
UNCLASSIFIED

Is Software Assurance an Oxymoron?
Is Mathematics a Resolution?

Dan Craigen
Cryptographic Security

Architecture & Engineering

UNCLASSIFIED

Presentation Outline

6. Successes
7. Standards
8. Myths
9. Conclusions

1. Motivation
2. SDLC
3. Definitions
4. FM Examples
5. Value propositions

UNCLASSIFIED

Motivation

Advanced Automation System
cancelled after $2.6B
[$700+/SLOC]

FAA (US)1994

Software spec/design error
causes $350M Ariane 5 rocket
to explode

Arianespace (FR)1996

Tax modernization effort
cancelled after spending $4B

IRS (US)1997

Software errors contribute to
$3.45B tax credit overpayment

Inland Revenue (UK)2004-5

Problems with inventory system
contribute to $33.3M loss

Hudson Bay Co. (CA)2005

Charette

UNCLASSIFIED

Motivation
Software Hall of Shame – partial list

Robert Charette
IEEE Spectrum September 2005

Illustrative Risks to the Public in the Use of Computer
Systems and Related Technology

Peter Neumann
SRI International

www.csl.sri.com/users/neumann/illustrative.html

UNCLASSIFIED

Motivation
• 55% of systems cost more than expected
• 68% were late
• 88% underwent significant redesign IBM, 1994

… IT is now one of the largest
corporate expenses outside of
employee costs

“The average company spends
about 4-5% of revenue on
information technology” Charette

Software developers spend
approximately 80% of development
costs on identifying/correcting
defects NIST 2002

Yet, few products other than
software are shipped with such
high error rates

UNCLASSIFIED

Motivation
US economic cost of $59.5B annually

0.6% of GDP
Half the cost borne by users NIST 2002

Estimates that $22.2B in
savings by improved testing
earlier in life cycle

48% of requirements failures
are due to misunderstandings
or changes in the
environment, not the system

Hooks and Farry, Customer
Centered Products

“Increasing complexity of
software, along with decreasing
average product life expectancy,
has increased the economic
costs of errors.”

NIST 2002

UNCLASSIFIED

Motivation
Windows XP: 40M SLOC
Linux (some versions): 200M SLOC
Cell phones: 2M SLOC to 20M by 2010
General Motors: 100M SLOC/car by 2010

Software error-ridden in
part because of growing
complexity

“I have always wished that my
computer would be as easy to use as
my telephone.”

80% of the value of most systems
is delivered by 20% of the features,
and up to two-thirds of the features
of most systems are rarely, if ever,
used.

“My wish has come true. I no longer
know how to use my telephone.”

http://www.poppendieck.com/overview.htm#High_ProductivityBjarne Stroustrup

(Quoted by Daniel Jackson)
Suggests that the best way to write

reliable code faster is to write less code!

UNCLASSIFIED

Motivation

“Rework done [earlier in
the lifecycle] is 10 to 100
times less expensive than
if it is done [later].”

“The cost of reworking errors
in programs becomes higher
the later they are reworked in
the process, so every attempt
should be made to find and fix
errors as early in the process
as possible.”

With Fagan Inspections,
“the measured increase in
coding productivity of 23%
is considered to validly
accrue …”

Fagan 1976, 1999

UNCLASSIFIED

Motivation
20-30 errors/1KSLOC in most software applications

Sustainable Computing Consortium

Formal design/code inspections average 65% in
defect-removal efficiency. Most forms of testing less
than 30% efficient.

Caper-Jones

We find that if quality is integrated up-front, it actually
costs less money

Payne

UNCLASSIFIED

Motivation
“The demand for software has grown far faster than our
ability to produce it. Furthermore, the Nation needs
software that is far more usable, reliable, and powerful
than what is being produced today.”

US PITAC, February 1999

We have become dangerously dependent on large
software systems whose behaviour is not well
understood and which often fail in unpredicted ways.

