APOGEE™

RESEARCH

Analyzing Code Stability Using Control
Theoretic Techniques

Jessa Lee
Mikey LiBretto
Ben Holland
Evan Fortunato

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Overview ﬂ:ls}

RESEARCH

* We Will Discuss the Application of Control Theory to Software

— Control Theory studies the behavior of dynamical systems. For example, control
theory describes the conditions under which an inverted pendulum will not fall over

— Software describes a dynamical system — can we apply control theory?
e Controller-Oriented Programming (COP) is a New Programming Language
Paradigm Developed to Enable Software that is Efficient & Adaptable
— Adds two key language constructs: Partitions and Controllers
* Partitions capture sets of implementation options that can be treated as equivalent

* Controllers dynamically select among these options and manage side effects and
other couplings to enable systems to act like they are decoupled

— Separates action flow, which specifies the essential tasks necessary to provide the
required functionality, from controller flow, which restores necessary pre-conditions

— Hypothesis: partitions and controllers and the resulting separation of action and
controller flow may lead to ability analyze more easily

— Symlang is the first instance of a COP Language
* We will describe an example control theory-based analysis of SymLang code

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Simple Example Problem: Data S.tc.)res Utilizes ﬂ;G}
Feedback Control to Ensure Sufficient Resources RESEARCH

* Data Store Problem: given an unbounded stream of integer values,
support lookup (true iff the value has been seen previously) in bounded time

e DataStore Implementation uses an unbounded set of atomic stores

— Stores are organized into 3 partitions
Insert /
Lookup

\ 4 vyVvyYv \ 4

* Unused: new stores; uses a feedback
controller to spin up additional stores
as current stores are depleted

DataStore

* HasCapacity: stores with capacity;
Has

supports insert and lookup Unused . Full
Capacity
e Full: full stores; supports lookup ,
.. =» Hierarchy
— Insertis |mplemented by--- =» Insert Delegation =» Lookup Delegation
* Inserting the value into a store in HasCapacity, —> Element Repartitioning

which also triggers a controller to
(a) move the store to Full, if it not longer has remaining capacity, and
(b) take a store from Unused if HasCapacity becomes empty as a result

* A controller also spins up new stores in Unused in anticipation of future needs

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

APOGEE™

A Brief Overview of Types of Stability il

* BIBO (bounded-input, bounded-output) Stability:
System is bounded by a finite output for a finite input
— Example: Ideal oscillator — when displaced, oscillates

with finite amplitude around its equilibrium
System returns to equilibrium when

displaced |
e Example: pendulum with friction, when displaced \ /
will always trend back to its downward position — P
* Condition for LTI systems: all poles have Re(s)<0 Stable — Unstable —
» Marginal stability: Displaced system does not explode = AllRe(s) <0 Any Re(s) > 0

but also does not return to equilibrium Poles of the Transfer

— Example: mass on a surface with friction —when Function Indicate Stability
impacted, it will travel and stop eventually but » Transfer functions describe Input-
won’t return to its original position Output relationships of a system:

output(s) N(s)
input(s) D(s)
Polesares € Cs.t.D(s) =0

Displaced system explodes H(s) =

— Example: Mic and Speaker — the roar of positive
feedback when a mic picks up the speaker output

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Control Theoreﬁc Approz?ch to Stability: A
Transfer Function Analysis RESEARCH

* Transfer Function Analysis Provides a Simple Way to Analyze

ili i i : System Pole Positi
Stability of Linear Time-Invariant Systems YSIILE O ¥, OBilions

* Step 1: Create a block diagram capturing system dynamics

.T.
— Block diagrams live in the Laplace domain 3 >
H . . 1 %

— Fourier transforms decomposes a signal into frequency components w 0=+
. .] (<))
(sines and cosines): et®t E | &
1

— Laplace transforms include both real and imaginary components to
capture signal growth in addition to oscillations: e (7 F @)t .

