
Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Analyzing Code Stability Using Control
Theoretic Techniques

Jessa Lee
Mikey LiBretto
Ben Holland
Evan Fortunato

1

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Overview

• We Will Discuss the Application of Control Theory to Software
– Control Theory studies the behavior of dynamical systems. For example, control

theory describes the conditions under which an inverted pendulum will not fall over
– Software describes a dynamical system – can we apply control theory?

• Controller-Oriented Programming (COP) is a New Programming Language
Paradigm Developed to Enable Software that is Efficient & Adaptable
– Adds two key language constructs: Partitions and Controllers
• Partitions capture sets of implementation options that can be treated as equivalent
• Controllers dynamically select among these options and manage side effects and

other couplings to enable systems to act like they are decoupled
– Separates action flow, which specifies the essential tasks necessary to provide the

required functionality, from controller flow, which restores necessary pre-conditions
– Hypothesis: partitions and controllers and the resulting separation of action and

controller flow may lead to ability analyze more easily
– SymLang is the first instance of a COP Language

• We will describe an example control theory-based analysis of SymLang code

2

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Simple Example Problem: Data Stores Utilizes
Feedback Control to Ensure Sufficient Resources

• Data Store Problem: given an unbounded stream of integer values,
support lookup (true iff the value has been seen previously) in bounded time

• DataStore Implementation uses an unbounded set of atomic stores
– Stores are organized into 3 partitions
• Unused: new stores; uses a feedback

controller to spin up additional stores
as current stores are depleted

• HasCapacity: stores with capacity;
supports insert and lookup

• Full: full stores; supports lookup
– Insert is implemented by...
• Inserting the value into a store in HasCapacity,

which also triggers a controller to
(a) move the store to Full, if it not longer has remaining capacity, and
(b) take a store from Unused if HasCapacity becomes empty as a result

• A controller also spins up new stores in Unused in anticipation of future needs

3

Unused Has
Capacity

DataStore

Element Repartitioning

Hierarchy

Insert /
Lookup

Full

Insert Delegation Lookup Delegation

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

A Brief Overview of Types of Stability

4

• Transfer functions describe Input-
Output relationships of a system:

𝐻 𝑠 =
𝑜𝑢𝑡𝑝𝑢𝑡 𝑠
𝑖𝑛𝑝𝑢𝑡(𝑠) =

𝑁 𝑠
𝐷(𝑠)

• Poles are s ∈ ℂ s. 𝑡. 𝐷 𝑠 = 0

Poles of the Transfer
Function Indicate Stability

• BIBO (bounded-input, bounded-output) Stability:
System is bounded by a finite output for a finite input
– Example: Ideal oscillator – when displaced, oscillates

with finite amplitude around its equilibrium
– Asymptotic stability: System returns to equilibrium when

displaced
• Example: pendulum with friction, when displaced

will always trend back to its downward position
• Condition for LTI systems: all poles have Re(𝑠)<0

• Marginal stability: Displaced system does not explode
but also does not return to equilibrium
– Example: mass on a surface with friction – when

impacted, it will travel and stop eventually but
won’t return to its original position

• Unstable: Displaced system explodes
– Example: Mic and Speaker – the roar of positive

feedback when a mic picks up the speaker output

Stable –
All Re 𝑠 < 0

Unstable –
Any Re 𝑠 > 0

Im[s]

Re[s]
0

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Control Theoretic Approach to Stability:
Transfer Function Analysis

5

• Transfer Function Analysis Provides a Simple Way to Analyze
Stability of Linear Time-Invariant Systems

• Step 1: Create a block diagram capturing system dynamics
– Block diagrams live in the Laplace domain
– Fourier transforms decomposes a signal into frequency components

(sines and cosines): 𝑒!"#

– Laplace transforms include both real and imaginary components to
capture signal growth in addition to oscillations: 𝑒(%& !")#

• 𝜎 > 0: signal blows up: 𝑓𝑜𝑟 𝜎 > 0, 𝑡 → ∞ 𝑒%# → ∞ (unstable)
• 𝜎 < 0: signal decays: 𝑓𝑜𝑟 𝜎 > 0, 𝑡 → ∞ 𝑒%# → 0 (stable)
• 𝜎 = 0: signal oscillates forever (neither stable nor unstable)

