
1© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release;
Distribution is Unlimited

A Four Pillar Improvement
Strategy to Qualification
of Embedded Software
Systems
Peter Feiler

2© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-0609

3© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Outline

Challenges in Safety-critical Software-intensive Systems
Four Pillar Improvement Strategy
Pillar One
Pillar Two
Pillar Three
Pillar Four

4© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

We Rely on Software for Safe Aircraft Operation

Embedded software systems introduce a
new class of problems not addressed by

traditional system safety analysis

5© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Software Problems
not just in Aircraft

How do you upgrade washing
machine software?

Internet of Things!

6© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Cost/Capability Limit on Avionics Systems

As size and complexity increases so do
total development and rework costs.

SAVI predicts that cost growth is
unsustainable.

Software as % of total system
development

• 45% in 1997
• 66% in 2010
• To exceed 80% by 2020

A Commercial Aviation
Industry Consortium

1960
1970 1980 1990 2000 2010

2020

6

8

10

12

14

16

18

18

Ln
(O

nb
oa

rd
 S

LO
C

)

F-16:
135K

F-16D: 236K

F-22: 1.7M
F-35 (2008): 6.8M

A300B: 4.6K

A300FF:
40K

A310: 400K
A320: 800K

A340: 2MB757/767: 190K

B747: 370K
B737: 470K

B777: 470K

Calendar Year

F-35 (2012): 24M

Estimated Onboard Software Lines of
Code (SLOC) Growth

SAVI projects a limit of
affordability at
27.5MSLOC or $10B in
software costs

7© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Requirements
Architecture Design

Acceptance
Test

Unit
Test

Code Integration
Test

Operation

Where Faults are Found

Where Faults are Introduced

Nominal Cost Per Fault
for Fault Removal

Critical System Assurance Challenges

80% of faults discovered post unit test

Post-unit test software rework cost 50% of total
system development cost & growing

Recertification cost is not
proportional to system changes

8© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Current Industry Practice in DO-178B Compliant
Requirements Capture

Tool

Notation

Industry Survey in 2009 FAA Requirements Engineering Study

Need analyzable & executable specifications

9© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Mismatched Assumptions and Concepts in
Safety-Critical System Interactions

System Engineer Control Engineer

System
Under
Control

Control
System

Physical Plant
Characteristics

Operator Error

Sy
st

em
 U

se
r/

En
vi

ro
nm

en
t

System Hazards

Application DeveloperCompute
Platform

Runtime
Architecture

Application
Software

Embedded SW System Engineer

Time-sensitive
Processing

Measurement units, value
range, Boolean flags vs data
abstraction

Concurrency &
Communication

Virtualization &
Redundancy

Hardware
Engineer

Embedded software system
as major source of hazards

Why do system level failures still occur despite fault
tolerance techniques being deployed in systems?

10© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Outline

Challenges in Safety-critical Software-intensive Systems
Four Pillar Improvement Strategy
Pillar One
Pillar Two
Pillar Three
Pillar Four

11© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Assurance & Qualification Improvement Strategy

2010 SEI Study for AMRDEC
Aviation Engineering Directorate

Assurance: Sufficient evidence that a system
implementation meets system requirements

Architecture-centric Virtual
System Integration

Model
Repository

Architecture
Model

Component
Models

System
Implementation

Resource,
Timing &
Performance
Analysis

Reliability,
Safety,
Security
Analysis

Operational &
failure modes

Static Analysis &
Compositional Verification

System
configuration

Early Problem Discovery through Virtual System Integration & Analysis

Incremental Assurance
throughout Life Cycle

Mission
Requirements

Function
Behavior

Performance

Survivability
Requirements

Reliability
Safety

Security

Architecture-led
Requirement Specification

Improved Assurance through Better Requirements & Automated Verification

2007 National Research
Council Study

12© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

“Should Cost” Predictions For Avionics

ATKearney “Software: The Brains Behind U.S. Defenses Systems”

SAVI Return on Investment Study
CMU/SEI-2018-TR-002

13© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Outline

Challenges in Safety-critical Software-intensive Systems
Four Pillar Improvement Strategy
Verifiable System Requirement/Specification
Architecture-Centric Virtual System Integration
Compositional Verification to Complement Testing
Incremental System Assurance throughout Development
Conclusion

14© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Value of Requirement Uncertainty Awareness
Textual requirement quality statistics

• Opportunity for high payoff improvement
• Focus on verifiable requirement specification

Experience based uncertainty measures
• 80% of requirement changes from development

team
• Requirement uncertainty contributors

- Volatility, Impact, Precedence, Time criticality
• Awareness of requirement uncertainty reduces

requirement changes by 50%
- Focus on uncertainty areas
- Engineer for inherent variability

Rolls Royce case study

15© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Requirements & Architecture Design Specification

Typical requirement documents span multiple levels
of a system architecture
We have effectively specified a partial architecture

Requirements for a
Patient Therapy System

Importance of understanding system boundary
Multiple layers of system specification

Example borrowed from M. Whelan

16© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Three Dimensions of Requirement Coverage

Guarantees
Assumptions

Implementation
constraints

Invariants

Exceptional
conditions

System interactions, state, behavior Design & operational quality attributes

System Under Control

Behavior

Actuator Sensor

State

Control System

Behavior

Output Input
StateValue errors

Timing errors

Rate errors Concurrency
errors

Replication
errors

Sequence errors

Omission errors Commission
errors

Authentication
errors

Authorization
errors

Fault Propagation Taxonomy

Fault contributors & impact

17© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Outline

Challenges in Safety-critical Software-intensive Systems
Four Pillar Improvement Strategy
Verifiable System Requirement Specification
Architecture-Centric Virtual System Integration
Compositional Verification to Complement Testing
Incremental System Assurance throughout Development
Conclusion

18© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Architecture Analysis & Design Language (AADL) Enables
Industry-Wide Virtual Integration and Assurance Approach

AADL captures software-reliant, mission and safety critical system
architectures in a computable model to discover system level problems early

SAE AS5506
International

Standard

Basis for
Architecture

Centric Virtual
Integration

Practice

19© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Core AADL language standard (V2.2-Jan 2017, V1-Nov 2004)
• Strongly typed language with well-defined execution and communication semantics
• Textual and graphical notation
• Revision V3 in progress: Interface composition, system configuration, binding, type system

unification

SAE AADL Standard Suite (AS-5506 series)

Standardized AADL Annex Extensions
Error Model language for safety, reliability, security analysis
ARINC653 extension for partitioned architectures
Behavior Specification Language for modes and interaction behavior
Data Modeling extension for interfacing with data models (UML, ASN.1,)
AADL Runtime System & Code Generation

AADL Annexes in Progress
Network Specification Annex
Cyber Security Annex
Requirements Definition and Assurance Annex
Synchronous System Specification Annex
Hybrid System Specification Annex
System Constraint Specification Annex

20© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

System Level Fault Root Causes
Violation of Data Stream Assumptions

• Stream miss rates, Mismatched data representation
• Latency jitter & age

Partitions as Isolation Regions
• Space, time, and bandwidth partitioning
• Isolation not guaranteed due to undocumented resource sharing

Virtualization of Time & Resources
• Logical vs. physical redundancy
• Time stamping of data & asynchronous systems

Inconsistent System States & Interactions
• Communication of states and events
• Concurrency & redundancy management

Shared Resource Management
• Processor, memory & network resources
• Unmanaged computer system resources

Operational and failure modes
Interaction behavior specification
Dynamic reconfiguration
Fault detection, isolation, recovery

End-to-end flows for latency analysis
Sampling & queued ports
Mid-frame & frame-delayed connections
Port connection consistency

Process and virtual
processor to model
partitioned architectures

Resource allocation &
deployment configurations
Resource budget analysis &

scheduling analysis

Virtual processors &
virtual buses
Multiple time domains

Addressed by AADL Concepts
with Well Defined Semantics

21© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Multi-Fidelity End-to-end Latency in Control
Systems

System Engineer Control Engineer

System

Under

Control

Control

System

Operational

Environment

Common latency data from system
engineering

• Processing latency
• Sampling latency
• Physical signal latency

Impact of Scheduler Choice on Controller Stability
A. Cervin, Lund U., CCACSD 2006

22© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Software-Based Latency Contributors

Execution time variation: algorithm, use of cache
Processor speed
Resource contention
Preemption
Shared variable communication
Rate group optimization
Protocol communication delay
Partitioned architecture
Migration of functionality
Fault tolerance strategy
Synchronized time domains

23© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Outline

Challenges in Safety-critical Software-intensive Systems
Four Pillar Improvement Strategy
Verifiable System Requirement Specification
Architecture-Centric Virtual System Integration
Compositional Verification to Complement Testing
Incremental System Assurance throughout Development
Conclusion

24© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

MTBF
FMEA
Hazard Analysis

SAFETY &
RELIABILITY

Change Impact Across Multiple Quality Dimensions

Change of Encryption from
128 bit to 256 bit

Higher CPU
Demand

Increased
Latency

Affects Temporal
Correctness

Potential New
Hazard

SAE AS5506 AADL

One change drives multiple
system issues

Single Source of Truth
Through Generated
Analysis Models

25© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Error Propagation Paths
Error Model V2 Annex
• Focus on fault interaction with other components

- Probabilistic error sources, sinks, paths and transformations
- Fault propagation and Transformation Calculus (FPTC) from York U.

• Focus on fault behavior of components
- Probabilistic typed error events, error states, propagations
- Voting logic, error detection, recovery, repair

• Focus on fault behavior in terms of subcomponent fault behaviors
- Composite error behavior state logic maps states of parts into (abstracted) states of

composite
• Typed token system

- Fault effect taxonomy
- Domain specific fault types

26© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Original Preliminary System Safety Analysis (PSSA)

Auto Pilot

FMS
Processor
Operational

Failed

Flight Mgnt System

Anticipated: No
Stall Propagation

FMS Power

Airspeed
Data

Failed

Actuator
Cmd

Stall
NoService

Anticipated:
NoService

Operational
NoData

EGI

Oper’l

Failed

Anticipated:
No EGI data

NoData

System engineering activity with
focus on failing components

27© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Discovery of Unexpected PSSA Hazard through
Repeated Virtual Integration

Auto Pilot

FMS
Processor
Operational

Failed

Flight Mgnt System

Anticipated: No
Stall Propagation

FMS Power

Airspeed
Data

Failed

Actuator
Cmd

Stall
NoService

Anticipated:
NoService

CorruptedData

Unexpected propagation of
corrupted Airspeed data results
in Stall due to miss-correction

Operational
NoData

EGI

EGI HW

EGI Logic

Oper’l

Failed

Oper’l

Failed

Corrupted

EGI maintainer adds corrupted data hazard to model.
Error Model analysis of integrated model detects

unhandled propagation.

Vibration causes boards to
touch which causes EGI

data corruption

Anticipated:
No EGI data

28© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Automated FMEA Experience
Failure Modes and Effects Analyses are rigorous and comprehensive reliability
and safety design evaluations

• Required by industry standards and Government policies
• When performed manually are usually done once due to cost and schedule
• When automated allows for

- multiple iterations from conceptual to detailed design
- Tradeoff studies and evaluation of alternatives
- Early identification of potential problems

Largest analysis of satellite to date consists of 26,000 failure modes
• Includes detailed model of satellite bus
• 20 states perform failure mode
• Lonest failure mode sequences have 25 transitions (i.e., 25 effects)

Myron Hecht, Aerospace Corp.
Safety Analysis for JPL, member of DO-178C committee

29© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Time Sensitive Engine Control Problem
Stepper motor (SM) controls a valve

• Commanded to achieve a specified valve position
- Fixed position range mapped into units of SM steps

• New target positions can arrive at any time
- SM immediately responds to the new desired position

Safety hazard due to software design
• Execution time variation results in missed steps
• Leads to misaligned stepper motor position and control system states
• Sensor feedback not granular enough to detect individual step

misses
Software modeled and verified in SCADE
Full reliance on SCADE of SM & all functionality
Problems with missing steps not detected

Two Customer Proposed Solutions
Sending of data at 12ms offset from dispatch
Buffering of command by SM interface
No analytical confidence that the problem will be addressed

Software tests did not discover the issue
Time sensitive systems are hard to test for.

30© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Analysis Results and Solution
Architecture Fault Model Analysis

• Fault impact analysis identifies multiple sources of missed steps
- Early arrival of step increment commands
- Step increment command rate mismatch
- Transient message corruption or loss

• Understanding of error cause
- When is early too early
- Guaranteed delivery assumption

for step increment commands

Cx1.1a
Accurately: to the nearest digital

step corresponding to the
analog % open requested by

the ECS. T is determined by the
application using the SM.

