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Cyber-Physical Systems

Integration of a physical process with embedded computation and
communication networks that can make the system safer, more
efficient, and smarter.
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Cyber-Physical Systems

There is an incentive for most CPS to gather sensitive information.
Unfortunately, that information can be used by adversaries. For
example...

It is possible to infer the behavior of electricity users by analyzing
their consumption patterns 1.

Privacy algorithms are relevant in CPS!!!

1G.W. Hart, Nonintrusive Applicance Load Monitoring, Proceedings of the IEEE, 80 (12):1870-1891, 1992.
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Cyber-Physical Systems

CPS Posses Unique Properties

• CPS are noisy (e.g., sensor noise, environmental disturbances).

• Feedback loops and Controls can attenuate/amplify noise.

• Some systems are very susceptible to noise (stability).
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Our Contributions

Can be divided in two groups:

• Differential Privacy Framework
I Using tools from stochastic control theory, we characterize the

inherent noise.
I We define Inherent Differential Privacy
I Find the minimum external noise that should be injected to

ensure a desired level of privacy.

• Data Minimization in Multi-agent Control Systems
I We propose event-based privacy.
I We modify the sensor sampling period to hide relevant

information.
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Differential Privacy for Databases
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Differential Privacy for Databases

2 Now consider two adjacent databases x ,x ′ that differ only in one
element. For all pairs x ,x ′, ε∈ (0,1), δ > 0, and S ⊆ range(M)

(ε,δ )-Differential Privacy

P(M(x) ∈ S)≤ eεP(M(x ′) ∈ S) + δ
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2C. Dwork et al., The algorithmic foundations of differential privacy, in Foundations and Trends in Theoretical Computer
Science, pp. 211-407, 2014
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Differential Privacy for Databases

How much noise to add?

Depends on the maximum change of the query response when only
one element of the database is modified.

Sensitivity

∆q,p = maxx ,x ′ ‖q(x)−q(x ′)‖p

Gaussian Mechanism
Noise from a Gaussian distribution, η ∼ N(0,σ2). If

σ ≥
√

2ln(1.25/δ )∆q,2
ε ,

(ε,δ )-differential privacy is guaranteed.
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General Model of CPS
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Inherent Differential Privacy

Properties of CPS with feedback

• There are inherent sources of uncertainties:
I ω(k ) represents environmental disturbances or random changes

in the process
I v (k ) describes the sensor noise

• There is an incentive to share y (k ), and keep it private

• The output y (k ) is already noisy, and its variance evolves
over time

Knowing how noisy y (k ) is, we can characterize the level of privacy!!
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Inherent Differential Privacy

How to characterize the variance of y (k )?

CPS Model

x(k +1) = Ax(k ) +Bu(k ) + ω(k )
y (k ) = Cx(k ) +v (k )
u(k ) = Ky (k )

ωi ∼ N(0,σ2
ω,i ) with Rω = diag(σ2

ω,1, . . . ,σ
2
ω,n). Similarly,

vi (k )∼ N(0,σ2
v ,i ) and Rv .

Defining Ā = A+BKC,

x(k +1) = Āx(k ) +BK v(k ) + ω(k )︸ ︷︷ ︸
ϕ(k )

Rϕ = E [ϕ(k )ϕ(k )>] = BKRv K>B> +Rω .
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Inherent Differential Privacy

How to characterize the variance of y (k )?

Let m(k ) = E [x(k )]. From stochastic control theory 3, the covariance
matrix of the states is defined by
Q(k ) = E [(x(k )−m(k ))(x(k )−m(k ))>] and it evolves according to

Q(k +1) = ĀQ(k )Ā> +Rϕ .

The variance of the output vector y (k ) at each instant k is

Qy (k ) = CQ(k )C> +Rv

and depends on the system and control parameters.

The variance of each output yi (k ) is σ2
y ,i (k ) and correspond to the

diagonal elements of Qy (k ).

