Levels of Software
Assurance in SPARK

Yannick Moy

HCSS 2017

SPARK - Flow Analysis

procedure Stabilize (Mode : 1n Mode T;

Success : out Boolean)

with Global => (Input => (Accel, Giro),
In Out => Rotors);

Specification Flow Program

of effects analysis

implements
specification

08/05/2017

SPARK - Proof

procedure Stabilize (Mode : 1n Mode Tj;
Success : out Boolean)
with Pre => Mode /= Off,
Post => (1if Success then
Delta Change (Rotors'Old, Rotors));

Program
implements
specification

Specification

of properties

08/05/2017 3

Levels of Software Assurance

08/05/2017

Stone Level

Strong semantic coding standard
Program respects all the SPARK language legality rules

Enforces safer use of language features:
» Restricted concurrency (Ravenscar profile)
* Expressions and functions without side-effects

Forbids language features that make analysis difficult:
* Unrestricted pointers
e Exception handlers

08/05/2017 5

Bronze Level

Initialization and correct data flow

Program passes SPARK flow analysis without violations

Detects programming errors:
* Read of uninitialized data
* Problematic aliasing between parameters
* Data race between concurrent tasks

Checks user specifications:

e Data read or written
* Flow of information from inputs to outputs

08/05/2017 6

Silver Level

Absence of run-time errors
Program passes SPARK proof without violations

Detects programming errors:
* Divide by zero
* Array index out of bounds
* Integer, fixed-point and floating-point overflow
* |nteger, fixed-point and floating-point range violation
* Explicit exception raised
* Violation of Ceiling Priority Protocol

08/05/2017 7

Gold Level

Proof of key integrity properties

Program passes SPARK proof without violations
Checks user specifications:

* Type invariants (weak and strong)

* Preconditions

e Postconditions

Checks correct use of OO wrt Liskov Substitution Principle

08/05/2017 8

Platinum Level

Proof of full functional correctness

Program passes SPARK proof without violations
Checks complete user specifications:

* Type invariants (weak and strong)

* Preconditions

e Postconditions

Checks loop termination (loop variant)

08/05/2017 9

Established Practice at Altran UK

DAL SIL Bronze Silver Gold Platinum

e e
e e

.I
e
o

m O O W X
O L N W b

08/05/2017 11

Past Projects at Altran UK

WUNE (hEE EnEn
AIRe (EBY ENAY
WilDr anEx GEEn

a0 ANN DS
RED saew 5@~

C130J: 1996 - now
Bronze (Lockheed

SHOLIS: 1995

DEFSTAN 00-55 SIL4

First Gold Martin) and Gold (UK

RAF and BAE Systems)

08/05/2017

IFACTS: 2006 - now
Silver (NATS)

12

Adoption Experiments at Thales

significant manual refactoring (several days) difficulties in expressing suitable context

on the way to completion on 300 klocs property was not proved automatically
half a day to reach Silver one day to reach Silver
property related to inner memory bounds property expressed as automaton

two days to reach Gold four days to reach Gold

Adoption Guidelines with Thales

For every level, we present:
* Benefits, Impact on process, Costs and limitations
e Setup and tool usage
* Violation messages issued by the tool
* Remediation solutions

Implementation Guidance
for the Adoption of SPARK

Ada THALES

Guidance was put to test:

_ * During adoption experiments at Thales

 On example (SPARK tool) presented in last section

08/05/2017 14

Stone Level - Large Language Subset

SPARK Mode => On
* Ada types, expressions, statements, subprograms

SPARK Mode => Off
* Ada pointers
* Ada exception handlers

work in progress to

* Ada generics include safe Rust-like
* Ada object orientation pointers in SPARK

* Ada concurrency
e Ada pointers

08/05/2017 16

Bronze/Silver Level - Generation of

Contracts

Example: SPARKSkein Skein cryptographic hash algorithm (Chapman, 2011)
target: Silver level

41 non-trivial contracts for effects and 1 - effects and dependencies are
dependencies generated

31 conditions in preconditions and 0 - internal subprograms are inlined
postconditions on internal subprograms

43 conditions in loop invariants 1 - loop frame conditions are generated

23 annotations to prevent combinatorial 0 - no combinatorial explosion
explosion

08/05/2017 17

Silver/Gold Level - Combination of

Provers

SPARK 2014
source code
and
contracts

08/05/2017

/[cvca)\ :

WhyML Proof A(Proof |
Gnat2why)—> files Why3) 3 obligations — results |

=

(CodePeer}

GNATprove

18

Silver/Gold Level - Combination of

Provers

Example: Safe bounds on trajectory computation (submitted to VSTTE 2017)
target: Gold level

= S| s
S = 515 £
> = N S| B B
procedure Compute_Speed (N : Frame; VC O < N O|< ©
Fact . Ratio.T: Delta_Speed in -Bound .. Bound 1 3 0

actor -+ Ratio-1; In_Bounds (High_Bound(N)) 1 1

Old_Speed : Float64; In_Bounds (Low_Bound(N)) 0 112
New_Speed : out Float64) Floatﬁ“(;’“{BVQM*(NB;un)d +lB<;u)nd ung 2 0

; = oa _Bv) + 1.0) * Boun
with Global => null, Float64(N) * Bound + Bound 44 1125 O
Pre => N < Frame’Last and then = (Float64(N) + 1.0) * Bound
Invariant (N, Old_Speed), Float64(N) * (-Bound) Bound 1 0
. = (Float64(N) + 1.0) * (-Bound)

Post => Invariant (N + 1, New_Speed); T(1) = 1.0 0 0 tlo o
Float64(N) + 1.0 = Float64(N + 1) 0 1 1 0
New_Speed >= Float64 (N) * (-Bound) Bound 27 0
New_Speed >= Float64 (N + 1) * (-Bound) 1 0
Delta_Speed := Drag + Factor * G * Frame_Length; New_Speed <= Float64 (N) * Bound + Bound 26 0
New_Speed = 0ld_Speed + Delta_Speed; New_Speed <= Float64 (N + 1) * Bound 1 0

Post-condition 20 0 1

19

08/05/2017

Gold/Platinum Level - Auto-Active Verification

Example: Functional correctness of red-black trees (NFM 2017)
target: Platinum level

Auto-Active = portmanteau of Automatic and interActive

supported by ghost code: contracts, loop invariants,
intermediate assertions, lemma procedures 9 ﬂ
ghost code used to: e 6

* define model of data used in specifications
e prove intermediate lemmas (e.g. for inductive proofs)
* provide witness for property (e.g. for transitivity relation)

08/05/2017 20

Gold/Platinum Level - Auto-Active Verification

1200

1000

800

600

400

200

08/05/2017

Binary Trees

Search Trees

Red-black Trees

Ghost
Contract

Code

21

| evels of Software Assurance

From strong semantic coding standard to full functional correctness
Every level implicitly builds on the lower levels

Lower levels require lower costs/efforts

Good match from DAL/SIL to Bronze-Silver-Gold-Platinum
Adoption greatly facilitated by detailed level-specific guidance

Catchy names are easy to remember!

08/05/2017 23

SPARK Resources

SPARK toolset
http://www.adacore.com/sparkpro http://libre.adacore.com/

SPARK adoption guidance
www.adacore.com/knowledge/technical-papers/implementation-guidance-spark

SPARK blog and resources (User’s Guide)
http://www.spark-2014.org

SPARK online training
http://u.adacore.com

08/05/2017 24