C1.1
The

SM_PCS accurately
positions the SM to the

position requested by the
ECS as soon as possible
but no longer than T ms.A

A1.1a

ECS requests % open for SM
via direct memory. SM_PCS

runs in a frame of length F. SM
is commanded to a specific

position.

C3.1
The likelihood of a SM

malfunction is low
enough for the

application

Ev7.1
Test results

showing
sufficient SM

reliability

IR4.2

If there is evidence of
sufficient SM reliability then
the likelihood of malfunction

is tolerable for the application

R2.1

Unless there is a
malfunction in the

SM

UM6.1
Unless the SM

doesn't conform

R4.1
Unless the likelihood

of malfunction was
incorrectly determined

Ev5.1

Data sheet for the SM
showing sufficient

reliability

R3.3
Unless the SM_PCS
takes longer than F to

command a new
position requested by

the ECS

Ev6.2
Test results
consistent

with the data
sheet claim

C4.4
At the start of each

frame the
SM_PCS issues a
command to the

SM

R3.2

Unless the SM is
incapable of reaching
any requested position

within time T-F

R2.2

Unless the SM doesn't
reach any requested

position within time T-F

J

J2.2a

The request from
the ECS can come
in up to F before the
SM_PCS issues its

command

N

Ev4.3
Analysis of data sheet for

SM shows that it can
move to arbitrary

positions within time T-F

UM5.2

Unless the SM
does not conform
to the data sheet

R2.3
Unless the SM_PCS

doesn't issue the
appropriate commands to

the SM

C3.4

The SM_PCS asks the SM to move
to the location most recently

specified by the ECS

Ev5.3
SM_PCS Code
review showing

the correct
calculation

R4.6

Unless the transmitted
command is corrupted

Ev9.1
Test results

showing the link
has sufficient

reliability

R4.5

Unless the SM_PCS
does not correctly

calculate the position
specified by the ECS

C5.4
The communications

link between the
SM_PCS and the SM is
of sufficient reliablity for

the application

R6.6

Unless the reliability of the
link was incorrectly

determined

IR2.4

If there is no SM malfunction, it is
capable of moving fast enough, and
the SM_PCS issues the appropriate

command, then the SM will
accurately be positioned to the

location requested by the ECS within
time T

Ev7.6

Data sheet and tests for
the link showing

sufficient reliability

IR6.7

If there is evidence of sufficient
link reliability then the likelihood
of corrputed data is tolerable for

the application

UM6.5

Unless the code does not
execute as specified

UC5.5
Conditions in the

execution environment
interfere with correct

execution

Cx2.3a
An appropriate

command is a SM
position calculated

from the percentage
requested by the ECS

UM8.1
Unless the link

doesn't
conform

IR4.7

If the calculated position is
correct and is not corrupted

during transmission, then the
SM_PCS commands the SM to

move to the correct location

UM7.4

Hardware failure
prevents correct

execution
N

Ev7.2

SM_PCS Unit Test
showing expected

behavior

UM6.3

Unless the reviewed
code is not the
current code

UM6.4

Unless the code
review overlooks an

error

UM7.3

The code is
compiled/assembled

incorrectly

IR5.4

If the SM initializes to the
fully closed position, then

the SM_PCS is able to
know the location of the

SM at startup

UM7.3
Unless the reviewed
design/code is not

the current
design/code

R5.9

Unless the code
does not implement

the calculation as
specified

R3.9
The number of steps
between the current

position and the desired
position is computed

incorrectly

J

J2.2a
The request from

the ECS can come
in up to F before the
SM_PCS issues its

command

Ev3.2
Data sheet for the
SM showing that it

can move to an
arbitrary position
within time T-F

R2.4
Unless the SM_PCS

doesn't issue the
appropriate commands to

the SM

R3.4
The SM_PCS doesn't
know the position of

the SM at the
beginning of each

frame

C4.7

At the start of each frame the
SM_PCS issues a command
to move the SM min(|CurPos

