Manifest Safety and
Security

Robert Harper
Carnegie Mellon University

Collaborators

@ This work is, in part, joint with Lujo Bauer,
Karl Crary, Peter Lee, Mike Reiter, and Frank
Pfenning at Carnegie Mellon.

@ Work on manifest security is partly in
collaboration with Benjamin Pierce, Stephanie
Weirich, and Steve Zdancewic at UPenn.

@ Thanks especially to our students!

Safe and Secure
Extensible Systems

@ Extensible systems are prevalent:
@ Volunteer networks.
@ Browsers, operating systems.
@ Virtual communities (eg, Second Life)

@ Provides adaptability through customization,
but threatens safety and security.

Safe and Secure
Extensible Platforms

@ How can we build extensible systems without
compromising integrity?

@ Using manifest security, which means:
@ Rigorously specified policies.
@ Guaranteed compliance with policy.

@ Direct relationship to running code.

Current Approaches

@ Extensible systems rely on two main methods
for ensuring safety and security:

@ Resftriction: limit potential damage by
limiting capabilities of extensions.

@ Detection: monitor execution to detect
violations.

® These are means ... but to what ends?

Current Approaches

@ Restriction limits both good and bad
behavior.

@ In the limit, extensibility is disallowed.

@ In practice, extensions have very limited
capabilities.

@ Tension between expressiveness and safety &
security of extensions.

Current Approaches

@ Detection requires run-time monitoring, and
provides only a post-mortem analysis.

@ Overhead can be significant.
@ Little help with ensuring good behavior.

@ Applies only to conditions that can be
checked at run-time!

@ eg, information flow vs access control

What's Really At Stake?

@ Current methods attempt fo address a high-
level problem using low-level methods.

@ Violates the “end-to-end” principle.

@ Cannot define "security” at the level of
bits, bytes, packets, address spaces,

@ Safety and security are governed by
principals and policies, not bits and byftes.

A Logical View

@ Fundamentally, we wish to prove a theorem
about a program.

@ Does not violate API restrictions.
® Does not leak sensitive information.
@ Complies with access control policies.

@ How can we state and prove such theorems
about practical systems?

Implementing Manifest
Safety and Security

@ ConCert Project: Trustless Grid Computing
@ Manifest safety for mobile code.

@ Grey Project: Proof-Carrying Authorization.
@ Manifest security for access control.

@ A New Project (TM): Secure Extensibility.

@ Manifestly secure extensible systems.

Trustless Grid Computing
In ConCert

@ A general framework for grid computing.
@ Loosely coupled volunteer network.
® Work-stealing scheduler.

@ Manifest safety: verification, not trust.
@ Hosts specify safety policy.

@ Clients must prove compliance.

Manifest Safety

@ Logical specification of safety properties.

@ Execution safety: no illegal instructions, no
branches to unsafe code.

@ Memory safety: no out-of-bounds array
accesses, no stack violations.

@ Logics include assembly-level type systems
and Hoare-like annotations.

Manifest Safety

@ Enforcement by proof- and type checking.
@ Reject programs that do not pass checks.
@ Compliance ensured by certifying compilers.

@ Transfer source-level safety properties to
object-level code.

@ Produce formal certificates of compliance
with host policy.

Certification and
Verification Methods

@ Proof-Carrying Code.
@ VCGen + Theorem Proving for certification.
@ LF representation of proofs.

@ Typed Assembly Language.
@ Typed compilation and type checking.

@ Type annotations on object code.

TAL Certification

certifying
compiler

“TAL” type
typed °°°'e checker
| /‘

type sysiSin \‘. metatheory
safety proo verifier

A TAL-R Snippet

;; stack is described by S
;i SPpitaE S

;; virtual clock reads N+k+1
;; vek : N+k+1

;; ebx contains an int->int that runs in at most k steps
;;, ebx : ALL i:Nat. ALL r:ST.

