1 1
1 / (1t + coud + cud) dt
au 2 Jo

G =q(u1 X1 +usXo +uz X3+ Xa)
q(0) = e, q(1) =10

subject to 23)

for some b € B.

As mentioned in Section II, recent work [21] has tackled a
similar problem which used a different model and a solution
method analogous to the method of Mombaur, et al.

VII. RESULTS AND DISCUSSION

A. Perfect Observations with Known Basis Functions

In this set of experiments, each algorithm was given one
perfect observation of an optimal trajectory and learned the
unknown cost function parameters c. After learning the cost
function, predicted trajectories are computed. This allows us
to compute other statistics such as the error in total cost, error
in feature vectors, and sum squared error between observed
and predicted trajectories.

Table I shows results averaged over 50 trials with ran-
domly selected boundary conditions in each trial. In the
method of Mombaur, the sum-squared error between pre-
dicted and observed trajectories converges near zero as the
number of iterations increases. However the inferred cost
function parameters are not learned perfectly. Similarly, upon
termination of the methods of Abbeel and Ratliff, the error
between predicted and observed feature vectors is small, but
the cost function parameters are not learned perfectly.

The new method developed in this paper also performs
as expected — learning the unknown parameters perfectly
(within the accuracy and precision tolerances of ODE and
least squares solvers).
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TABLE I
RESULTS FOR PERFECT OBSERVATIONS WITH KNOWN BASIS FUNCTIONS.

System Error Type | Mombaur  Abbeel Ratliff New
computation (s) 280 68 117 4
forward problems 129 28 48 0
LQR parameter error 7.03e-2  1.71le-1  6.99¢-1 6.35¢e-8
feature error 2.30e-3  3.07e-3  1.15e-1 2.81e-9
trajectory error 1.36e-5 1.04e-4  2.64e-2  1.04e-16
computation (s) 448 63 280 2
forward problems 133 20 100 0
Unicycle parameter error 3272  5.12e-1 5.23e-1 2.54e-5
feature error 3.53e-3  1.69e-2  1.42e-2 1.03e-5
trajectory error 1.55e-5 1.12e-3  4.64e-3  8.09e-10
computation (s) 95 9 15 1
forward problems 71 5 10 0
Elastic Rod parameter error 3.38e-2  892e-1 9.7le-1 3.96e-5
feature error 6.77e-7  6.24e-3  4.48e-3 4.87e-7
trajectory error 1.94e-5 7.95e-3  8.82e-3 6.14e-6
10 10° 10"
_
107 107 1072
~— N7

(a) LQR regulation, trajectory error.

Fig. 1.

(b) Unicycle regulation, trajectory error.

10°

(c) Elastic rod calibration, trajectory error.

This figure shows how the sum-squared error between observed and predicted trajectories vary under perturbations of increasing magnitude. Blue,

Green, Red, and Magenta curves correspond to the methods of Mombaur, Abbeel, Ratliff, and the new technique developed in this paper, respectively.

B. Perfect Observations with Perturbed Cost

In this set of experiments, the true cost function consists
of a linear combination of known basis functions plus a
bounded deterministic perturbation (see Section VI-B). For
each system, one particular set of boundary conditions was
selected, and observations of optimal trajectories are gathered
for a range of perturbation magnitudes. Figure 1 shows
the performance of each method over varying magnitude
perturbations. These results generally show:

« All of the methods learn cost functions which are able to
approximate the observation in terms of feature vector
and trajectory errors.

The performance of the iterative methods remains close
to the results obtained with known basis functions
for small perturbations, and then degrades at larger
perturbations,

The performance of our new method (KKT) continues
to improve as the perturbation descreases, reflecting ex-
act recovery of the cost function (to specified numerical
method tolerances).

Note that in the case of the elastic rod, all of the methods, in-
cluding our new approach, stop improving as the perturbation
magnitude gets small. This trend occurs because the numer-

ical method for solving the forward optimal control problem
terminates before reaching the observed local minima under
our standard convergence and tolerance parameters, which
are fixed for all experiments.

VIII. CONCLUSION

In this paper, we presented a new method of inverse
optimal control, and compared the method to existing ap-
proaches using a set of canonical example systems. We com-
pared our new approach with the following methods: inverse
reinforcement learning by Abbeel and Ng [1], maximum
margin planning by Ratliff, et al. [2], and inverse optimal
control by Mombaur, et al. [3]. These existing solution
approaches search for values of the parameters that minimize
the difference between predicted and observed trajectories
(or state-action features). These approaches require solving
a forward optimal control problem at each iteration. The
approach presented in this paper does not require the so-
lution of any forward optimal control problem, and instead
minimizes residual functions derived from first order nec-
essary conditions for optimality. Our results show that the
new method we develop is better able to recover unknown
parameters and is less computationally expensive than the
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existing methods. While our new method behaved well for
the canonical systems used in this paper, we acknowledge
that there are a variety of situations in which it is not clear
which method would be best.

There are opportunities for future work, which include
(a) investigating the existence and uniqueness of solutions
under the new approach developed in this paper, and (b)
investigating how our method performs under additional
forms of model perturbation. It is not yet clear exactly what
types of observations might cause the method to fail to
recover the unknown cost function. Second, in this paper
we considered perturbations in the true cost function, i.e.

the

modeled basis functions are only approximations of

the true underlying cost function. There are at least two
additional forms of model perturbation of interest. The first
is to consider inaccurate system dynamics. Second, we will
consider system trajectories which are only measured at
sampled points which contain noisy partial state information.
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