- DesPos|,S) steps in the
appropriate direction

R2.3

Unless the SM_PCS
does not know the true

position of the SM

Cx1.1a
Accurately: to the

nearest digital step
corresponding to the

analog % open
requested by the ECS

IR5.8
If S steps can be completed in a

frame, the SM_PCS task runs once
per frame, and the interarrival time

of commands is F, then the SM
completely executes all of them

UM7.10

Unless the code
review overlooks an

error

UM7.4
Unless the

review
overlooks an

error

Ev8.8
Test results

showing the link
has sufficient

reliability

R5.7

Unless the SM_PCS
sends a new command
to the SM that overwrites
an incompletely executed

previous command

IR5.11

If a code review and test results
show that the calculation is made

correctly then SM is moved the
correct number of steps in the

correct direction

C4.4
The SM_PCS knows

that the SM is
initialized to the fully
closed position at

startup

Ev6.7
SM_PCS code
review showing

the correct
calculation

R3.7

When desired
position is S or fewer

steps away, the
SM_PCS asks for

more or fewer steps
than are needed

UM9.2
Unless the

implemented
clock does not

conform

Ev7.8

AADL model showing
minimum inter-arrival

time >= F ms

R3.10

A corrupted
command value is
received by the SM

C3.1

The likelihood of a SM
malfunction is low

enough for the
application

R3.8

The SM_PCS asks
for movement away

from the desired
position

Ev8.4
Schedule
showing

SM_PCS is
scheduled at a F

rate

UM4.3
Unless the SM

does not
conform to the

data sheet

R6.8

The code is
compiled/assembled

incorrectly

Ev6.3
Design review and code

review of SM_PCS
showing that it keeps
accurate track of all
commands issued

UM8.6

Unless the model fails
to capture information
affecting inter-arrival

times

C4.8
The communications

link between the
SM_PCS and the SM is
of sufficient reliablity for

the application

Cx2.3a

i.e., the CurPos
"known" by the
SM_PCS is not

consistent with reality

C7.5

The maximum number of
steps (S) the SM_PCS

will ask the SM to move in
any frame can be

completed in F

R3.6

When desired position
is more than S steps

away, the SM_PCS asks
for fewer than S steps

R5.5
Unless there is no
evidence that the

SM_PCS keeps track

Cx7.8a
AADL model

takes into
account task

preemption and
overhead

R5.3
Unless the SM does
not initialize itself to

the fully closed
position

Ev8.1

Test results
showing that the SM
initializes to the fully

closed position

IR4.2
If there is sufficient SM

reliability, then the
likelihood of malfunction is

tolerable for the
application

UM6.1
Unless the SM

doesn't conform
to the data sheet

IR5.6

If a design review shows that
the SM_PCS keeps track of

issued commands, then there
are grounds to believe that the
SM_PCS keeps track of issued

commands

R4.1
Unless the likelihood
of a malfunction was

incorrectly determined

Ev9.1
SM datasheet and

calculations showing
that S steps can be
completed in F ms

R6.6
The minimum

inter-arrival time
between SM

commands is less
than F

R6.5
The time between

scheduled SM_PCS
task initiations is

less than F

R5.12

Unless the reliability of the
link was incorrectly

determined

R8.3
Unless S steps cannot

be completed in F

R7.6
The task is

scheduled at a
rate different

from F

C1.1

The
SM_PCS accurately positions

the SM to the position requested
by the ECS as soon as possible

but no longer than T ms.

Ev8.7

SM_PCS Unit Test
showing expected

behavior

IR2.5

If the SM doesn't malfunction and is
fast enough when optimally

controlled, and the SM_PCS can keep
track of where the SM is and issue
proper commands, then the SM will
be positioned properly within time T

Ev5.2
Test results

confirming the
data sheet claim

Ev6.11
Data sheet and tests
for the link showing
sufficient reliability

Ev7.1

Test results showing
SM reliability conforms

to the data sheet

R2.1

Unless there is a
malfunction in the

SM

IR5.13
If there is evidence of

sufficient link reliability, then
the likelihood of corrupted

data is tolerable for the
application

R5.10

Unless the code does not
execute as specified

UM7.9

Unless the reviewed
code is not the
current code

UC6.10
Conditions in the

execution environment
interfere with correct

execution

Cx2.4a
An appropriate

command moves
toward the desired

position as quickly as
possible

Ev6.2
Data sheet for the SM

showing that it
initializes to the fully

closed position

IR8.2
If calculations show that S
steps can be completed in
a frame, then S steps can
actually be completed in a

frame

R3.3
The SM_PCS doesn't
know the position of
the SM when it starts

up C4.6
The SM completely

executes all
commands sent to it

by the SM_PCS

R7.7
The hardware

clock drifts or is
otherwise
inaccurate

A

A1.1a

ECS requests % open for SM via direct
memory. SM_PCS runs in a frame of

length F. SM is commanded via number of
steps to move in the frame and direction.