• Step 2: Solve for the Transfer Function,
– Relates the output signal to the input signal
– Derived by reducing block diagram (well-understood in Control Theory)

• Step 3: Analyze the poles of the transfer function
– A system is stable if and only if all poles have negative real part
– Otherwise, the system does not converge (conceptually, the output

blows up for a non-decaying input)

𝐻 𝑠 =
𝑜𝑢𝑡𝑝𝑢𝑡 𝑠
𝑖𝑛𝑝𝑢𝑡(𝑠)

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Control Theory is Designed to Analyze
Stability… Why Not Apply to Code?

• Software Is a Dynamical System
– Inputs are transformed into outputs
– Software defines these transformations in code

• Failures at Cloud-Scale Often Look like Stability Issues
– Amazon – 2021, large-scale AWS outage due to an internal migration that caused a

temporary spike in network activity, which became self-perpetuating due to retry
(e.g., on timeout) policies

– Microsoft Azure – 2018, Overloaded Redis cache increased lookup latency, leading to
application-level timeouts, which caused cascading failures, leading to a 17-hour
downtime for multi-factor user-authentication

• Control Theory Answers Questions That Seem Relevant for Software
– Stability: does the system have a bounded output for all sequences of bounded input?
– Margin: does the system have sufficient resources such that future stability is

guaranteed? (Is it possible for the system to run out of resources (in the future)?)
– Note: This analysis describes the conditions under which we can guarantee that

stability holds
– Challenge is bridging the gap between control theory tools and code implementations

6

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Controllers in (SymLang!) Code

• SymLang Code Incorporates Controllers As First-Class Language Elements,
Defines a Dynamical System With Separation of Concerns
– Action flow specifies the essential tasks necessary to provide the required

functionality, while Controller flow which restores necessary pre-conditions
– For example, in the Data Store Insert Implementation,

Action flow specifies that the value is inserted into a store to support lookup
Controller flow ensures that HasCapacity has a store and can support insert

• For Data Store Implementation, Want to Analyze the Stability of the
Number of Unused Stores
– Want to show that there does not exist a condition under which the number of

Unused stores could become unbounded
– Bounded input bounded output (BIBO) stability would guarantee that, for any

bounded input rate, the number of unused stores is always bounded
• Question: Can We Apply Control Theoretic Techniques to the SymLang Code

to Show BIBO Stability?

7

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Derived Block Diagram From Code,
Transfer Function for Stability Analysis

8

Step 2, derived a Transfer function describing the number of unused stores as a
function of insert rate:

𝐻 𝑠 =
𝑜𝑢𝑡𝑝𝑢𝑡 𝑠
𝑖𝑛𝑝𝑢𝑡(𝑠) =

ℎ
𝑟 =

𝑇 − (1 + 𝑠)
𝑠 + 1 !

Step 3, Evaluated the poles by solving 𝐷 𝑠 = 𝑠 + 1 ! = 0
𝑠 = −1

Because s has negative real part, this implies BIBO stability
𝑅𝑒(𝑠) = −1

∴ for any bounded insert rate, the number of unused stores will remain bounded

Step 1, Manually derived a Block Diagram for the DataStore Implementation

𝑇𝑟 1 B1 𝑠−

B1 𝑠
𝑒"#$ B1 𝑠 ℎ%

−

Current
Unused Stores

Error Total Stores
Created

Actual Stores
Depleted

Total Stores
Readied

Predicted
Stores Used
per Spinup ℎ

Current
Ready Stores

−
1/(𝑠 + 1)

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Analysis Correctly Identifies Unstable
Implementations: Positive Feedback Bug

9

ℎ
𝑟
=

𝑇 − (1 + 𝑠)
𝑠 + 1 (𝑠 − 1)

Pole at 𝑠 = +1 , so
System is UNSTABLE

• Analyzed Two Real Bugs Introduced
by Junior Devs

Functional Implementation
internal void runPID() = Do {

action() = {
val error = (setpoint - size())
var desiredUpdate = PID.execute(error);
addOrRemoveStores(desiredUpdate);

