UMD Lablet Summary

Jonathan Katz
Dept. of Computer Science

&) MARYLAND

CYBERSECURITY CENTER

Lablet overview

20 faculty researchers involved
— 14 from UMD, 6 external collaborators

e UMD faculty drawn from five different
departments on campus

— CS, ECE, Information Studies, Criminology,
Reliability Engineering

— Collaboration fostered by the Maryland
Cybersecurity Center (MC2)

7/24/2014

7/24/2014

Lablet participants
* Adam Aviv, USNA * Joseph Jala
* John Baras * David Maimon
* Marshini Chetty * Babis Papamanthou
* Michael Clarkson, Cornell * Aditya Prakash, VA Tech
* Michel Cukier * Elaine Shi
* Tudor Dumitras * Katie Shilton
* Jeff Foster * VS Subrahmanian
* Jen Golbeck * Mohit Tiwari, UT Austin
* Michael Hicks * Sam Tobin-Hochstadt, 1U
* David Van Horn * Poorvi Vora, GWU

Lablet organization

e Strengths:
— Scalability and composability
— Security metrics (empirical security)
— Human behavior

* Lablet efforts organized around 9 tasks

Lablet tasks

Scalability/composability
— Verification of hyperproperties
— Trustworthy and composable software systems with contracts

Security metrics

— Empirical

LY Some tasks comprise

Human behg multiple projects

— Does the p avior?

— User-centered design for security

— Understanding developers’ reasoning about privacy/security

— Reasoning about protocols with human participants
Policy-governed secure collaboration

— Trust, recommendation systems, and collaboration

BUILDIT
BREAK
FIX

A security-minded programming contest

7/24/2014

MOTIVATING A NEW SECURITY CONTEST

* Today’s contests reward those who can break
systems by finding vulnerabilities

— DEFCON CTF, Collegiate Cyber defense challenge
(CCDC), Pwn to Own, ...

* But we also want the opposite: reward those
who can build more secure systems

— Not the same skillset set as breaking things
— Of direct relevance to companies, and society

BUILD IT, BREAK IT, FIX IT: OVERVIEW

Round 1:
Build-it team

Contestants
build software
to specification

72 hours

Must satisfy
basic correctness
and performance

requirements

Round 2:
Break-it team
Contestants
report bugs in
submissions

72 hours

Bug reports are
(failing) executable
test cases, including
exploits

Round 3:

Build-it team

Fixes bugs in their

software found by
break-it teams

48 hours

Doing so may
wipe out many
bug reports in one
go: all count as
the same bug

Last: Judges tally final results

7/24/2014

7/24/2014

GOALS

* Empirically assess what actually works by correlating
features of submission with team performance

— Programming language, framework, library, ...
— Developer experience, S/W process, ...
— Using static analysis, fuzz testing, etc. ...

* Encourage defense, not just offense

— Tie together security with reliability: Bugs are bad,
whether they are exploitable or not

— Elevate real concerns: performance and feature-fullness
* Provide direct feedback to contestants
— The contest penalizes a lack of security: “feel” the mistake!

Lablet tasks

* Scalability/composability
— Verification of hyperproperties
— Trustworthy and composable software systems with contracts
* Security metrics
— Empirical models for vulnerability exploits
— Human behavior and cyber vulnerabilities
* Human behavior
— Does the presence of honest users affects intruders’ behavior?
— User-centered design for security
— Understanding developers’ reasoning about privacy/security
— Reasoning about protocols with human participants
* Policy-governed secure collaboration
— Trust, recommendation systems, and collaboration

7/24/2014

Verification of hyperproperties

Task leads: Michael Hicks, Michael Clarkson
Hard problem(s): Composability

Properties (Lamport)

* Trace: sequence of execution states

* Property: set of traces
trace t satisfies the property P ifft € P
satisfaction depends on the trace only!

» A system/program satisfies a property iff all its
traces satisfy the property

7/24/2014

Verification of properties

Manual verification for classes of properties
based on logical proof systems [Gabay et al.
‘80]

Automated verification for classes of properties
based on model checking [Clarke et al. ‘86]

Partly automated verification [Alpern-
Schneider ‘87]

Can formalize/verify any property

But...