Maximum number of steps commanded in
a frame is a precalculated constant S.

R6.9

Hardware failure
prevents correct

execution

R6.4

The SM takes longer
than F to execute a

command

C4.5
The SM_PCS computes the
position of the SM based on

its current computed
position and the commands

it sends to the SM

UM7.2
Unless the SM

doesn't
conform

UM7.11
Unless the link

does not
conform

R2.2

Unless the SM is incapable
of reaching the requested
position within time T-F no
matter how commanded

Ev10.1
Test results

showing that the
clock is accurate
enough for the

application

Ev5.1

Data sheet for the
SM showing

sufficent reliability

R3.5

The SM_PCS
asks for more
than S steps

Ev8.5
Clock data

sheet showing
sufficient

accuracy for the
application

Assurance Case
Confidence Maps

31© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Integrated Safety and Security Engineering

Safety perspective of safety-critical systems
• Integrated modular avionics: ARINC653 partitions

- Space and time partitioning of shared resource
• Safety levels and information/control flow

- Functional analysis: levels of coverage (MCDC for Level A)
• Fault detection, isolation, recovery (FDIR)
• Zero defect assumption not valid for software

- New focus: analytic redundancy, resilience

Cyber security issues
• Malicious external interactions with system

- Via established interfaces, denial of service
• Unauthorized replacement of system component

- Need for continuous authentication and isolation within system

April 2018 © Adventium Labs 2018
32

Dr. Lindermann April 2018 Keynote

33© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Outline

Challenges in Safety-critical Software-intensive Systems
Four Pillar Improvement Strategy
Verifiable System Requirement Specification
Architecture-Centric Virtual System Integration
Compositional Verification to Complement Testing
Incremental System Assurance throughout Development
Conclusion

34© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Three Dimensions of Incremental Assurance

35© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

� Multi-tier system & software architecture (in AADL)
� Incremental end-to-end validation of system properties

LRU/IMA System: (Tier 2)
Hardware platform, software partitions
Power, MIPS, RAM capacity & budgets
End-to-end flow latency

Subcontracted software subsystem: (Tier 3)
Tasks, periods, execution time
Software allocation, schedulability
Generated executables

OEM & Subcontractor:
Subsystem proposal validation
Functional integration consistency
Data bus protocol mappings

Early Discovery and Incremental V&V through Virtual
System Integration (SAVI Proof of Concept in 2009)

Proof of Concept Demonstration and Transition by Aerospace industry initiative
• Architecture-centric model-based software and system engineering
• Multi notation, multi team model repository & standardized model interchange
• Single source of truth challenge

Aircraft: (Tier 0)

Repeated Virtual Integration Analyses:
Power/weight
MIPS/RAM, Scheduling
End-to-end latency
Network bandwidth

System & SW Engineering:
Mechatronics: Actuator & Wings
Safety Analysis (FHA, FMEA)
Reliability Analysis (MTTF)

Aircraft system: (Tier 1)
Engine, Landing Gear, Cockpit,
Weight, Electrical, Fuel, Hydraulics,…

36© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Code

Code

Stakeholder Goals

Tier 0

Tier 1

Tier 2 Model+2’

Ver Plan

Ver Plan

Req+2Ver Plan

Req+1

Req

Model+1

Model

Automated Incremental Assurance Workbench

A
bstraction

Level

Low Level
Close to Implementation

High Abstraction

Model+2

Assurance CaseIssues with Assurance And/Or Logic

High Payoff Focus Areas

Requirement coverage
and evidence metrics

37© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Outline

Challenges in Safety-critical Software-intensive Systems
Four Pillar Improvement Strategy
Verifiable System Requirement Specification
Architecture-Centric Virtual System Integration
Compositional Verification to Complement Testing
Incremental System Assurance throughout Development
Conclusion

38© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Increased Confidence through Continuous Verification And Testing

