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• Process separation built from 
kernel thread separation
– Kernel threads are under control 

of the kernel designer, process 
code is not

• Kernel thread separation built 
mostly from types, and a little 
bit from theorem proving
– Kernel thread must be a rich 

enough structure to support 
programming the API calls
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Process separation built from kernel thread 
separation

• Each user process (user 
half, or u/2) is an 
abstraction created by its 
corresponding kernel 
thread, called the system 
half (s/2)

• The kernel core is the 
initial thread, controlling 
the creation of other 
threads in the system
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• Construction of the kernel thread
– Rich enough structure in which to implement the API

• Function calls
• Mutable state
• Exceptions
• Interleaved execution

• Construction of the braid
– Multi threading environment

• Kernel (braid) calls
• Separation property between properly constructed threads



• Construction of the kernel thread
– Rich enough structure in which to implement the 

API
• Function calls
• Mutable state
• Exceptions
• Interleaved execution

• Construction of the braid
– Multi threading environment

• Kernel calls
• Separation property between properly constructed 

threads



Osker Criteria for a thread structure

• Separation: How much of thread separation is captured in the 
types?
– Process code: Can the process cause separation to fail without the 

assistance of the kernel calls?
– Kernel code: Does privileged kernel code violate the separation 

property?
• Adequacy: How easy is it to program API calls in the structure?
• Swept under the rug: How much of thread separation depends 

on advanced features of the run time system?
• Speed: How many thread schedules can be performed in one 

second?
• Features: Do we have mutable state, exceptions, interleaving, 

and kernel calls?

Structure Se
pa

ra
tio

n 
/ 

pr
oc

es
s

Se
pa

ra
tio

n 
/ 

ke
rn

el

Su
ffi

ci
en

cy

Sw
ep

t U
nd

er
 R

ug

Pe
rfo

rm
an

ce

M
ut

ab
le

 S
ta

te

Ex
ce

pt
io

ns

In
te

rle
av

in
g

Ke
rn

el
 C

al
ls

 / 
Ex

ec



�

thread C (black)

x1 x2

thread B (crypto)

• Policy
– A can communicate to (interfere with) B
– B can communicate to (interfere with) C
– A cannot directly interfere with C

• Any interference of A with C must be mediated by B
• If the result of running C is affected by the prior execution of A, then 

there must have been an execution of B between the executions of A 
and C

b1 <- check "A->B"
d1 <-createQ "A->B" send
when (bad d1)

(error “err.1”)
let y = f x1 d1
sendQ d1 y
cOk <- closeQ d1
uOk <- unlinkQ d1
return ()

b2 <- checkQ "A->B"
d1 <- openQ "A->B" rcv
x <- receive d1
m d2 <- create "B->C" send
sendQ d2(g x2 x)
cOk1 <- closeQ d1
cOk2 <- closeQ d2
uOk1 <- unlinkQ d1
uOk2 <- unlinkQ d2
return ()

b1 <- checkQ "B->C"
d2 <- openQ "B->C" rcv
w <- receiveQ d2
cOk <- closeQ d2
return ()

thread A (red)

black

red

crypto
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Local

• Goals:
– Make local processing provably local via types
– Establish (mostly via types) that the only non-local process is via 

the thread primitives (check, create, send, …) provided
– Establish (mostly via types) that the thread primitives are used in 

accordance with policy

�

thread C (black)

x1 x2

thread B (crypto)
b1 <- check "A->B"
d1 <-createQ "A->B" send
when (bad d1)

(error “err.1”)
let y = f x1 d1
sendQ d1 y
cOk <- closeQ d1
uOk <- unlinkQ d1
return ()

b2 <- checkQ "A->B"
d1 <- openQ "A->B" rcv
x <- receive d1
m d2 <- create "B->C" send
sendQ d2(g x2 x)
cOk1 <- closeQ d1
cOk2 <- closeQ d2
uOk1 <- unlinkQ d1
uOk2 <- unlinkQ d2
return ()

b1 <- checkQ "B->C"
d2 <- openQ "B->C" rcv
w <- receiveQ d2
cOk <- closeQ d2
return ()

thread A (red)
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sendQ d1 (f x1 “A->B” )

closeQ d1

b1 <- checkQ “A->B”

md1 <- createQ “A->B” send

(s3,()) = sendQ d1 (f x1 “A->B” ) s2

(s2, d2)= openQ “A->B” flags s1

s0

Form �s ->(s, Bool)

(s4, ()) = closeQ d1 s3

checkQ “A->B” :: s -> (s, Bool)

openQ “A->B” flags ::s -> (s1 Desc)

(s1, b1)= checkQ “A->B” s0

sendQ d1 (f x1 “A->B” ):: s -> (s,())

closeQ d1 :: s -> (s, ())

Form �s ->(s, Descriptor)

