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Overview ﬂ:ls}
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* We Will Discuss the Application of Control Theory to Software

— Control Theory studies the behavior of dynamical systems. For example, control
theory describes the conditions under which an inverted pendulum will not fall over

— Software describes a dynamical system — can we apply control theory?
e Controller-Oriented Programming (COP) is a New Programming Language
Paradigm Developed to Enable Software that is Efficient & Adaptable
— Adds two key language constructs: Partitions and Controllers
* Partitions capture sets of implementation options that can be treated as equivalent

* Controllers dynamically select among these options and manage side effects and
other couplings to enable systems to act like they are decoupled

— Separates action flow, which specifies the essential tasks necessary to provide the
required functionality, from controller flow, which restores necessary pre-conditions

— Hypothesis: partitions and controllers and the resulting separation of action and
controller flow may lead to ability analyze more easily

— Symlang is the first instance of a COP Language
* We will describe an example control theory-based analysis of SymLang code
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Simple Example Problem: Data S.tc.)res Utilizes ﬂ;G}
Feedback Control to Ensure Sufficient Resources  RESEARCH

* Data Store Problem: given an unbounded stream of integer values,
support lookup (true iff the value has been seen previously) in bounded time

e DataStore Implementation uses an unbounded set of atomic stores

— Stores are organized into 3 partitions
Insert /
Lookup

\ 4 vyVvyYv \ 4

* Unused: new stores; uses a feedback
controller to spin up additional stores
as current stores are depleted

DataStore

* HasCapacity: stores with capacity;
Has

supports insert and lookup Unused . Full
Capacity
e Full: full stores; supports lookup ,
.. =» Hierarchy
— Insertis |mplemented by--- =» Insert Delegation =» Lookup Delegation
* Inserting the value into a store in HasCapacity, —> Element Repartitioning

which also triggers a controller to
(a) move the store to Full, if it not longer has remaining capacity, and
(b) take a store from Unused if HasCapacity becomes empty as a result

* A controller also spins up new stores in Unused in anticipation of future needs
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A Brief Overview of Types of Stability il

* BIBO (bounded-input, bounded-output) Stability:
System is bounded by a finite output for a finite input
— Example: Ideal oscillator — when displaced, oscillates

with finite amplitude around its equilibrium
System returns to equilibrium when

displaced |
e Example: pendulum with friction, when displaced \ /
will always trend back to its downward position — P
* Condition for LTI systems: all poles have Re(s)<0 Stable — Unstable —
» Marginal stability: Displaced system does not explode = AllRe(s) <0 Any Re(s) > 0

but also does not return to equilibrium Poles of the Transfer

— Example: mass on a surface with friction —when Function Indicate Stability
impacted, it will travel and stop eventually but » Transfer functions describe Input-
won’t return to its original position Output relationships of a system:

output(s) N(s)
input(s)  D(s)
Polesares € Cs.t.D(s) =0

Displaced system explodes H(s) =

— Example: Mic and Speaker — the roar of positive
feedback when a mic picks up the speaker output
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Control Theoreﬁc Approz?ch to Stability: A
Transfer Function Analysis RESEARCH

* Transfer Function Analysis Provides a Simple Way to Analyze

ili i i : System Pole Positi
Stability of Linear Time-Invariant Systems YSIILE O ¥, OBilions

* Step 1: Create a block diagram capturing system dynamics

.T.
— Block diagrams live in the Laplace domain 3 >
H . . 1 %

— Fourier transforms decomposes a signal into frequency components w 0=+
. . ] (<))
(sines and cosines): et®t E | &
1

— Laplace transforms include both real and imaginary components to
capture signal growth in addition to oscillations: e (7 F @)t .

« o > 0:signal blows up: for ¢ > 0,t = o0 e?" - oo (unstable)
« o0 < 0:signal decays: for ¢ > 0,t - o e?t - 0 (stable)
* o0 = 0:signal oscillates forever (neither stable nor unstable)

D
« Step 2: Solve for the Transfer Function, H(s) = output(s) k

+ Decay Rate

-5 0 5
Re(s) = o

Time Response

input(s)
— Relates the output signal to the input signal
— Derived by reducing block diagram (well-understood in Control Theory)

* Step 3: Analyze the poles of the transfer function
— A system is stable if and only if all poles have negative real part

— Otherwise, the system does not converge (conceptually, the output 0 5 10
blows up for a non-decaying input) Time [s]
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Cont.rf)l Theory is Designed to Analyze A
Stability... Why Not Apply to Code? RESEARCH

Software Is a Dynamical System
— Inputs are transformed into outputs
— Software defines these transformations in code

Failures at Cloud-Scale Often Look like Stability Issues

— Amazon — 2021, large-scale AWS outage due to an internal migration that caused a
temporary spike in network activity, which became self-perpetuating due to retry
(e.g., on timeout) policies

— Microsoft Azure — 2018, Overloaded Redis cache increased lookup latency, leading to
application-level timeouts, which caused cascading failures, leading to a 17-hour
downtime for multi-factor user-authentication

Control Theory Answers Questions That Seem Relevant for Software

— Stability: does the system have a bounded output for all sequences of bounded input?

— Margin: does the system have sufficient resources such that future stability is
guaranteed? (Is it possible for the system to run out of resources (in the future)?)