Many natural security policies cannot be cast
as properties
— E.g., information flow

* Depends on pairs of traces

Hyperproperties

 Satisfaction depends on sets of traces
[McLean ‘96]

* A hyperproperty is a set of sets of properties

[Clarkson-Schneider ‘08, ‘10]
— A system/program satisfies a hyperproperty H iff
the set of its traces is in H

 All(?) security policies can be expressed as
hyperproperties

Verification of hyperproperties?

 Safety and liveness methodology?
— [Clarkson-Schneider ‘08, ‘10]

* Model-checking approaches?
— [Clarkson et al. ‘14]
* Logical proof systems? ...this task

— Idea: extend linear-time temporal logic to reason
about sets of traces

— Idea: investigate compositional proofs of security
in a logic for hyperproperties

7/24/2014

Trustworthy and composable

software systems with contracts

Task lead: David Van Horn
Hard problem(s): Composability

Program verification

 Very successful for detecting/preventing many
types of software vulnerabilities

* Two limitations of current state-of-the-art:

— Assume analysis of a complete program, rather
than allowing for component-wise analysis

— Assume program written in a single programming
language

* Would like better composability!

7/24/2014

Contracts

* Semantic invariants guaranteed by software
components in the source code, specified as
pre-/post-conditions

modulle math
* Contrac®¥RhitSRIGV¥ATAY¥Ed at run-time;
faulty ch‘nﬁbr&qﬁg‘?l §<>j €8r iﬁntract

violation d . positive
->
7 - (0,1] -> real

Drawback

* Dynamic enforcement of contracts impose
significant/unpredictable run-time overhead

— By a factor of 10— 10

* Dynamic enforcement leaves open the
guestion of how to recover from a detected
contract violation

7/24/2014

10

This task

 Static contract checking

— Verify what you can at compile-time, but can still
fall back on run-time guarantees

* Program components can be analyzed/verified
independently, in a composable manner

» Extensions to multi-language programs

— Evaluate using the Racket standard library

Main ideas

* Apply symbolic-execution techniques to
contract checking at compile-time

e Combine this with algebraic reasoning to
achieve completeness

* In conjunction, these allow for analysis of
more complex programs, more quickly, than
prior work on static contract checking

7/24/2014

11

Empirical models for

vulnerability exploits

Task lead: Tudor Dumitras
Hard problem(s): Security metrics

Background/motivation

» Security of deployed systems not adequately
captured in current models/metrics
— E.g., estimating # vulnerabilities in software does

not account for the fact that many of these are
never exploited

— E.g., “patched” vulnerabilities may still be present
in the wild due to failure to apply patches

7/24/2014

12

7/24/2014

This task

* Derive empirical models of vulnerabilities and
attack surfaces; correlate with real-world
attack data

— What vulnerabilities are exploited in real world?

* Understand deployment-specific factors that
influence security of real systems

— How to best characterize attack surface

* Using real-world field data from WINE

Measuring security of deployed
systems

* Count of vulnerabilities exploited

» Exploitation ratio: ratio of exploited
vulnerabilities to disclosed vulnerabilities

* Survival probability: time to exploit

» Exercised attack surface: number of distinct
exploits on a host/month

13

Exploitation ratio
* ldentify exploits from Symantec signature definitions (Allodi, 2013)

— http://www.symantec.com/security response/threatexplorer/azlisting.jsp

Product Exploited Vulnerabilities Exploitation Ratio

Office 2000 26 0.32 Fewer than 40% of

Office 2003 41 036 known vulnerabilities

Office 2007 17 0.31 are exploited

Office 2010 4 0.29

Adobe Reader 6 5 0.21 s o

Adobe Reader 7 11 0.17 % %

Adobe Reader 8 29 0.16 -2

Adobe Reader 9 29 0.11 g, rgb_

Adobe Reader 10 12 0.09 55

Adobe Reader 11 4 0.07
Implications

* Scarcity of exploits matches cybercrime data
— 2013: $100,000 per zero-day exploit

* Reasons?

— System-security technologies that render exploits less
likely to work

— Commoditization of malware industry

* Take-aways?
— Prioritization of patch deployment
— Risk assessment

7/24/2014

14

7/24/2014

Human behavior and
cyber vulnerabilities

Task lead: VS Subrahmanian
Hard problem(s): Security metrics, human behavior

Background/motivation

* When vulnerabilities are exploited, patches
are often released soon after

— But past work indicates that patches are not fully
deployed even 4 years after disclosure

— Why?