Form �s ->(s, ())

Form �s ->(s, ())

• Goal: to be able to interleave the steps of one thread 
with the steps of other threads

As a sequence of steps As a sequence of functions of state



sendQ d1 (f x1 “A->B” )

closeQ d1

b1 <- checkQ “A->B”

md1 <- createQ “A->B” send

(s3,()) = sendQ d1 (f x1 “A->B” ) s2

(s2, d2)= openQ “A->B” flags s1

s0

Form �s ->(s, Bool)

(s4, ()) = closeQ d1 s3

checkQ “A->B” :: s -> (s, Bool)

openQ “A->B” flags ::s -> (s1 Desc)

(s1, b1)= checkQ “A->B” s0

sendQ d1 (f x1 “A->B” ):: s -> (s,())

closeQ d1 :: s -> (s, ())

Form �s ->(s, Descriptor)

Form �s ->(s, ())

Form �s ->(s, ())

• Goal: to be able to interleave the steps of one thread 
with the steps of other threads

As a sequence of steps As a sequence of functions of state

‘bind’

‘bind’

‘bind’

‘compose’

‘compose’

‘compose’



sendQ d1 (f x1 “A->B” )

closeQ d1

b1 <- checkQ “A->B”

md1 <- createQ “A->B” send

(s3,()) = sendQ d1 (f x1 “A->B” ) s2

(s2, d2)= openQ “A->B” flags s1

s0

Form �s ->(s, Bool)

(s4, ()) = closeQ d1 s3

checkQ “A->B” :: s -> (s, Bool)

openQ “A->B” flags ::s -> (s1 Desc)

(s1, b1)= checkQ “A->B” s0

sendQ d1 (f x1 “A->B” ):: s -> (s,())

closeQ d1 :: s -> (s, ())

Form �s ->(s, Descriptor)

Form �s ->(s, ())

Form �s ->(s, ())

State monad hides the state parameter

‘bind’

‘bind’

‘bind’

‘compose’

‘compose’

‘compose’

thread A :: Name->x-> thread ()
thread A u1 x1 =
do { b1 <- check “A-> B”

; d1 <- open “A->B” flags
; send d1 (f x1 n1)
; close d1
}

thread A :: s-> Name->x-> (s,())
thread A s0 n1 x1 =
let (s1, b1) = check n1 s0

(s2, d1) = open n1 flags s1 
(s3,()) = send d1 (f x1 n1) s2  
(s4,()) = close d1 s3

in (s4,())  

General form of the state monad
Form �s ->(s, a)
State Monad = S(�s ->(s, a))



sendQ d1 (f x1 “A->B” )

closeQ d1

b1 <- checkQ “A->B”

md1 <- createQ “A->B” send

(s3,()) = sendQ d1 (f x1 “A->B” ) s2

(s2, d2)= openQ “A->B” flags s1

s0

(s4, ()) = closeQ d1 s3

(s1, b1)= checkQ “A->B” s0

Thread State monad in pictures

‘bind’ ‘compose’

‘bind’ ‘compose’

‘bind’
‘compose’

sendQ d1 (f x1 “A->B”)

closeQ d1

checkQ “A->B”

md1 <-createQ “A->B” Flags

S0
x1

S1 b1

S2 d1

S3 ()

x1

S4 ()

The local state of the thread evolves with each bind / compose
Separation depends more on the bind combinator than on the operations bound

x1



• Thread monad has type
– data Thread s a = Thread (s -> (s, a))
– bind: Plumbs state from one operation into 

the next operation.
• Thread monad captures mutable state
• Functions in a thread are safe

– State change in one thread does not 
affect another thread, without help 
from an executive

• Thread monad does not offer 
interleaving or exceptions

– Each thread is run to completion
• No executive or kernel calls have 

been specified for threads
• Separation within a thread is good, 

but the executive could plumb the 
state of one thread through another 
thread
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• Description of Braid 0 type
– data Braid s a = Braid (s -> (s, a))
– The state (s) is specialized to the state 

depicted on the right
– bind: Selects thread to run, runs it, updates 

relevant state information
• Each thread has its own mutable 

state
• Braid 0 monad does not offer 

interleaving or exceptions
– Each thread is run to completion

• Can implement the kernel calls 
(openQ, sendQ, …)

– The executive is the braid itself
• Separation

– Process: Local processing separated
– Kernel calls: No separation property 

offered
• Program of type Braid s a = Braid(s -> 

(s, a)) can make arbitrary updates to 
the state s.

local state

queues

tid1
ls(1,1)

tid2
ls(2,1)

tid3
ls(3,1)

A->B
[y]

B->C
[w]

tid1
running

tid2
ready

tid3
ready

tid1

threadstate

current

local
program

tid1
prog(1,1)

tid2
prog(2,1)

tid3
prog(3,1)
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State evolution in the braid 0 monad