UNCLASSIFIED

Motivation
Software that is charged with

– protecting human life is safety-critical
– an essential task is mission critical
– protecting confidential information is

security-critical
Larry Paulson

10-9 failures/hr: Testing
would take 109 hours and
error correction might seed
new errors

Littlewood & Strigini, 1993

For ultra-criticality, both testing
and software fault tolerance are
inadequate

Butler & Finelli, 1993

UNCLASSIFIED

Motivation
State-wide Automated child Welfare Information System (SACWIS)

Florida

• Started 1990, estimated 8
years @ $32M

• By 2002, spent $170M and
estimated at $230M

Minnesota

• Started in 1999, essentially
the same system

• Completed in 2001 @ $1.1M

• Productivity difference of 200:1

• Standardized infrastructure, minimized requirements,
8 capable people

Jim Johnson, Chair Standish Group, 2002

UNCLASSIFIED

Software Development
Lifecycle

• Concern for “reliable software development” must start
as early as possible in the SDLC

• SDLC as project “risk management”
• Industry best practice targeting higher assurance of

systems and business value

UNCLASSIFIED

Software Development
Lifecycle

Feature Driven
DevelopmentScrum

XP UML
Dynamic Systems

Development MethodsRUP

Agile, iterative, incremental, adaptive, empirical,
produce business value, mitigate project risk

UNCLASSIFIED

SCRUM
• BV earlier in cycle by focusing on the

20% of features prioritize features

• 24 hours: Done, Plan, Impediments

• Iterative release: Some requirements,
analysis, design, development and testing

• Product owner, Scrum master, Project
team (5-10)

• Provide business value every 30 days

Diagram from www.methodsandtools.com

UNCLASSIFIED

SCRUM
• Daily meeting: 15 minutes & standing;

scrum master and project team are the
only speakers

• Few artefacts: Product backlog, Sprint
backlog, Burndown charts

• Iterative development accelerates drive to
profitabilityDiagram from www.methodsandtools.com

UNCLASSIFIED

Feature Driven Development

Providing business value - $s • Client valued

• Inclusive methodology throughout

• Agile: features in 1-10 days

• Release meetings/cycles (2 weeks)

PRAISED:

• Productivity gains

• Reduced cost

• Avoided cost

• Increased revenue

• Service level improvements

• Enhanced quality

• Differentiation

• Frequent, tangible working results

• Highly iterative

• Core set of industry best practice

• Quality built-in

Delivering Real Business Value using FDD, Grant Cause

UNCLASSIFIED

Feature Driven Development
• Domain Object Modeling

• Developing by feature

• Individual class ownership

• Feature teams

• Inspections (design, code)

• Regular builds

• Configuration management

• High visibility

A feature is a small, client valued
function expressed in a specific form

<action> the <result> <by|for|of|to> an <object>

Five processes:

• Develop an overall model

• Build features list

• Planning

• Design by feature

• Build by feature

UNCLASSIFIED

XP
• Planning: release/iteration

• Small releases

• System metaphor

• Simple design

• Continuous testing

• Refactoring – eliminate
duplicate code

• Pair programming

• Collective code ownership

• Continuous integration

• 40-hour week

• On-site customer

• Coding standards

• User stories – 3 sentences;
1-3 weeks development

• Etc.

UNCLASSIFIED

Definitions
Verification:

Are we building the product right?
Validation:

Are we building the right product?

Formal Methods is the application of
mathematical reasoning to establish properties
about digital systems.

Rockwell Collins

UNCLASSIFIED

Definitions
Formal methods are
mathematically based approaches
to software production that use
mathematical models and formal
logic to support rigorous software
specification, design, coding and
verification.

The goals of most formal
methods are to:

Reduce the defects
introduced into a product,
especially during the earlier
development activities …
Place confidence in the
product not on the basis of
particular tests, but on a
method that covers all cases.

“Formal methods can be applied to a few
or almost all software development
activities: requirements, design and
implementation. The degree to which
formal methods are applied varies from
the occasional use of mathematical
notation in specifications otherwise
written in English, …”

US National Cyber
Security Partnership

UNCLASSIFIED

Definitions
High assurance
Theorem proving/Model checking, etc.