15

7/24/2014

This task

* Characterize the rate of vulnerability patching

* Determine the factors that influence the rate
of patch deployment
— Technological
* Using WINE dataset

— Sociological

* Based on targeted user studies
http://netchi.umd.edu/software-updating-study.html

Vulnerability patching

* Goal: characterize the rate of vulnerability
patching
— Start of patching
— Time to patch 50%, 90%, 95% of vulnerable hosts

16

08

CVE-2011-0024

T T T
-1000 -500 0 500

Survival Probability

Patterns of patching activity

| CVE-2011-0611

(also affects

| Acrobat Reader) i

ime in Days

i
CVE-2009-2062, E
CVE-2009-2066, CVE-2012-5112,
7 CVE-2009-2072 ; s CVE-2012-5376
Implications
* Patch deployment exhibits a long tail

e Considerable variation

— Automated updates faster

— Hosts may remain vulnerable even after user
believes patch was deployed

7/24/2014

17

Sociological factors (host-level
data)

» Users classified into one of several categories
— Gamers, professionals, s/w developers, other
— Classified based on software installed

» Several factors investigated for correlation
with patch rate

— Number of (unsigned, low-frequency) binaries
downloaded

— Travel history
— Time of login

Sociological factors (user-level
data)

* Investigate human barriers to deploying
software updates

— User surveys + in-depth interviews with network
administrators

— Develop improved interfaces/incentives for patch
deployment

* Determine if user-level data matches host-
level data

7/24/2014

18

Does the presence of honest users

affect intruders’ behavior?

Task leads: Michel Cukier, David Maimon
Hard problem(s): Human behavior

Social sciences and cybersecurity

* Idea: Investigate application of criminological
theories to cybersecurity
— Routine activity theory
— Rational choice theory
— Deterrence theory

* Using honeypot data collected at UMD

7/24/2014

19

This task

* What is the effect of legitimate users on
system trespassers’ online activities?

Experimental setup

* Honeypots accessed through vulnerable SSH

* Randomly assign honeypot configuration to each
attacker
— Control: no legitimate users present
— Condition 1: One non-admin user present
— Condition 2: One admin user present
— Condition 3: 10 non-admin users present at any time
— Condition 4: 10 admin users present at any time
— (Honest users cycle every 8 hours; are idle)

» Study attacker network activity/keystrokes/etc.

7/24/2014

20

7/24/2014

Questions to be addressed

* Does the presence of honest users affect the
duration of an attacker’s login?

* Does their presence affect number/type of
network activities?

* Replication over time?
* Reproduction (using different methods)?

(Potential) implications

 Simulate presence of honest users to deter/
influence attacker behavior

* Generate new IDS rules based on these
insights
— E.g., look for execution of “who” command

21

7/24/2014

User-centered design for security

Task leads: Jen Golbeck and Adam Aviv
Hard problem(s): Human behavior, security metrics

User-centric design

* Goal: development of new, usable-security
measurement techniques and metrics to
inform the design and development of new
cybersecurity applications
— Empirical measurements; usability metrics

* Specifically:
— Visual perceptions of security/usability
— Impact of security policies on user behavior

22

Visual perceptions of
security/usability

What visual properties of passwords do people
perceive as secure?

Research questions

* What visual features most affect users’
perceptions of security/usability?

* How well spond
with reali See tomorrow’s talk

* Can we use insight gained about user
perceptions to design better security systems?
— E.g., “nudge” users to better choices

7/24/2014

23

Understanding developers’

reasoning about privacy and security

Task lead: Katie Shilton
Hard problem(s): Human behavior,
policy-governed collaboration

Background/motivation

* Mobile app developers often request more
permissions than necessary

— Why?

e Users are unclear what permissions need to
be granted to enable some functionality

— Cannot often get the full functionality they desire

* Both can lead to security/privacy concerns

7/24/2014

24

This task

* Design and evaluate a new system (“Bubbles”)

that can

— Simplify user-directed information-flow control,
especially to other users

— Simplify developers’ design/implementation

— Simplify system-level information-flow tracking

and control

Main idea

Data clusters around
real-world contexts

Privacy policy as access
control on contexts

Apps run in Bubbles;
cannot affect privacy

7/24/2014

25

C h a I I e r O Tcted viewer

Search

Bubbles

New Bubble

* Lots of bubbles
— provide Ul for navigat

ISCA PAPER
Jan 11,2013 1:44:26
AM

* Apps no longer own dati| . ,
— Provide an APl forde™
* System implementation | & --