• Local program has type Braid s ()
– Braid is a recursive data type

local state

queues

tid1
ls(1,1)

tid2
ls(2,1)

tid3
ls(3,1)

A->B
[y]

B->C
[w]

tid1
running

tid2
ready

tid3
ready

tid1

threadstate

current

local
program

tid1
prog(1,1)

tid2
prog(2,1)

tid3
prog(3,1)

run tid1

local state

queues

tid1
ls(1,1)

tid2
ls(2,1)

tid3
ls(3,1)

A->B
[y]

B->C
[w]

tid1
running

tid2
ready

tid3
ready

tid1

threadstate

current

local
program

tid1
prog(1,1)

tid2
prog(2,1)

tid3
prog(3,1)

sendQ d1 y



c <- f3 a

a <- f1 x1

b <- f2 a

lS0 x1

lS1 b1

lS2 d1

lS3 ()

Thread monad

c <- f3 a

a <- f1 x1

S0 x1

S1 b1

S2 d1

S3 ()

Braid 0 monad

b <- f2 a

ls(1,0)

ls(1,1)

ls(1,2)

ls(1,3)

lift tid1

Lifting an isolated thread into the braid results in a computation that runs as
if it were isolated within the context of the braid.



{-P: {-< Braid internal separation through lifting property >-}
-- The separation through lifting property, for transitive null policy
assert SeparateLiftTransitive =

All sched  :: P.Schedule.
All filt   :: ThreadFilter.
All bst    :: BraidSt.
All tinits :: [TH.ThreadInit (Thread ())].

{ filterObservationsTransitive
sched filt (observations sched (lifts bst tinits))

} ===
{ observations (filterScheduleTransitive sched filt)

(lifts bst tinits) }

domC

domA

domB



{-P: {-< The intransitive separation through lifting property.>-}
assert SeparateLiftIntransitive =

All sched  :: P.Schedule.
All policy :: P.Policy.
All target :: TID.ThreadId.
All bst    :: BraidSt.
All tinits :: [TH.ThreadInit (Thread ())].

{ filterObservationsIntransitive
policy target (observations sched (lifts bst tinits))

} ===
{ observations (filterScheduleIntransitive sched policy target)

(lifts bst tinits)
}

black

red

crypto
�

�

�

�

�

�



assert InterferenceCause =
All bst    :: BraidSt.
All tid1   :: TID.ThreadId.
All th1    :: TH.ThreadInit SingleThread.
All tid2   :: TID.ThreadId.
All th2    :: TH.ThreadInit SingleThread.
Interference1 tid1 th1 tid2 th2 ==>
(-/ ( { runTid tid1 bst >> getTidState tid2 } ===

{ getTidState tid2 }
)

)

local state

queues

tid1
ls(1,1)

tid2
ls(2,1)

tid3
ls(3,1)

A->B
[y]

B->C
[w]

tid1
running

tid2
ready

tid3
ready

tid1

threadstate

current

local
program

tid1
prog(1,1)

tid2
prog(2,1)

tid3
prog(3,1)

•If there is interference, it is caused by another 
thread (tid1) affecting those components of the 
state that are relevant to the execution of tid2

–Contents of the queues
–tid1 local state (ruled out for lifted threads)
–tid1 program (ruled out for lifted threads)
–currently running tid (ruled out for lifted threads)
–tid1 thread state (ruled our for lifted threads)



• Lifting of threads yields separation
– Lifted threads enjoy separation property by 

virtue of:
• Their types (mostly)
• Correctness of the lift operation (a little theorem 

proving)
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• Description of Braid 1 type
– data Braid s a = Braid (s -> (s, E a))
– bind:

• Plumbs state from one operation into the 
next

• Propagates exceptions through the bind
• Functions executed within a thread are 

safe
• Still no interleaving

– Each thread is run to completion
• Kernel calls

– Can add intra thread (throw) and inter 
thread (throwTo) exceptions

– Kernel calls still assured by analysis
• Analysis assisted by type safety

• Braid state
– Add an exception handler program per 

thread
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• Exception catcher is 
associated with each 
thread id
– Catcher and program have 

type Braid1 s ()
• Braid1 is a recursive type

– The catcher is changed by 
the `catch` kernel call

local state

queues

tid1
ls(1,1)

tid2
ls(2,1)

tid3
ls(3,1)

A->B
[y]

B->C
[w]

tid1
running

tid2
ready

tid3
ready

tid1

threadstate

current

local
program

tid1
prog(1,1)

tid2
prog(2,1)

tid3
prog(3,1)

local
catcher

tid1
catch(1,1)

tid2
catch(2,1)

tid3
catch(3,1)



• The separation properties in braid 1 are 
identical to those in braid 0



• Description of braid 2 type
– data RSEVal s a
– = Continue s (E a)
– |  Pause s (RSE s a)
– Data RSE s a = RSE (s -> RSEVal s a)
– bind:

• Plumbs state from one operation into the 
next

• Propagates exceptions through the bind
• Permits continuation of the computation 

or a pause in the computation
• Functions executed within a thread are 

safe
• Braid

– Braid2 is specialized to the internal state 
shown

– Each catcher and thread program have 
type Braid2 ()

• Braid2 is a recursive type

local state

queues

tid1
ls(1,1)

tid2
ls(2,1)

tid3
ls(3,1)

A->B
[y]

B->C
[w]

tid1
running

tid2
ready

tid3
ready

tid1

threadstate

current

local
program

tid1
prog(1,1)

tid2
prog(2,1)

tid3
prog(3,1)

local
catcher

tid1
catch(1,1)

tid2
catch(2,1)

tid3
catch(3,1)



• Braid 2 is an adequate 
environment to program POSIX 
calls

• About 140000 thread switches 
per second
– Little effort has been put into 

optimization
• We still have the correctness of 

the kernel calls to worry about
• Braid 2 is purely functional, no 

reliance on the Haskell IO 
threads
– “Under the rug”

• Functional evaluation via thunks
• Garbage collection
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• The separation properties in braid 2 are 
identical to those in braid 0



The end game: Process separation

• Each domain is a braid
– Supporting process separation

• Domains get their own “separation 
through lifting” property

• Within the braid, processes are 
separated via their underlying 
kernel threads
– Kernel thread performs local 

services for a user process
– The user program can be 

interpreted, simulating running the 
program on the hardware

– Interpreter is under control of the 
system half, and can be 
interrupted at any time

– Multi threading is cooperative, but 
only at the level of kernel threads

R (Dom -> BraidState ()) () 

Braid () Braid () Braid ()

lift
Red

lift
Black

lif
t C

ry
pt

o

U/21
user

system

kernel core

S/21

U/23

S/23

U/22

S/22



• Kernel calls are already 
quite tame

• Underlying functionality in 
RSE monad is 149 LOC

• Braiding the threads 
requires an additional 664 
LOC

• Braid has a small list of 
data abstractions and 
methods upon which the 
separation properties 
depend

Resumption / State / Exception Monad

Braid

Channels

149 LOC

664 LOC

readMVar
yield
fork
killThread
threadDelay
myThreadId
throw
throwTo
catch

MVar
Exception
ThreadId
Thread

newEmptyMVar
newMVar
deleteMVar
takeMVar
putMVar
modifyMVar
withMVar
swapMVar
weave



local state

queues

threadstate

current

local
program

local
catcher

tid1
ls(1,1)

tid2
ls(2,1)

tid3
ls(3,1)

A->B
[y]

B->C
[w]

tid1
running

tid2
ready

tid3
ready

tid1

tid1
prog(1,1)

tid2
prog(2,1)

tid3
prog(3,1)

tid1
catch(1,1)

tid2
catch(2,1)

tid3
catch(3,1)

local state

queues

tid1
ls(1,1)

tid2
ls(2,1)

tid3
ls(3,1)

A->B
[y]

B->C
[w]

tid1
running

tid2
ready

tid3
ready

tid1

threadstate

current

local
program

tid1
prog(1,1)

tid2
prog(2,1)

tid3
prog(3,1)

local
catcher

tid1
catch(1,1)

tid2
catch(2,1)

tid3
catch(3,1)

tid1
ls(1,1)
A->B

[y]
tid1

running
tid1

tid1
prog(1,1)

tid1
catch(1,1)

getTidState tid1

MVar access policy 
is enforced, selecting 
only those MVars to 
which tid1 has 
access

tid1
ls(1,1)
A->B

[y]
tid1

running
tid1

tid1
prog(1,1)

tid1
catch(1,2)

catch h :: TidState -> TidState

catch (1,2) = h

updateTidState tid1



• Another way to look at it: Refactoring
f tid a b c = f’ a b c ( getTidState tid )



Structured / restricted kernel calls summary

• getTidState and 
updateTidState must 
correctly select and 
update state 
components

• Kernel call, by their type 
(TidState -> TidState) 
can only affect their 
own state

• Reduce trusted LOC 
count to 400
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• Interrupts
– User programs run under interpreter are 

interruptible
– Kernel threads currently use cooperative 

multitasking
• Looking at ways to make kernel threads 

interruptible, to support device drivers
• Features

– Job control, pipes, …



• Osker is currently 25000 LOC
– 400 trusted for thread separation property

• Have achieved the “mostly by types, a 
little by theorem proving” goal for the 
architecture

• The thread switching performance is 
excellent (140000 per second)

• Very little is under the rug



• The framework of Osker supports 
separation in large scale software 
projects
– Complete separation (MILS)
– Intransitive interference (MLS and other 

policies)