Demonstrate routines meet
functional specifications

Compilers, Type Checkers
Simple properties
Syntax/semantics

Reasonably easy
Can require annotations
Some run-time errors prevented (e.g., array bounds)Based on Homeier slide

UNCLASSIFIED

Definitions
Model

CheckingBusiness Cases

CC, FIPS 140-2/3,
DO-178B, MoD00-55

Proof theory Symbolic
Execution

Technology Transfer
Adoption

Logic
Equivalence

Checking
Extreme programming,
Spiral, Waterfall, Agile

programming, etc.

Standards
Methodologies Analysis

Theorem
ProvingFM is Multidisciplinary

Language
design

Z/EVES,
EVES,
PVS,
Spark,
SMV,
SPIN,
ESC/Java,
Blast,
ACL2,
NQTHM,
HOL,
Isabelle, B

Application areas

Operational
Semantics

Specification
languages Network

analysis
Critical
systems

Denotational
Semantics

Programming
languages Hardware

Signalling
systems, etc.

Axiomatic
Semantics

Z, VDM, Verdi, PVS, Spark Ada,
Eiffel, JML, Cryptol, etc.

UNCLASSIFIED

Z
• Formal notation for specifying and

designing computer systems and
software

• Based on set theory
• Blackboard ready
• Oxford
• Standardized and “broadly”

adopted
• CBIS, CICS, many other examples

…
The Way of Z

Practical Programming with Formal
Methods

Jonathan Jacky

Potter, Sinclair, Till

UNCLASSIFIED

Z/EVES
• GUI-based system that

supports the analysis of Z
specifications in several
ways:

Syntax and type checking
Schema expansion
Precondition calculation
Domain checking
General theorem proving

• Incremental adoption
• 63 Countries
• ORA Canada/NSA/DND
• CBIS, Crypto protocols …

Edit Window

UNCLASSIFIED

Z/EVES
Proof Window

“prove-by-reduce”

Oops, conjecture simplifies to false

Proof script

Goal predicate

UNCLASSIFIED

Cryptol
des: {a, b} (a>=7)=>

([2**(a-1)],[b][48]) -> [64]
des (pt, keys) =

permute (FP, swap (split last))
where {pt’ = permute (IP, pt);

iv = [| round (k, split lr)
|| k <- keys
|| lr <- [pt’] #iv |]

last = iv @ (width keys -1); };

round (k, [l r]) = r # (l ^ f (r, k));
f (r, k) = permute

(PP,
SBox (k ^ permute (EP, r)));

swap [a b] = b # a;
permute: {a b} (b >= 1) =>

([a][b], [2**(b-1)]) -> [a];
permute (p, m) =

[| m @ (i-1) || I <- p |];

• Galois Communications/NSA, et al.
• Domain specific language for

modeling cryptographic algorithms
• Unambiguous (precise,

implementation independent)
• Executable (debug, generate test

cases)
• Declarative (multiple use)
• Structure and guide implementation
• Reference library for cryptographic

algorithms

UNCLASSIFIED

Cryptol

Cryptol
Interpreter

Validate

Domain-specific
Design Capture

Assured
implementation

Special purpose
processor

Target
H/W Code

FPGA(s)

Verify Crypto
Implementations

Models and
Test Cases

Design

Cryptol
Tools

Build
C or Java

Multiple uses from
one specification

Cryptol developed by Galois

Derived from Brad Martin Slide

UNCLASSIFIED

Java Modeling Language

package org.jmlspecs.samples.jmltutorial;
import org.jmlspecs.models.JMLDouble;

public class SqrtExample {
public final static double eps = 0.0001;
/*@ requires x>=0;
/*@ JMLDouble.approximatelyEqualTo

@ (x, \result*\result, eps); @*/
/*@ signals_only IllegalArgumentException;

@ signals (IllegalArgumentException e)
@ e.getMessage() != null && !(x>0.0); @*/

public static double sqrt(double x) {
if (x>=0 {return internalSqrt(x); }
else {throw new
IllegalArgumentException(“x is negative:” + x);}}

• Annotating & reasoning
about Java code

• In-line annotations/pragmas

• Design by contract,
documentation, blame
assignment, efficiency,
modularity of reasoning

• Interface specifications

Gary Leavens, et al.
Iowa State

UNCLASSIFIED

Extended Static Checker
for Java (ESC/Java2)

• Finds run-time errors in JML-
annotated Java programs by static
analysis

• JML annotations specify degree of
checking

• Array index out of bounds
• Division by zero
• Dereferencing a null object
• Unmet entry condition
• Unmet exit condition
• Deadlock
• Race condition, etc.

