
© 2022, Amazon Web Services, Inc. or its Affiliates.

Zyad Hassan
May 19, 2022

Kani
A Bit-Precise Rust Verifier

© 2022, Amazon Web Services, Inc. or its Affiliates.

2

© 2022, Amazon Web Services, Inc. or its Affiliates.

3

© 2022, Amazon Web Services, Inc. or its Affiliates.

Demo

4

© 2022, Amazon Web Services, Inc. or its Affiliates.

Initial users: Systems Programmers

5

Requirements:
1. Bit precision
2. Supporting unsafe code
3. Heap modeling

© 2022, Amazon Web Services, Inc. or its Affiliates.

Verifying Rust systems code requires bit-precision

https://doc.rust-lang.org/stable/src/std/ffi/os_str.rs.html#98

6

© 2022, Amazon Web Services, Inc. or its Affiliates.

Verifying Rust systems code requires supporting unsafe operations

https://github.com/aws/s2n-quic/blob/main/quic/s2n-quic-core/src/slice.rs
7

© 2022, Amazon Web Services, Inc. or its Affiliates.

Verifying Rust systems code requires a precise model of the heap

https://github.com/rust-vmm/vm-memory/blob/main/src/mmap.rs

8

© 2022, Amazon Web Services, Inc. or its Affiliates.

Properties checked

Automatic checks
• Buffer overflows
• Pointer safety
• Division by zero
• Pointer arithmetic
• Arithmetic overflows

User defined properties
• Assertions
• Object invariants

Note that this does not (yet) cover all Rust UB
• Type safety
• Invalid bit patterns
• Aliasing violations

9

© 2022, Amazon Web Services, Inc. or its Affiliates.

Formal methods in the
development workflow

10

© 2022, Amazon Web Services, Inc. or its Affiliates.

Code-Level Model Checking in the
Software Development Workflow

Nathan Chong
Amazon

Byron Cook
Amazon

UCL

Konstantinos Kallas
University of Pennsylvania

Kareem Khazem
Amazon

Felipe R. Monteiro
Amazon

Daniel Schwartz-Narbonne
Amazon

Serdar Tasiran
Amazon

Michael Tautschnig
Amazon

Queen Mary University of London

Mark R. Tuttle
Amazon

ABSTRACT
This experience report describes a style of applying symbolic model
checking developed over the course of four years at Amazon Web
Services (AWS). Lessons learned are drawn from proving properties
of numerous C-based systems, e.g., custom hypervisors, encryp-
tion code, boot loaders, and an IoT operating system. Using our
methodology, we find that we can prove the correctness of industrial
low-level C-based systems with reasonable effort and predictability.
Furthermore, AWS developers are increasingly writing their own
formal specifications. All proofs discussed in this paper are publicly
available on GitHub.

CCS CONCEPTS
• Software and its engineering→ Formal software verification;
Model checking; Correctness; •Theory of computation→ Program
reasoning.

KEYWORDS
Continuous Integration, Model Checking, Memory Safety.

ACM Reference Format:
Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Felipe R.
Monteiro, Daniel Schwartz-Narbonne, Serdar Tasiran, Michael Tautschnig,
and Mark R. Tuttle. 2020. Code-Level Model Checking in the Software
Development Workflow. In Software Engineering in Practice (ICSE-SEIP

’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3377813.3381347

1 INTRODUCTION
This is a report on making code-level proof via model checking
a routine part of the software development workflow in a large
industrial organization. Formal verification of source code can have
a significant positive impact on the quality of industrial code. In

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7123-0/20/05.
https://doi.org/10.1145/3377813.3381347

particular, formal specification of code provides precise, machine-
checked documentation for developers and consumers of a code
base. They improve code quality by ensuring that the program’s
implementation reflects the developer’s intent. Unlike testing, which
can only validate code against a set of concrete inputs, formal proof
can assure that the code is both secure and correct for all possible
inputs.