}}

Transfer Function

Transfer function analysis shows positive feedback creates instability

Bug #1
// creates positive feedback
val error = (setpoint + size())

- for Functional System+ for Buggy
System

𝑇/(𝑠 + 1)𝑟 1 B1 𝑠
+

B1 𝑠

−

𝑒"#$ B1 𝑠 ℎ%
−

Current
Unused Stores

ℎ

Current
Ready Stores

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Analysis Correctly Identifies Unstable
Implementations: Latency Bug

10

Bug #2
// introduces latency by only
// counting Ready stores
val error = (setpoint – Ready.size());

Functional Implementation
internal void runPID() = Do {

action() = {
val error = (setpoint - size())
var desiredUpdate = PID.execute(error);
addOrRemoveStores(desiredUpdate);

}}

Transfer function analysis shows introduced latency creates instability

Transfer Function

ℎ
𝑟 =

𝑠𝑇 + (𝑠 + 1)(1 − 𝑠 − 𝑒!"#)
𝑠 𝑠 + 𝑒!"# (𝑠 + 1)

Poles at 𝑠 = 0,−1 and 𝑠 s.t. 𝑠 + 𝑒"#$ = 0
For 𝑇 ≥ &

!
, 𝑠 + 𝑒"#$ = 0 has roots

with positive real part, so
System is UNSTABLE

Buggy
System

Functional System

𝑇/(𝑠 + 1)𝑟 1 B1 𝑠

B1 𝑠

−

𝑒"#$ B1 𝑠 ℎ%
−

Current
Unused
Stores

ℎ

Current
Ready Stores

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Control Theory Identifies Regions of
Stability and Instability

• With Bug #2, DataStore has
regions of stability, instability
– When 𝑇 (spin-up time) is small,

DataStore appears stable
– For large 𝑇, number

of stores grows without bound
– 𝑇 is the time to spin up

a new store – an external
parameter. If cloud outage
causes an increase in
latency, do not want the
system diverge unrecoverably!

• Control Theory Reasons over
the Range of Possible Spin up Delays
– Static analysis that identifies potential instabilities due to non-syntactic errors
– Provides stronger confidence than running a small sample of points in the config space

11

0 10 20 30 40

N
um

be
r o

f U
nu

se
d

St
or

es

100

1000

5000

Time (s)

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Moving Towards Automated Analysis

• Automated Stability Analysis Combines Techniques from Code Analysis and
Control Theory
– Tool uses data flow, control flow, and Laplace transforms of controller

functionalities to derive the block diagram
– Analysis of stability from a block diagram is well-understood in control theory

• Support Controller Analysis for a Limited Subset of Language
– Automated controller analysis not possible in general, e.g., code must be analyzable
– Defined a restricted set of primitive operations such that anything written in this

subset of the language can be analyzed. Next step: formalize as a restricted DSL
– SymLang also provides Control Theory Libraries for standard functionality, e.g., PID

controllers, that include Laplace Transforms to enable analysis

• Implemented Working Prototype of Automated Stability Analysis
– Analyzes example DataStore implementation, and we believe the prototype will

extend to other relevant cases
– Happy to provide both the SymLang and analysis code to those interested

(conditioned on government approval for release)

12

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Conclusion

• Demonstrated Analysis of Stability of SymLang Code
– Derived transfer function from SymLang code
– Pole analysis correctly identified stability and instability of implementations
– Automated analysis of SymLang implementation for example Data Store problem

• Practically, Stability Bugs are Not Easy to Catch with Current Tools
– Bugs are semantic, not syntactic – code will compile because syntax validation,

type-checking, and other common code analysis techniques do not reason about
stability

– Require reasoning over a very large (possibly infinite) state space
• Early Work – Lots More to Do!
– Extend and improve automated analysis tool
– Margin analysis: in addition to stability, want to know if sufficient stores available
– Approaches for scalability: can we use compositional approaches to achieve

scalability, e.g., by characterizing the gain and phase lag of each module

13

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Questions?

14