• Feels like a type checker
• Finds subtle errors that testing

may miss; catches obscure
combinations of conditions

• Potentially a practical, lightweight
formal methods tool

Kind Software - Ireland

Other Java R&D ongoing

UNCLASSIFIED

Model Checking
Model ConsistentModel

CheckerProperty Counter example

• Model checking is an automatic
technique for verifying properties of
a finite model of a system

• Exhaustively tests all states of the
model.

• SMV, SPIN, FDR & Murφ principal
examples

Exhaustive
Automatic
Counter-examples

Advantages

Disadvantages

State space explosion
Model must be finite and not
too big – experience needed!

UNCLASSIFIED

SPIN
Mutual Exclusion: H. Hyman, CACM 1966Analyzing models of concurrent

systems for logical consistency
• Data Communication Protocols.
• Promela (Process Meta Language)
• Synchronous and asynchronous

communications
• Creation/destruction of processes

bool want[2]; bool turn; byte cnt;
proctype P(bool i) {want[i] = 1;
do :: (turn != i) -> (!want[1-i]); turn = I

:: (turn == i) -> break od
cnt = cnt + 1;
skip; /*critical section*/
assert (cnt == 1); cnt = cnt -1;
want[i] = 0 }
init (run P(0); run P(1))

Two forms of analysis:

• Random simulations

• Generate C program to
perform efficient verification

$spin –a hyman1
$gcc –o pan pan.c …
assertion violated (cnt == 1)

Critical section
violation

Could perform trace!
Gerard Holzmann

UNCLASSIFIED

ACL2
Theorem proving

AAMP7 Intrinsic Partitioning Separation Theorem – Rockwell
Collins – ACL2

(implies
(and (secure-configuration spex) (spex-hyp :any :trusted :raw spex fun::st1)

(spex-hyp :any :trusted :raw spex fun::st2))
(implies
(let ((abs::st1 (lift-raw spex fun::st1))

(abs::st2 (lift-raw spex fun::st2)))
…
(equal

(raw-select seg (lift-raw spex (fun::next spex fun::st1)))
(raw-select seg (lift-raw spex (fun::next spec fun::st2))))))

Yes, it is ugly; but Rockwell
Collins has received NSA
certification for its Advanced
Architecture Micro
Processor 7 Government
Version (AAMP7G), a
Multiple Independent Levels
of Security (MILS) device
for use in cryptographic
applications.

The AAMP7G's design was proved mathematically
to achieve MILS using Formal Methods techniques
as specified by EAL-7 of the Common Criteria.

www.rockwellcollins.com/news/page6237.html

UNCLASSIFIED

Value Propositions
• Product-focused measure of correctness: objective

rather than process quality measures
• Early detection of defects
• Guarantees of correctness: e.g., model checkers

consider all possible execution paths through a
system

• Analytical approach to complexity: e.g., “what-if”
analyses, FM better suited than testing

Honeywell on Formal
Methods: Analysis of
complex systems to
ensure correctness and
reduce cost

“Firstly, such methods can provide a cost reduction in
complex system procurement, through an improved
understanding of system design, interfaces and
requirements validation and management. Secondly,
formal methods can provide increased assurance that
critical requirements are met.”

Cant, Mahony, McCarthy, Vu
DSTO, Australia

UNCLASSIFIED

Value Propositions
Is proof more cost-effective than testing?

