dWs$s

V

Kani

A Bit-Precise Rust Verifier

Zyad Hassan
May 19, 2022

= ©VYoulube ™ Search

Kani

A Bit-Precise Rust Verifier

Daniel Schwartz-Narbonne, Celina G. Val
March 28 2022

P Pl € 001/5317

March Session -- Kani

39 views * Mar 28, 2022

Rust Formal Methods IG
23 subscribers

50

C] DISLIKE

/> SHARE

=+ SAVE

SUBSCRIBE

aWs
N/ 2

Testing

Sanitizers

Fuzzing

0o MIRAI

+———0—41——0———-
RVT | Kani

Prusti

Creusot

aWs
\./‘73

Demo

dWsS

Initial users: Systems Programmers

Requirements:

1. Bit precision

2. Supporting unsafe code
3. Heap modeling

dWsS

Verifying Rust systems code requires bit-precision

#[cfg_attr(not(test), rustc_diagnostic_item = "OsStr")]

// not documented and
pub struct 0sStr {
inner: Slice,

}

https://doc.rust-lang.org/stable/src/std/ffi/os_str.rs.html|#98

dWsS

Verifying Rust systems code requires supporting unsafe operations

// The compiler isn't smart enough to remove all of the bounds checks so we resort to
// "qget_unchecked’.

//
// https://godbolt.org/z/45cGlv

// 1iterate until we reach one of the ends
while from_index < from.len() &% to_index < to.len() {
let from = unsafe {
// Safety: this length is already checked in the while condition
debug_assert!(from.len() > from_index);
from.get_unchecked(from_index)

to = unsafe {
// Safety: this length is already checked in the while condition
debug_assert!(to.len() > to_index);

to.get_unchecked _mut(to_index)

Verifying Rust systems code requires a precise model of the heap

/// Trait implemented by the underlying ‘MmapRegion’.
pub(crate) trait AsSlice {
/// Returns a slice corresponding to the data in the underlying ‘MmapRegion’.
/17
/// # Safety
/17
/// This 1is unsafe because of possible aliasing.
unsafe fn as_slice(&self) -> &[u8];

/// Returns a mutable slice corresponding to the data in the underlying "MmapRegion’.

///

/// # Safety

///

/// This 1is unsafe because of possible aliasing. Accesses done through the resulting slice
/// are not visible to dirty bitmap tracking functionality (when present), and have to be
/// explicitly accounted for.

#[allow(clippy: :mut_from_ref)]

unsafe fn as_mut_slice(&self) -> &mut [u8];

https://github.com/rust-vmm/vm-memory/blob/main/src/mmap.rs
EAA)

N E;

Properties checked

Automatic checks Note that this does not (yet) cover all Rust UB

* Buffer overflows * Type safety
* |nvalid bit patterns

e Pointer safet
! * Aliasing violations

* Division by zero

! Warning: The following list is not exhaustive. There is no formal model of Rust's semantics

YA - .
* FOI nte I''d rlt h 11 et IC for what is and is not allowed in unsafe code, so there may be more behavior considered

. . unsafe. The following list is just what we know for sure is undefined behavior. Please read the
¢ A”th m et|C OAV[S rﬂ OWS Rustonomicon before writing unsafe code.

User defined properties
* Assertions
* Object invariants

aWws
N’ 9

Formal methods in the
development workflow

dWsS

2020 IEEE/ACM 42nd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

Code-Level Model Checking in the
Software Development Workflow

Nathan Chong

Amazon

Kareem Khazem
Amazon

Serdar Tasiran
Amazon

Byron Cook
Amazon
UCL

Felipe R. Monteiro

Amazon

Michael Tautschnig

Amazon

Konstantinos Kallas
University of Pennsylvania

Daniel Schwartz-Narbonne
Amazon

Mark R. Tuttle

Amazon

Queen Mary University of London

ABSTRACT

This experience report describes a style of applying symbolic model
checking developed over the course of four years at Amazon Web
Services (AWS). Lessons learned are drawn from proving properties
of numerous C-based systems, e.g., custom hypervisors, encryp-
tion code, boot loaders, and an IoT operating system. Using our
methodology, we find that we can prove the correctness of industrial
low-level C-based systems with reasonable effort and predictability.
Furthermore, AWS developers are increasingly writing their own
formal specifications. All proofs discussed in this paper are publicly
available on GitHub.

particular, formal specification of code provides precise, machine-
checked documentation for developers and consumers of a code
base. They improve code quality by ensuring that the program’s
implementation reflects the developer’s intent. Unlike testing, which
can only validate code against a set of concrete inputs, formal proof
can assure that the code is both secure and correct for all possible
inputs.

