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We Rely on Software for Safe Aircraft Operation

Embedded software systems introduce a 
new class of problems not addressed by 

traditional system safety analysis
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Software Problems 
not just in Aircraft

How do you upgrade washing 
machine software?

Internet of Things!
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Cost/Capability Limit on Avionics Systems

As size and complexity increases so do 
total development and rework costs.

SAVI predicts that cost growth is 
unsustainable.

Software as % of total system 
development 

• 45% in 1997
• 66% in 2010
• To exceed 80% by 2020

A Commercial Aviation 
Industry Consortium
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Code (SLOC) Growth

SAVI projects a limit of 
affordability at 
27.5MSLOC or $10B in 
software costs
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Requirements
Architecture Design

Acceptance 
Test

Unit 
Test

Code Integration 
Test

Operation

Where Faults are Found

Where Faults are Introduced

Nominal Cost Per Fault 
for Fault Removal

Critical System Assurance Challenges

80% of faults discovered post unit test

Post-unit test software rework cost 50% of total 
system development cost & growing

Recertification cost is not 
proportional to system changes
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Current Industry Practice in DO-178B Compliant 
Requirements Capture

Tool

Notation 

Industry Survey in 2009 FAA Requirements Engineering Study

Need analyzable & executable specifications



9© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is 
Unlimited

Mismatched Assumptions and Concepts in 
Safety-Critical System Interactions
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System
Under 
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System Hazards

Application DeveloperCompute
Platform

Runtime
Architecture

Application
Software

Embedded SW System Engineer

Time-sensitive 
Processing

Measurement units, value 
range, Boolean flags vs data 
abstraction

Concurrency & 
Communication

Virtualization & 
Redundancy

Hardware
Engineer

Embedded software system 
as major source of hazards

Why do system level failures still occur despite fault 
tolerance techniques being deployed in systems?
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Assurance & Qualification Improvement Strategy

2010 SEI Study for AMRDEC 
Aviation Engineering Directorate

Assurance: Sufficient evidence that a system 
implementation meets system requirements

Architecture-centric Virtual 
System Integration

Model 
Repository

Architecture 
Model

Component 
Models

System 
Implementation

Resource, 
Timing & 
Performance 
Analysis

Reliability, 
Safety, 
Security 
Analysis

Operational & 
failure modes

Static Analysis & 
Compositional Verification

System 
configuration

Early Problem Discovery through Virtual System Integration & Analysis

Incremental Assurance 
throughout Life Cycle

Mission 
Requirements

Function
Behavior

Performance

Survivability 
Requirements

Reliability
Safety

Security

Architecture-led 
Requirement Specification

Improved Assurance through Better Requirements & Automated Verification  

2007 National Research 
Council Study
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“Should Cost” Predictions For Avionics

ATKearney “Software: The Brains Behind U.S. Defenses Systems”

SAVI Return on Investment Study
CMU/SEI-2018-TR-002
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Challenges in Safety-critical Software-intensive Systems
Four Pillar Improvement Strategy 
Verifiable System Requirement/Specification
Architecture-Centric Virtual System Integration
Compositional Verification to Complement Testing
Incremental System Assurance throughout Development
Conclusion
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Value of Requirement Uncertainty Awareness
Textual requirement quality statistics

• Opportunity for high payoff improvement
• Focus on verifiable requirement specification

Experience based uncertainty measures
• 80% of requirement changes from development 

team
• Requirement uncertainty contributors

- Volatility, Impact, Precedence, Time criticality
• Awareness of requirement uncertainty reduces 

requirement changes by 50% 
- Focus on uncertainty areas
- Engineer for inherent variability

Rolls Royce case study
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Requirements & Architecture Design Specification

Typical requirement documents span multiple levels 
of a system architecture
We have effectively specified a partial architecture 

Requirements for  a 
Patient Therapy System

Importance of understanding system boundary
Multiple layers of system specification

Example borrowed from M. Whelan
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Three Dimensions of Requirement Coverage

Guarantees
Assumptions

Implementation 
constraints

Invariants

Exceptional
conditions

System interactions, state, behavior Design & operational quality attributes

System Under Control

Behavior

Actuator Sensor

State

Control System

Behavior

Output Input
StateValue errors

Timing errors

Rate errors Concurrency 
errors

Replication 
errors

Sequence errors

Omission errors Commission 
errors

Authentication 
errors

Authorization 
errors

Fault Propagation Taxonomy

Fault contributors & impact
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Challenges in Safety-critical Software-intensive Systems
Four Pillar Improvement Strategy 
Verifiable System Requirement Specification
Architecture-Centric Virtual System Integration
Compositional Verification to Complement Testing
Incremental System Assurance throughout Development
Conclusion
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Architecture Analysis & Design Language (AADL) Enables 
Industry-Wide Virtual Integration and Assurance Approach