« o > 0:signal blows up: for ¢ > 0,t = o0 e?" - oo (unstable)
« o0 < 0:signal decays: for ¢ > 0,t - o e?t - 0 (stable)
* o0 = 0:signal oscillates forever (neither stable nor unstable)

D
« Step 2: Solve for the Transfer Function, H(s) = output(s) k

+ Decay Rate

-5 0 5
Re(s) = o

Time Response

input(s)
— Relates the output signal to the input signal
— Derived by reducing block diagram (well-understood in Control Theory)

* Step 3: Analyze the poles of the transfer function
— A system is stable if and only if all poles have negative real part

— Otherwise, the system does not converge (conceptually, the output 0 5 10
blows up for a non-decaying input) Time [s]

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Cont.rf)l Theory is Designed to Analyze A
Stability... Why Not Apply to Code? RESEARCH

Software Is a Dynamical System
— Inputs are transformed into outputs
— Software defines these transformations in code

Failures at Cloud-Scale Often Look like Stability Issues

— Amazon — 2021, large-scale AWS outage due to an internal migration that caused a
temporary spike in network activity, which became self-perpetuating due to retry
(e.g., on timeout) policies

— Microsoft Azure — 2018, Overloaded Redis cache increased lookup latency, leading to
application-level timeouts, which caused cascading failures, leading to a 17-hour
downtime for multi-factor user-authentication

Control Theory Answers Questions That Seem Relevant for Software

— Stability: does the system have a bounded output for all sequences of bounded input?

— Margin: does the system have sufficient resources such that future stability is
guaranteed? (Is it possible for the system to run out of resources (in the future)?)

— Note: This analysis describes the conditions under which we can guarantee that
stability holds

— Challenge is bridging the gap between control theory tools and code implementations

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Controllers in (SymLang!) Code APGER™

RESEARCH

* SymlLang Code Incorporates Controllers As First-Class Language Elements,
Defines a Dynamical System With Separation of Concerns
— Action flow specifies the essential tasks necessary to provide the required
functionality, while Controller flow which restores necessary pre-conditions

— For example, in the Data Store Insert Implementation,
Action flow specifies that the value is inserted into a store to support lookup
Controller flow ensures that HasCapacity has a store and can support insert
* For Data Store Implementation, Want to Analyze the Stability of the
Number of Unused Stores

— Want to show that there does not exist a condition under which the number of
Unused stores could become unbounded

— Bounded input bounded output (BIBO) stability would guarantee that, for any
bounded input rate, the number of unused stores is always bounded

* Question: Can We Apply Control Theoretic Techniques to the SymLang Code
to Show BIBO Stability?

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Derived Block Diagram From Code,

APOGEE™

1/s+ 1) T

—.—>1/S

Unused Stores

Transfer Function for Stability Analysis RESEARCH
Step 1, Manually derived a Block Diagram for the DataStore Implementation
Predicted
Stores Used
> per Sp‘”%’é}m, Total Stores Current

A 4

/s

Actual Stores

Created

Depleted

Total Stores

Current

\ 4

1/s

Readied

Ready Stores T

Step 2, derived a Transfer function describing the number of unused stores as a

function of insert rate:

_output(s) h T—(1+5s)

input(s) r

(s + 1)2

Step 3, Evaluated the poles by solving D(s) = (s + 1)> =0

s=-—1
Because s has negative real part, this implies BIBO stability
Re(s) = —1

. for any bounded insert rate, the number of unused stores will remain bounded

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Analysis Correctly Identifies Unstable ﬂ;s}

Implementations: Positive Feedback Bug RESEARCH
* Analyzed Two Real Bugs Introduced | Functional Implementation
i internal void runPID() = Do {
by Junior Devs action() = {
val error = (setpoint - size())
Bug #1 var desiredUpdate = PID.execute(error);
// creates positive feedback addOrRemoveStores(desiredUpdate);
val error = (setpoint + size()) T}
+ for Buggy : .
- for Functional System Transfer Function
System
\ h T—(1+5)
r =T/(S+1)4-P®—'1 —o—»]./S S) r (S‘I‘].)(S_l)
Current