— Virtualize dangerous
cross-bubble declassifiel

SATC PI MEET

Future plans

* Healthcare application
* Developer study planned
* Possible user studies as well

7/24/2014

26

Reasoning about protocols with

human participants and physical objects

Task lead: Jonathan Katz
Hard problem(s): Human behavior,
resilient architectures

The challenge

* Traditional protocol analysis limited to
analyzing computers exchanging electronic
messages

* This task: extend this to explicitly model
human users (+ computers) exchanging
physical objects (+ electronic messages)

— With the Remotegrity voting protocol as an initial
test case

7/24/2014

27

7/24/2014

Why Remotegrity?

* Good example of a protocol explicitly
designed with human users in mind, and with
physical objects inherent

* Practical impact

— Used in Takoma Park municipal elections (2011)

Why voting protocols?

 Several jurisdictions world-wide considering
some form of end-to-end verifiable voting

— Such protocols must take human users into
account

— Such protocols must include a physical component
for post-election auditing

28

7/24/2014

Scantegrity |l

» Scantegrity Il is an end-to-end verifiable voting
protocol
— Vote privacy if majority of trustees are honest

— Vote integrity -- voters and independent auditors
can verify that all votes are counted

— Dispute resolution: in case of dispute, a third party
can determine who is cheating

Remotegrity

» Adds support for remote/absentee voting on
top of Scantegrity
— Can also be used with other paper-ballot systems

* In addition to added functionality required, an
additional concern is possible malicious
software on voters’ (home) computers
— Cannot treat voters’ computers as trustworthy

29

Traditional security models

Voter
(poly time)

Election
trustees

Our model

Voter
(human!)

terminal
(may be malicious!)

Election
trustees

7/24/2014

30

Voting cards
Ballot Auth Card

AuthCodes
(scratch off)

voteCodes
(scratch off)

AckCode LockCode
(scratch off)

Scratch-off cards

* Physical object

* Assumptions:

— Value cannot be read until relevant portion of card
is scratched off

— Once an area is scratched off, it cannot be undone

7/24/2014

31

More broadly (future work)

* General results on what is possible using
protocols with humans and physical objects

— Can we design protocols with limited (or no)
trusted computers, relying on “human
computation” only?

— What types of functionality can we achieve using
physical objects (and weaker, or no, cryptographic
assumptions)?

Trust, recommendation systems,

and collaboration

Task lead: John Baras
Hard problem(s): Policy-governed collaboration,
human behavior

7/24/2014

32

Overview

* Develop a theory of trust, including its impact
on collaboration in dynamic, networked,
multi-agent systems
— Understand effect of malicious attacks on trust

inference (i.e., attempts to influence trust
improperly)

e Take human behavior into account

General model

Multiple interacting graphs

— Nodes: agents, groups, organizations)

=N

— Links: ties, relationships i Tw?

— Directed graphs

— Weights on links : value (strength,
significance) of tie

Trust
network .-~

— Weights on nodes : importance of
node (agent)

Dynamic, time-varying graphs
(relations, weights, policies)

7/24/2014

33

Indirect trust

* How to establish a trust relation between
users i, j, that have not had prior direct
interaction?

* Trust computation: path problem on a graph

— Look at (directed) paths from i to j; combine
information along each path

Trust semiring properties
e Semiring (R*, ®, ®) o
— ® = sequential composition ‘i-.—».

— Axiom:a®b<a,b

— @ = parallel composition
— Axiom:a®b=>a,b

* Can study abstract properties of such systems

7/24/2014

34

* How well does any particular set of operations

Modeling

model human perceptions of trust?

Lablet participants

* Adam Aviv, USNA
* John Baras
* Marshini Chetty

* Michel Cukier

* Tudor Dumitras
* Jeff Foster

* Jen Golbeck

* Michael Hicks

* David Van Horn

* Joseph Jala
* David Maimon
* Babis Papamanthou

Michael Clarkson, Cornell * Aditya Prakash, VA Tech

* Elaine Shi

* Katie Shilton

* VS Subrahmanian

* Mohit Tiwari, UT Austin
¢ Sam Tobin-Hochstadt, 1U
* Poorvi Vora, GWU

7/24/2014

35

7/24/2014

Questions?

36