AADL captures software-reliant, mission and safety critical system 
architectures in a computable model to discover system level problems early

SAE AS5506
International 

Standard

Basis for 
Architecture 

Centric Virtual
Integration 

Practice



19© 2018 Carnegie Mellon University
Distribution Statement A. Approved for Public Release; Distribution is 
Unlimited

Core AADL language standard (V2.2-Jan 2017, V1-Nov 2004) 
• Strongly typed language with well-defined execution and communication semantics
• Textual and graphical notation
• Revision V3 in progress: Interface composition, system configuration, binding, type system 

unification

SAE AADL Standard Suite (AS-5506 series)

Standardized AADL Annex Extensions
Error Model language for safety, reliability, security analysis
ARINC653 extension for partitioned architectures
Behavior Specification Language for modes and interaction behavior
Data Modeling extension for interfacing with data models (UML, ASN.1,  )
AADL Runtime System & Code Generation

AADL Annexes in Progress
Network Specification Annex
Cyber Security Annex
Requirements Definition and Assurance Annex
Synchronous System Specification Annex
Hybrid System Specification Annex
System Constraint Specification Annex
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System Level Fault Root Causes
Violation of Data Stream Assumptions

• Stream miss rates, Mismatched data representation
• Latency jitter & age

Partitions as Isolation Regions
• Space, time, and bandwidth partitioning
• Isolation not guaranteed due to undocumented resource sharing

Virtualization of Time & Resources
• Logical vs. physical redundancy
• Time stamping of data & asynchronous systems

Inconsistent System States & Interactions
• Communication of states and events
• Concurrency & redundancy management

Shared Resource Management
• Processor, memory & network resources
• Unmanaged computer system resources

Operational and failure modes
Interaction behavior specification
Dynamic reconfiguration
Fault detection, isolation, recovery

End-to-end flows for latency analysis
Sampling & queued ports
Mid-frame & frame-delayed connections
Port connection consistency

Process and virtual 
processor to model 
partitioned architectures

Resource allocation & 
deployment configurations
Resource budget analysis & 

scheduling analysis

Virtual processors & 
virtual buses
Multiple time domains

Addressed by AADL Concepts 
with Well Defined Semantics  
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Multi-Fidelity End-to-end Latency in Control 
Systems

System Engineer Control Engineer

System

Under 

Control

Control

System

Operational

Environment

Common latency data from system 
engineering

• Processing latency
• Sampling latency
• Physical signal latency

Impact of Scheduler Choice on Controller Stability
A. Cervin, Lund U., CCACSD 2006
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Software-Based Latency Contributors

Execution time variation: algorithm, use of cache
Processor speed
Resource contention
Preemption
Shared variable communication
Rate group optimization
Protocol communication delay
Partitioned architecture
Migration of functionality
Fault tolerance strategy
Synchronized time domains
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Challenges in Safety-critical Software-intensive Systems
Four Pillar Improvement Strategy 
Verifiable System Requirement Specification
Architecture-Centric Virtual System Integration
Compositional Verification to Complement Testing
Incremental System Assurance throughout Development
Conclusion
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MTBF
FMEA
Hazard Analysis

SAFETY & 
RELIABILITY

Change Impact Across Multiple Quality Dimensions

Change of Encryption from 
128 bit to 256 bit

Higher CPU 
Demand

Increased 
Latency

Affects Temporal 
Correctness

Potential New 
Hazard

SAE AS5506 AADL

One change drives multiple 
system issues

Single Source of Truth 
Through Generated 
Analysis Models
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Error Propagation Paths
Error Model V2 Annex
• Focus on fault interaction with other components

- Probabilistic error sources, sinks, paths and transformations
- Fault propagation and Transformation Calculus (FPTC) from York U.

• Focus on fault behavior of components
- Probabilistic typed error events, error states, propagations
- Voting logic, error detection, recovery, repair

• Focus on fault behavior in terms of subcomponent fault behaviors
- Composite error behavior state logic maps states of parts into (abstracted) states of 

composite 
• Typed token system

- Fault effect taxonomy
- Domain specific fault types
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Original Preliminary System Safety Analysis (PSSA)

Auto Pilot

FMS
Processor
Operational

Failed

Flight Mgnt System

Anticipated: No 
Stall Propagation

FMS Power

Airspeed
Data

Failed

Actuator
Cmd

Stall
NoService

Anticipated: 
NoService

Operational
NoData

EGI

Oper’l

Failed

Anticipated:
No EGI data

NoData

System engineering activity with 
focus on failing components
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Discovery of Unexpected PSSA Hazard through 
Repeated Virtual Integration

Auto Pilot

FMS
Processor
Operational

Failed

Flight Mgnt System

Anticipated: No 
Stall Propagation

FMS Power

Airspeed
Data

Failed

Actuator
Cmd

Stall
NoService

Anticipated: 
NoService

CorruptedData

Unexpected propagation of 
corrupted Airspeed data results 
in Stall due to miss-correction

Operational
NoData

EGI

EGI HW

EGI Logic

Oper’l

Failed

Oper’l

Failed

Corrupted

EGI maintainer adds corrupted data hazard to model. 
Error Model analysis of integrated model detects 

unhandled propagation.