Unused Stores Poleats = +1, so
System is UNSTABLE

\ 4

1/S 4

A 4

1/s

r

Current
Ready Stores

Transfer function analysis shows positive feedback creates instability

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Analysis Correctly Identifies Unstable ﬂ;s}

Implementations: Latency Bug RESEARCH
Bug #2 Functional Implementation

// introduces latency by only
// counting Ready stores

val error = (setpoint - Ready.size()); val error = (setpoint - size())

internal void runPID() = Do {
action() = {

var desiredUpdate = PID.execute(error);
addOrRemoveStores(desiredUpdate);

1}
SBuggy Functional System Transfer Function
VSQ [h sT+(s+1)(1—s—e 5T
ro s(s+esT)(s+1)

T“"T/(S + 1)->®—>1 T 1/

A 4

current Polesats = 0,—landsst.s+e™" =0
nused - For T 2 g, s+ e~ = 0 has roots

/s ,

Stores

|
9]
~

A 4

/s

with positive real part, so
o h System is UNSTABLE

Ready Stores

Transfer function analysis shows introduced latency creates instability

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Cont.rf)l Theory Ider.1t.ifies Regions of A
Stability and Instability RESEARCH

* With Bug #2, DataStore has >000
regions of stability, instability ceese®®’
. . . Q ...ooo
— When T (spin-up time) is small, 5
DataStore appears stable ik- e T=50s
— For large T, number & 1000 o™ T=10
of stores grows without bound 5 .° T=5
— T is the time to spin up © o T=1
) =
a new store — an external 2 o) T=03
parameter. If cloud outage E ¢
causes an increase in l
latency, do not want the 100
' |
system diverge unrecoverably! 0 10 20 30 40
e Control Theory Reasons over Time (s)

the Range of Possible Spin up Delays
— Static analysis that identifies potential instabilities due to non-syntactic errors
— Provides stronger confidence than running a small sample of points in the config space

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Moving Towards Automated Analysis AroGEE

RESEARCH

e Automated Stability Analysis Combines Techniques from Code Analysis and
Control Theory

— Tool uses data flow, control flow, and Laplace transforms of controller
functionalities to derive the block diagram

— Analysis of stability from a block diagram is well-understood in control theory
* Support Controller Analysis for a Limited Subset of Language
— Automated controller analysis not possible in general, e.g., code must be analyzable

— Defined a restricted set of primitive operations such that anything written in this
subset of the language can be analyzed. Next step: formalize as a restricted DSL

— Symlang also provides Control Theory Libraries for standard functionality, e.g., PID
controllers, that include Laplace Transforms to enable analysis
* Implemented Working Prototype of Automated Stability Analysis

— Analyzes example DataStore implementation, and we believe the prototype will
extend to other relevant cases

— Happy to provide both the SymLang and analysis code to those interested
(conditioned on government approval for release)

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

APOGEE™

Conclusion
RESEARCH

* Demonstrated Analysis of Stability of SymLang Code
— Derived transfer function from SymlLang code
— Pole analysis correctly identified stability and instability of implementations
— Automated analysis of SymLang implementation for example Data Store problem

* Practically, Stability Bugs are Not Easy to Catch with Current Tools

— Bugs are semantic, not syntactic — code will compile because syntax validation,
type-checking, and other common code analysis techniques do not reason about

stability
— Require reasoning over a very large (possibly infinite) state space
e Early Work — Lots More to Do!
— Extend and improve automated analysis tool
— Margin analysis: in addition to stability, want to know if sufficient stores available

— Approaches for scalability: can we use compositional approaches to achieve
scalability, e.g., by characterizing the gain and phase lag of each module

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

APOGEE™

RESEARCH

Questions?

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