SHOLIS:
• Ship Helicopter

Operating Limits
Information System

• Safety-critical, aids the
safe operation of
helicopters on naval
vessels

• Z and SPARK

UNCLASSIFIED

Value Propositions
Faults Found and Effort Spent During SHOLIS Phases

1.5%

9.5%

4.5%

1.0%

25.0%

17.0%

2.0%

2.5%

5.0%

Effort

8.00%Other

0.831.25%Acceptance test

2.2621.50%System validation test

1.175.25%Code proof

1.251.25%Integration test

0.6315.75%Unit test

1.5426.25%Detailed design code and
informal test

0.751.50%High-level design

6.4016.00%Z Proof

0.653.25%Specification

Faults/EffortFaults foundProject Phase

UNCLASSIFIED

Value Propositions
Why do software projects fail so often? Charette

• Unrealistic/unarticulated project
goals

• Inaccurate resource estimates
• Ill-defined system requirements
• Poor project status reporting
• Unmanaged risks
• Poor stakeholder communication

• Use of immature technology
• Inability to handle complexity
• Poor development practices
• Poor Project Management
• Stakeholder politics
• Commercial pressures

UNCLASSIFIED

Successes - Microsoft
“Things like even software verification, this has
been the Holy Grail of computer science for many
decades but now in some very key areas, for
example, driver verification we’re building tools
that can do actual proof about the software and
how it works in order to guarantee reliability.”

Bill Gates
WinHec 2002, April 18, 2002

UNCLASSIFIED

Successes – Intel
Intel’s motivation:
• 1994 FDIV error in

Intel Pentium
processor cost
US$500M

• Similar error today
would likely cost more

• Intel really interested
in technologies to
reduce errors

Intel’s success with formal methods
John Harrison
Software, Science and Society, December 5, 2003

Market pressures leading to
increasingly complex designs

• 4-fold increase in errors in Intel
processor designs/generation

• 8,000 (approx) errors
introduced during the design of
the Pentium 4

• Fortunately, pre-silicon
detection rates close to 100%
… “just enough to tread water.”

UNCLASSIFIED

Successes – Intel

Extensive testing and pre-silicon simulation

• Slow

• Too many possibilities
- 2160 possible pairs of

floating point numbers
- Vastly higher number of

possible states of a
complex micro-architecture

FV standard practice in hardware:
– Hardware is designed in a

more modular way than most
software

– There is more scope for
complete automation

– The potential consequences of
a hardware error are greater

Harrison

UNCLASSIFIED

Successes – Intel
• Verification of Intel Pentium 4

floating-point unit using a mixture
of symbolic trajectory evaluation
and theorem proving

• Verification of bus protocols using
pure temporal logic model
checking

• Verification of microcode and
software for many Intel Itanium
floating-point operations, using
pure theorem proving

Results:

• FV found many high
quality errors in P4 and
verified 20% of the
design

• FV now standard
practice in the floating-
point domain

Harrison

UNCLASSIFIED

Successes – Intel
Proof versus experiment

In mathematics, it is normal to prove results rigorously,
and experimental “inductive” testing is exotic and

controversial

Testing can miss things that would be
revealed by formal proof

In computing, it is normal to establish results by
empirical testing and proving them formally is exotic

and controversial

UNCLASSIFIED

Successes – Praxis
• Correctness-by-construction

Do not introduce errors in
the first place.
Remove any errors as close
as possible to the point that
they are introduced.

• Process incorporates formal
notations used to specify
system and design
components with review and
analyses for consistency and
correctness

• Incremental builds
Removes need for
expensive
integration phase

• Specification based
testing

• Automated test tools
to measure code
coverage and
supplement tests to
achieve 100%
statement and branch
coverage

UNCLASSIFIED

Successes – Praxis

0.0038.0102003TIS
Core

0.0511.0392001…A…

0.0428.01001999MULTO
S CA

0.227.0271997SHOLIS

0.7512.71971992CDIS

Defects
(per SLOC)

Productivity
(SLOC/day)

Size
(KSLOC)

YearProject FAA Presentation: [post-delivery
figures]

• Reliable systems: 0.5-1
defects/KSLOC

• Reasonable commercial system:
3-6 defects/KSLOC [post-
delivery]

• Poor system: >15 defects/KSLOC
• [But SCC says 30

defects/KSLOC]
• Root cause of most software

errors: Lack of complete
understanding of the correct
design space

UNCLASSIFIED

Successes – Praxis

8818222403697Support
software

38203165649939TIS Core

OverallDuring
coding

SparkAda

Productivity
(LOC/day)