Unfortunately, rapid proof development is difficult in cases where
proofs are written by a separate specialized team and not the software
developers themselves. The developer writing a piece of code has
an internal mental model of their code that explains why, and under
what conditions, it is correct. However, this model typically remains
known only to the developer. At best, it may be partially captured
through informal code comments and design documents. As a result,
the proof team must spend significant effort to reconstruct the formal
specification of the code they are verifying. This slows the process
of developing proofs.

Over the course of four years developing code-level proofs in
Amazon Web Services (AWS), we have developed a proof methodol-
ogy that allows us to produce proofs with reasonable and predictable
effort. For example, using these techniques, one full-time verification
engineer and two interns were able to specify and verify 171 entry
points over 9 key modules in the AWS C Common1 library over a
period of 24 weeks (see Sec. 3.2 for a more detailed description of
this library). All specifications, proofs, and related artifacts (such as
continuous integration reports), described in this paper have been
integrated into the main AWS C Common repository on GitHub, and
are publicly available at https://github.com/awslabs/aws-c-common/.

1.1 Methodology
Our methodology has four key elements, all of which focus on com-
municating with the development team using artifacts that fit their
existing development practices. We find that of the many different
ways we have approached verification engagements, this combina-
tion of techniques has most deeply involved software developers in
the proof creation and maintenance process. In particular, developers
have begun to write formal functional specifications for code as they
develop it. Initially, this involved the development team asking the
verification team to assist them in writing specifications for new

1https://github.com/awslabs/aws-c-common

��

�����*&&&�"$.���OE�*OUFSOBUJPOBM�$POGFSFODF�PO�4PGUXBSF�&OHJOFFSJOH��4PGUXBSF�&OHJOFFSJOH�JO�1SBDUJDF�	*$4&�4&*1

https://ieeexplore.ieee.org/document/9276622
11

© 2022, Amazon Web Services, Inc. or its Affiliates.

Key insight: use artifacts that fit within developers workflow

WRITE SPECS IN THEIR LANGUAGE EMBED THE SPECS IN THEIR CODE

PROOFS RUN IN CONTINUOUS INTEGRATION

12

© 2022, Amazon Web Services, Inc. or its Affiliates.

Under the Hood

13

© 2022, Amazon Web Services, Inc. or its Affiliates.

High Level Flow

Model
Checker
(CBMC)

SUCCESS
or

FAILURE
(+Trace)

Kani

Kani
Compiler

Rust IR
(goto-

program)

14

© 2022, Amazon Web Services, Inc. or its Affiliates.

Kani Compiler

l Adds verification checks

l Includes a custom codegen that translates MIR to goto-program

l MIR: Mid-Level Intermediate Representation

l MIR is the source of truth

kani-compiler

Custom

Frontend
Rust

Program
goto-

program

Rust

Compiler

GotoC

Codegen

MIR

15

© 2022, Amazon Web Services, Inc. or its Affiliates.

Model Checker: CBMC

16

CBMC

C / C++
Symbolic

Execution

Decision

Procedure

Goto
Program

Parser

• Bounded Model Checker developed for C and C++ programs.
• Verifies memory safety, undefined behavior, user-specified assertions...
• Uses a MiniSat based solver for bit-vector formulas by default.

SUCCESS

FAILURE

goto-
program

© 2022, Amazon Web Services, Inc. or its Affiliates.

Open Source

https://github.com/model-checking/kani

17

© 2022, Amazon Web Services, Inc. or its Affiliates.

Summary

• Systems programmers need
• Bit precision
• Precise modeling of heap
• Precise modeling of unsafe operations

• Integrate into the developer workflow
• Unit/Prop test like “proof harnesses”
• Run using `cargo`
• Concrete debug traces

• Leverage well established tools
• Rust Compiler
• CBMC as bit-precise solver

18

© 2022, Amazon Web Services, Inc. or its Affiliates.

Appendix

19

© 2022, Amazon Web Services, Inc. or its Affiliates.

Architecture

20

© 2022, Amazon Web Services, Inc. or its Affiliates.

21