Vibration causes boards to 
touch which causes EGI

data corruption

Anticipated:
No EGI data
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Automated FMEA Experience
Failure Modes and Effects Analyses are rigorous and comprehensive reliability 
and safety design evaluations

• Required by industry standards and Government policies
• When performed manually are usually done once due to cost and schedule
• When automated allows for 

- multiple iterations from conceptual to detailed design
- Tradeoff studies and evaluation of alternatives
- Early identification of potential problems

Largest analysis of satellite to date consists of 26,000 failure modes
• Includes detailed model of satellite bus
• 20 states perform failure mode
• Lonest failure mode sequences have 25 transitions (i.e., 25 effects)

Myron Hecht, Aerospace Corp.
Safety Analysis for JPL, member of DO-178C committee
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Time Sensitive Engine Control Problem
Stepper motor (SM) controls a valve

• Commanded to achieve a specified valve position
- Fixed position range mapped into units of SM steps

• New target positions can arrive at any time
- SM immediately responds to the new desired position

Safety hazard due to software design
• Execution time variation results in missed steps
• Leads to misaligned stepper motor position and control system states
• Sensor feedback not granular enough to detect individual step 

misses
Software modeled and verified in SCADE
Full reliance on SCADE of SM & all functionality
Problems with missing steps not detected

Two Customer Proposed Solutions
Sending of data at 12ms offset from dispatch
Buffering of command by SM interface
No analytical confidence that the problem will be addressed

Software tests did not discover the issue
Time sensitive systems are hard to test for.
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Analysis Results and Solution
Architecture Fault Model Analysis

• Fault impact analysis identifies multiple sources of missed steps
- Early arrival of step increment commands
- Step increment command rate mismatch
- Transient message corruption or loss

• Understanding of error cause
- When is early too early
- Guaranteed delivery assumption

for step increment commands
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Integrated Safety and Security Engineering

Safety perspective of safety-critical systems
• Integrated modular avionics: ARINC653 partitions

- Space and time partitioning of shared resource
• Safety levels and information/control flow

- Functional analysis: levels of coverage (MCDC for Level A)
• Fault detection, isolation, recovery (FDIR)
• Zero defect assumption not valid for software

- New focus: analytic redundancy, resilience

Cyber security issues
• Malicious external interactions with system

- Via established interfaces, denial of service
• Unauthorized replacement of system component 

- Need for continuous authentication and isolation within system
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Three Dimensions of Incremental Assurance
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� Multi-tier system & software architecture (in AADL)
� Incremental end-to-end validation of system properties

LRU/IMA System: (Tier 2)
Hardware platform, software partitions
Power, MIPS, RAM capacity & budgets
End-to-end flow latency

Subcontracted software subsystem: (Tier 3)
Tasks, periods, execution time
Software allocation, schedulability
Generated executables

OEM & Subcontractor:
Subsystem proposal validation
Functional integration consistency
Data bus protocol mappings

Early Discovery and Incremental V&V through Virtual 
System Integration (SAVI Proof of Concept in 2009)

Proof of Concept Demonstration and Transition by Aerospace industry initiative
• Architecture-centric model-based software and system engineering
• Multi notation, multi team model repository & standardized model interchange
• Single source of truth challenge

Aircraft: (Tier 0)

Repeated Virtual Integration Analyses:
Power/weight
MIPS/RAM, Scheduling
End-to-end latency
Network bandwidth

System & SW Engineering:
Mechatronics: Actuator & Wings
Safety Analysis (FHA, FMEA)
Reliability Analysis (MTTF)

Aircraft system: (Tier 1)
Engine, Landing Gear, Cockpit,  
Weight, Electrical, Fuel, Hydraulics,…
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Code

Code

Stakeholder Goals

Tier 0

Tier 1

Tier 2 Model+2’

Ver Plan

Ver Plan

Req+2Ver Plan

Req+1

Req

Model+1

Model

Automated Incremental Assurance Workbench

A
bstraction

Level

Low Level
Close to Implementation

High Abstraction

Model+2

Assurance CaseIssues with Assurance And/Or Logic

High Payoff Focus Areas

Requirement coverage 
and evidence metrics
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Increased Confidence through Continuous Verification And Testing

Benefits of Virtual System Integration & 
Incremental Lifecycle Assurance
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