Benefits of Virtual System Integration &
Incremental Lifecycle Assurance

39© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

References
Four Pillar Qualification Improvement Framework

Blog post https://insights.sei.cmu.edu/sei_blog/2013/06/improving-safety-critical-systems-with-a-reliability-validation-improvement-
framework.html

Four pillars white paper https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=47791

Full TR https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=34069

SAVI ROI https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=517157

Stepper Motor Case Study

Paper https://hal.archives-ouvertes.fr/hal-01292322/document

TR https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=435051

Incremental Assurance (ALISA) in OSATE

online doc https://rawgit.com/osate/alisa/develop/org.osate.alisa.help/contents/00-Main.html

Paper: https://hal.archives-ouvertes.fr/hal-01289468

ALISA Example models https://github.com/osate/alisa-examples

Latency Analysis

Paper https://e-archivo.uc3m.es/bitstream/handle/10016/19688/incremental_REACTION_2014.pdf

Online doc https://github.com/osate/osate2/blob/develop/analyses/org.osate.analysis.flows/help/markdown/latency.md

Other papers

ReqSpec Notation SEI TR: http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=464370

Two JMR case study reports: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447176

http://resources.sei.cmu.edu/asset_files/specialreport/2015_003_001_447187.pdf

JMR paper https://www.army.mil/e2/c/downloads/414601.pdf

HILT 2016 http://sigada.org/conf/hilt2016/paper-McGregor.pdf

ERTS 2016 https://hal.archives-ouvertes.fr/hal-01292290/

https://insights.sei.cmu.edu/sei_blog/2013/06/improving-safety-critical-systems-with-a-reliability-validation-improvement-framework.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=47791
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=34069
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=517157
https://hal.archives-ouvertes.fr/hal-01292322/document
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=435051
https://rawgit.com/osate/alisa/develop/org.osate.alisa.help/contents/00-Main.html
https://hal.archives-ouvertes.fr/hal-01289468
https://github.com/osate/alisa-examples
https://e-archivo.uc3m.es/bitstream/handle/10016/19688/incremental_REACTION_2014.pdf
https://github.com/osate/osate2/blob/develop/analyses/org.osate.analysis.flows/help/markdown/latency.md
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=464370
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447176
http://resources.sei.cmu.edu/asset_files/specialreport/2015_003_001_447187.pdf
https://www.army.mil/e2/c/downloads/414601.pdf
http://sigada.org/conf/hilt2016/paper-McGregor.pdf
https://hal.archives-ouvertes.fr/hal-01292290/

40© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is
Unlimited

Contact Information

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

Peter Feiler
SEI Fellow
Telephone: +1 412.268.7790
Email: phf@sei.cmu.edu

	A Four Pillar Improvement Strategy to Qualification of Embedded Software Systems
	Slide Number 2
	Outline
	We Rely on Software for Safe Aircraft Operation
	Software Problems not just in Aircraft
	Cost/Capability Limit on Avionics Systems
	Slide Number 7
	Current Industry Practice in DO-178B Compliant Requirements Capture
	Mismatched Assumptions and Concepts in Safety-Critical System Interactions
	Outline
	Assurance & Qualification Improvement Strategy
	“Should Cost” Predictions For Avionics
	Outline
	Value of Requirement Uncertainty Awareness
	Requirements & Architecture Design Specification
	Three Dimensions of Requirement Coverage
	Outline
	Architecture Analysis & Design Language (AADL) Enables Industry-Wide Virtual Integration and Assurance Approach�
	SAE AADL Standard Suite (AS-5506 series)�
	System Level Fault Root Causes
	Multi-Fidelity End-to-end Latency in Control Systems
	Software-Based Latency Contributors
	Outline
	Change Impact Across Multiple Quality Dimensions
	Error Propagation Paths
	Original Preliminary System Safety Analysis (PSSA)
	Discovery of Unexpected PSSA Hazard through Repeated Virtual Integration
	Automated FMEA Experience
	Time Sensitive Engine Control Problem
	Analysis Results and Solution
	Integrated Safety and Security Engineering
	Slide Number 32
	Outline
	Three Dimensions of Incremental Assurance
	Slide Number 35
	Automated Incremental Assurance Workbench
	Outline
	Benefits of Virtual System Integration & Incremental Lifecycle Assurance
	References
	Contact Information