— Note: This analysis describes the conditions under which we can guarantee that
stability holds

— Challenge is bridging the gap between control theory tools and code implementations
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* SymlLang Code Incorporates Controllers As First-Class Language Elements,
Defines a Dynamical System With Separation of Concerns
— Action flow specifies the essential tasks necessary to provide the required
functionality, while Controller flow which restores necessary pre-conditions

— For example, in the Data Store Insert Implementation,
Action flow specifies that the value is inserted into a store to support lookup
Controller flow ensures that HasCapacity has a store and can support insert
* For Data Store Implementation, Want to Analyze the Stability of the
Number of Unused Stores

— Want to show that there does not exist a condition under which the number of
Unused stores could become unbounded

— Bounded input bounded output (BIBO) stability would guarantee that, for any
bounded input rate, the number of unused stores is always bounded

* Question: Can We Apply Control Theoretic Techniques to the SymLang Code
to Show BIBO Stability?
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Derived Block Diagram From Code,
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1/s+ 1) T

—.—>1/S

Unused Stores

Transfer Function for Stability Analysis RESEARCH
Step 1, Manually derived a Block Diagram for the DataStore Implementation
Predicted
Stores Used
> per Sp‘”%’é}m, Total Stores Current

A 4

/s

Actual Stores

Created

Depleted

Total Stores

Current

\ 4

1/s

Readied

Ready Stores T

Step 2, derived a Transfer function describing the number of unused stores as a

function of insert rate:

_output(s) h T—(1+5s)

input(s) r

(s + 1)2

Step 3, Evaluated the poles by solving D(s) = (s + 1)> =0

s=-—1
Because s has negative real part, this implies BIBO stability
Re(s) = —1

. for any bounded insert rate, the number of unused stores will remain bounded
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Analysis Correctly Identifies Unstable ﬂ;s}

Implementations: Positive Feedback Bug RESEARCH
* Analyzed Two Real Bugs Introduced | Functional Implementation
i internal void runPID() = Do {
by Junior Devs action() = {
val error = (setpoint - size())
Bug #1 var desiredUpdate = PID.execute(error);
// creates positive feedback addOrRemoveStores(desiredUpdate);
val error = (setpoint + size()) T}
+ for Buggy : .
- for Functional System Transfer Function
System
\ h T—(1+5)
r =T/(S+1)4-P®—'1 —o—»]./S S ) r (S‘I‘].)(S_l)
Current

Unused Stores Poleats = +1, so
System is UNSTABLE

\ 4

1/S 4

A 4

1/s

r

Current
Ready Stores

Transfer function analysis shows positive feedback creates instability
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Analysis Correctly Identifies Unstable ﬂ;s}

Implementations: Latency Bug RESEARCH
Bug #2 Functional Implementation

// introduces latency by only
// counting Ready stores

val error = (setpoint - Ready.size()); val error = (setpoint - size())

internal void runPID() = Do {
action() = {

var desiredUpdate = PID.execute(error);
addOrRemoveStores(desiredUpdate);

1}
SBuggy Functional System Transfer Function
VSQ [ h sT+(s+1)(1—s—e 5T
ro s(s+esT)(s+1)

T“"T/(S + 1)->®—>1 T 1/

A 4

current Polesats = 0,—landsst.s+e™" =0
nused - For T 2 g, s+ e~ = 0 has roots

/s ,

Stores

|
9]
~

A 4

/s

with positive real part, so
o h System is UNSTABLE

Ready Stores

Transfer function analysis shows introduced latency creates instability
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Cont.rf)l Theory Ider.1t.ifies Regions of A
Stability and Instability RESEARCH

* With Bug #2, DataStore has >000
regions of stability, instability ceese®®’
. . . Q ...ooo
— When T (spin-up time) is small, 5 .......
DataStore appears stable ik .....- e T=50s
— For large T, number & 1000 o™ T=10
of stores grows without bound 5 .° T=5
— T is the time to spin up © o T=1
) =
a new store — an external 2 o) T=03
parameter. If cloud outage E ¢
causes an increase in l
latency, do not want the 100
' |
system diverge unrecoverably! 0 10 20 30 40
e Control Theory Reasons over Time (s)

the Range of Possible Spin up Delays
— Static analysis that identifies potential instabilities due to non-syntactic errors
— Provides stronger confidence than running a small sample of points in the config space
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Moving Towards Automated Analysis AroGEE
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e Automated Stability Analysis Combines Techniques from Code Analysis and
Control Theory

— Tool uses data flow, control flow, and Laplace transforms of controller
functionalities to derive the block diagram

— Analysis of stability from a block diagram is well-understood in control theory
* Support Controller Analysis for a Limited Subset of Language
— Automated controller analysis not possible in general, e.g., code must be analyzable

— Defined a restricted set of primitive operations such that anything written in this
subset of the language can be analyzed. Next step: formalize as a restricted DSL

— Symlang also provides Control Theory Libraries for standard functionality, e.g., PID
controllers, that include Laplace Transforms to enable analysis
* Implemented Working Prototype of Automated Stability Analysis

— Analyzes example DataStore implementation, and we believe the prototype will
extend to other relevant cases

— Happy to provide both the SymLang and analysis code to those interested
(conditioned on government approval for release)
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Conclusion
RESEARCH

* Demonstrated Analysis of Stability of SymLang Code
— Derived transfer function from SymlLang code
— Pole analysis correctly identified stability and instability of implementations
— Automated analysis of SymLang implementation for example Data Store problem

* Practically, Stability Bugs are Not Easy to Catch with Current Tools

— Bugs are semantic, not syntactic — code will compile because syntax validation,
type-checking, and other common code analysis techniques do not reason about

stability
— Require reasoning over a very large (possibly infinite) state space
e Early Work — Lots More to Do!
— Extend and improve automated analysis tool
— Margin analysis: in addition to stability, want to know if sufficient stores available

— Approaches for scalability: can we use compositional approaches to achieve
scalability, e.g., by characterizing the gain and phase lag of each module
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Questions?
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