3G. Chen, et al., Linear stochastic control systems, CRC Press, 1995
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Inherent Differential Privacy

How much privacy does y (k ) guarantees?

For a given δ , and sensitivity ∆y ,2, the inherent level of privacy (or
inherent privacy loss) is then

εy (k ) =

√
2ln(1.25/δ )∆y ,2

mini σy ,i (k )
.

(εy (k ),δ )-differential privacy is guaranteed without adding any
external mechanism.
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Injecting Minimum Noise

How to ensure a desired level of (ε,δ )-differential privacy?
Recall that for a desired ε,δ , the standard deviation of the output
noise should be

σ ≥
√

2ln(1.25/δ )∆y ,2/ ε .

If mini σy ,i (k )< σ , extra noise η(k ) should be added.
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Injecting Minimum Noise

If we don’t consider the inherent noise, the variance of η(k ) would be

Rη = σ2IN

However, the minimum noise η(k ) has a variance that evolves over
time and depends on the inherent noise,

Rη (k ) = σ2IN −CQ(k )C>−Rv

Clearly, since CQ(k )C> +Rv > 0, less noise is injected.
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Case Study: Real-Time Pricing

Aggregator/EDC

Consumer/
Smart
meter 1

Consumer/
Smart
meter 2

Consumer/
Smart
meter N

. . .

Price

yc
1 + v1 yc

2 + v2 yc
N + vN

ISO

yE + vT
Electricity
suppliers

• Consumers

• Electricity suppliers

• EDC (Energy Data
Center) gathers
information.

• ISO (Independent
system operator) takes
the aggregated and
set the price λ (k )
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Case Study: Real-Time Pricing

• RTP can be modeled as a linear system of the form
x(k +1) = Ax(k ) +Bλ (k ) 4

• yε (k ) = ys
T (k )−yc

T (k ) is the supply-demand mismatch received
by the ISO

• The controller objective is to drive the supply-demand mismatch
to zero

Setting the Price
The control strategy that sets the price is

λ (k +1) = λ (k ) +Kyε (k )

4R. Tan et al., Impact of integrity attacks on real-time pricing in smart grids, Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pp. 439-450, 2013
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Case Study: Real-Time Pricing

Inherent Privacy with No external mechanism
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Case Study: Real-Time Pricing

Inherent Privacy with No external mechanism
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Case Study: Real-Time Pricing

Adding the minimum noise
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Some Systems Cannot Tolerate Noise

Distributed Frequency Control in the Smart Grid with a DP
mechanism.
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Event-based Privacy

Event-based privacy aims to keep private specific events in the
system.

For instance, changes in the power consumption.
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How to provide event-based privacy?

We propose two approaches:

Periodic Sampling

Event duration 

ẋ = Ax + Byτ

τ

x(t)yτ (t)

ZOH

It does not require much knowledge about the events.
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How to provide event-based privacy?

Discretionary Sampling

• We select when to sample and when to lie.

• We lie by sending old information (y (k ) = y (k −1)) for some
sampling periods.

• It requires prior knowledge of the events and their duration.

• This ensures complete privacy, but it increases the settling time.
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Case Study: Control in the Smart Grid

Distributed frequency control for the IEEE 30 bus system benchmark
with distributed generation 5

G G
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5W. El-Khattam et al., Investigating distributed generation systems performance using monte carlo simulation, IEEE
Transactions on Power Systems, pp. 524–532, 2006.
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Case Study: Control in the Smart Grid

Periodic sampling vs. Discretionary sampling
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Conclusions

• It is possible to use tools from control theory to analyze privacy
in CPS.

• Inherent uncertainties in CPS can be amplified/attenuated to
provide certain levels of differential privacy

• Considering the inherent noise, we can minimize the amount of
noise to be injected.

• It is possible to hide events by changing the amount of
information transmitted, but it causes performance degradation.
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