SLOC

Size and Productivity

Industry average for Ada is approximately 20LOC/day
www.dacs.dtic.mil/techs/baselines/productivity.html

UNCLASSIFIED

Successes – Z/EVES
Everett Rogers (Sloan)

Relative advantage
Compatibility
Complexity
Trialability
Observability
Transferability

• Prior technology drag,
irreversible investments,
sponsorship, expectations

• EVES to Z/EVES

• 3 countries to 63

• But few commercial
opportunities

Technology transfer:

• Geoffrey Moore

• Clayton Christensen

“Formal Methods Technology Transfer: Impediments and
Innovation,” September 1995. Craigen, Gerhart, Ralston

UNCLASSIFIED

Standards
FM required (recommended) in numerous
standards:

– Common Criteria (EAL 5-7) [International]
– FIPS 140-2 (Level 4) [US]
– Defence Standard 00-55 (00-56) [UK]
– Defence Standard 5679 [Australia]
– DO-178B (Level A) [US/International]
– Etc…

UNCLASSIFIED

Formal Methods Myths
Can guarantee that software is perfect.

Are all about theorem proving. Are only useful for
safety-critical systems.

Require highly trained mathematicians.
Are unacceptable to users.

Are not used in
real, large-scale

software.
Increase the cost of development.

Anthony Hall, 1990

UNCLASSIFIED

Conclusions

Equivalence checking: 1M gate ASICS
Model checking:1000 latches at a time – claims of 1020 states
Software verification (design to code): ~80KLOC
Verified compilers for special purpose languages
Static analysis: >150KLOC
Specification and modelling: >30KLOC of specification

Bloomfield & Craigen, 2000

FM99 (Toulouse, FR) estimate
of FM activities: $1-2B

Craigen, 1999

Halloween
Cell phone ring tones

UNCLASSIFIED

Conclusions

From a mathematics perspective:
Soundness is good!

From a tech transfer/engineering perspective:

Unsound and incomplete may be better!

This is a hard lesson!

Value propositions vary with communities

UNCLASSIFIED

Conclusions
Many potential applications

• Software

• Hardware

• Algorithms

• Protocols

• Reverse Engineering

• Standards

Increasing body of successful projects and adoption

But impediments remain: social, process, technical

UNCLASSIFIED

Conclusions

Is Software Assurance an Oxymoron?
Perhaps, not. However, there is substantial room for improvement.

Is Mathematics a Resolution?

Extremely helpful, but software assurance is
multi-faceted and various impediments remain,
including lack of industry maturity.

UNCLASSIFIED

References
1. “Validation, Verification and Certification of Embedded Systems,” NATO

RTO-TR-IST-027, October 2005,
www.rta.nato.int/Main.asp?topic=ist.htm#recent

2. “Formal Methods Diffusion: Past Lessons and Future Prospects,”
Bundesamt fur Sicherheit in der Informationstechnik (BSI), Robin
Bloomfield and Dan Craigen,
www.bsi.bund.de/fachthem/fmethods/sonstige/fms_v1.0.pdf

3. “Formal Methods Adoption: What’s Working, What’s Not!” Keynote
presentation for SPIN 1999, Dan Craigen,
www.fee.uwaterloo.ca/~sleue/6thSPIN99.html

	Is Software Assurance an Oxymoron? Is Mathematics a Resolution?
	Presentation Outline
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Software Development Lifecycle
	Software Development Lifecycle
	SCRUM
	SCRUM
	Feature Driven Development
	Feature Driven Development
	XP
	Definitions
	Definitions
	Definitions
	Definitions
	Z
	Z/EVES
	Z/EVES
	Cryptol
	Cryptol
	Java Modeling Language
	Extended Static Checkerfor Java (ESC/Java2)
	Model Checking
	SPIN
	ACL2
	Value Propositions
	Value Propositions
	Value Propositions
	Value Propositions
	Successes - Microsoft
	Successes – Intel
	Successes – Intel
	Successes – Intel
	Successes – Intel
	Successes – Praxis
	Successes – Praxis
	Successes – Praxis
	Successes – Z/EVES
	Standards
	Formal Methods Myths
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	References