Unfortunately, rapid proof development is difficult in cases where
proofs are written by a separate specialized team and not the software
developers themselves. The developer writing a piece of code has
an internal mental model of their code that explains why, and under
what conditions, it is correct. However, this model typically remains

https://ieeexplore.ieee.org/document/9276622

Key insight: use artifacts that fit within developers workflow

Inc. or ffiliates. All Rights R
se-Identifier: A e

<aws/conmon/array_List.h> AWS_STATIC_IMPL

e <proof_helpers/make_common_data_structures.h>

t aws_array_list_pop_front(struct aws_array_list xAWS_RESTRICT list) {
AWS_PRECONDITION(aws_array_list_is_valid(list));
id aws_array_list_pop_front_harness() { . o -

HEIR CODE

store_pyte_trom_putrer ola_bytle;

_byte_from_array((uint8_t *)list.data, list.current_size, &old_byte);

* per
if (laws_arr

as ﬁ'f“: “;efg:r'] == owd. tength - 1; A'h'S_POSTC ONDITION(ws_array_list_1is_va lLid(1list));

assert(list.alloc == old.alloc);

assert(list.current_size == old.current_size); T urn aWS_ ra lS e_e rror (A'ﬂls_[RROF{_I—IST_E‘4 PTY) ;

assert(list.item_size == old.item_size);

front is not successful, the list mus
, &old, &old_byte);

assert(aws_array_list_is_valid(&list));

° Changes approved Show all reviewers

1 approving review by reviewers with write access. Learn more.
v 1approval

M All chorcke hava nacsad Hide all checks

¥ CBMC Batch: aws_byte_buf_from_array !

OFS-RUN-IN-CONT NUOUS IN

¥ CBMC Batch: aws_byte_buf_from_empty_array

. # CBMC Batch: aws_byte_buf_init

v E CBMC Batch: aws_byte_buf_init_copy — CBMC Batch job aws_byte_buf_init_c... Details

, @@ CRMC Ratrh: awe hita hif init ranu fram rurear — CRME Rateh inh awe b Nataile

° This branch has no conflicts with the base branch
Only those with write access to this repository can merge pull requests.

Under the Hood

adWs

High Level Flow

Kani

Compiler

IR

(goto-
program)

Model
Checker
(CBMC)

SUCCESS
or

FAILURE
(+Trace)

adWs

Kani Compiler

o Adds verification checks
o Includes a custom codegen that translates MIR to goto-program
o MIR: Mid-Level Intermediate Representation

« MIR is the source of truth

kani-compiler

Rust Custom Rust GotoC

Program Frontend Compiler Codegen

N

goto-
program

Model Checker: CBMC

* Bounded Model Checker developed for C and C++ programs.

* \Verifies memory safety, undefined behavior, user-specified assertions...

 Uses a MiniSat based solver for bit-vector formulas by default.

Goto
Program Symbolic Decision

Parser
Execution Procedure

N

goto-
program

SUCCESS
FAILURE

adWs

Open Source

O Search or jump to... Pull requests Issues Marketplace Explore

] mode|_checking/kani Public <X Edit Pins ~ ® Unwatch 9 ~ % Fork 27 Starred 514

<> Code (Issues 222 I Pullrequests 6 0 Discussions () Actions [Projects 1 © Security |22 Insights £83 Settings

¥ main ~ ¥ 2 branches © 2 tags Go to file Add file ~ About

Kani Rust Verifier

‘ tedinski Bump version to 0.2.0 (#1204) v c7cocaf 2daysago YY) 559 commits
& model-checking.github.io/kani

.github Ensure cargo-kani setup is idempotent (#1193) 7 days ago o (o) (e

cprover_bindings Update the rust toolchain to nightly-2022-05-03 (#1181) 8 days ago
Readme

docs Update python requirement (#1182) 9 days ago Ty

firecracker @ cd36¢69 Regression test for codegen'ing Firecracker (#264) 10 months ago Code of conduct

kani-compiler Bump version to 0.2.0 (#1204) 2 days ago 514 stars

9 watching

kani-driver Bump version to 0.2.0 (#1204) 2 days ago
27 forks

kani_metadata Bump version to 0.2.0 (#1204) 2 days ago

Summary

Systems programmers need
* Bit precision
* Precise modeling of heap
* Precise modeling of unsafe operations
Integrate into the developer workflow
* Unit/Prop test like “proof harnesses”
 Runusing ‘cargo
e Concrete debug traces
Leverage well established tools

* Rust Compiler
e CBMC as bit-precise solver

adWs

Appendix

dWsS
>

Architecture

cargo-kani
(script)

cargo-kani
(rust binary)

goto-cc

goto-instrument parser.py

kani-compiler
(rust binary)

. Kani Executables File 10

. Dependencies Invoked —» Process Invocation

aAWS
20~

verify harness

link /opgimize

N =
v
©
Q.
-
o
el
-
w
)
<
m
S
-
©
-
™
v
>
c
T
X

via cargo

loop /lgoto-c link / optimize]