;7 { eax:int,

i sp:id eax:inEssp T, ek i -}=>0 *pr

58 vck:i+k }->0

add eax, eax, edx ;; consume one clock tick
;o Esrck: SNk
call ebx [N'] [S] ;; instantiate i=N and r=S,

;; place retaddr on stack, Jjump

e Pk TN

How TAL Defends
Against Safety Attacks

@ Malicious source code.
@ loadFile “accounts.qgdf” is rejected.

@ Malicious hand-written assembly code.
@ call loadFile is ill-typed.

@ mov sp[0],0xfe00b0Oc4; ret
is also ill-typed

How TAL Defends
Against Attacks

@ One can think up more and more “tricks” ...
@ Indirect jumps, stack over-runs, efc.

@ But it is a Theorem that no well-typed
assembly program can violate the safety

policy.

@ No attack will pass type checker!

How TAL Defends
Against Attacks

@ Aha! What if we change the type system?

@ Nope, must supply a proof of soundness
with respect to the safety policy!

@ Rats! Is there no way to defeat it?
@ No! Not within the confines of the policy.

@ But the policy may be “wrong” (more on
this later).

What Can Be Certified?

® How far can we take this? What sort of
properties can we certify?

@ Short answer: anything for which one can
devise a type system!

@ eg, TAL-R precludes certain DoS attacks

@ Long answer: limited by how hard it is to
generate and check proofs.

From Safety to Security

@ Code safety is necessary for security.
@ Precludes violation of language semantics.

@ Source-level reasoning, not object-level
enforcement.

@ Can we extend manifest safety to manifest
security?

Manifest Security

@ Security policies are stated in a formal
logical system.

@ Augmented by certificates to identify
principals and sign assertions.

@ Assertions involve accessibility, ownership,
delegation, etc.

@ No fundamental limits on expressive power!

Manifest Security

@ Compliance is demonstrated by a proof.

@ eg, principal must prove that his/her
access to a resource is entailed by the

policy.

@ Compose rules of deduction, starting with
policy axioms and external certificates.

@ Unforgeable, mechanically checkable.

Manifest Security

@ Enforcement is by proof checking and
cryptography.

@ Present proof to reference monitor.
@ Proof checker verifies evidence.
@ Proof provides an “audit trail”.

@ Direct expression and enforcement of
intended security constraint!

Manifest Security

@ Policies are formally analyzable.

@ eg, using cut elimination fo investigate
existence of proofs of certain assertions

@ provides a mathematical foundation for
understanding consequences of a policy.

@ Security policies can be very hard to
understand!

Proof-Carrying
Authorization Logic

Client Resource
Monitor

I access request for resource R
.. >
“access(C,R)” D
a—x
I~

access theorem

€
distributed “? : may-access(C,R)”
theorem
rovin
P S access proof ¥
A “P : may-access(C,R)” proof and
certificate

checking

access granted

S S S S S
I “capability” f

Proof-Carrying
Authorization Logic

@ A simple policy (all axioms are signed):
reg says class (s, c)
prof says
if reg says class(s, c), then
mayacc (s, r)

® A proof of mayacc (s, r) involves:
@ Certificate acquisition to est. identity.

@ Logical inference from axioms.

How PCA Defends
Against Attacks

@ Replay attacks: client attempts to re-use
previous authorization.

@ Access control theorem and capability are
time-stamped.

@ Fraudulent assertions by principals.

@ Requires breaking digital signatures.

How PCA Defends
Against Attacks

@ Misapplication of policy rules.

@ Prevented by proof checker, which ensures
validity of all proofs.

@ Fraudulent policies.

@ All axioms are signed, so must break
cryptographic framework.

How PCA Defends
Against Mistakes

@ A principal may sign an assertion with
unexpected consequences.

@ eg, a quantifier rotation V3 vs 3V

@ Requires policy analysis to validate.

@ Instance of mechanized meta-reasoning.

How PCA Defends
Against Mistakes

@ Proofs provide an audit trail for analyzing
attacks.

@ Reveals who said what and why this was
sufficient for access.

@ Facilitates tracking errors in policy.

@ Meaningful at the level of the policy, not at
the level of some enforcement mechanism!

Secure Extensibility

@ How can we use manifest safety and security
to implement safe extensibility?

@ Testbed: extensible browser architecture.
@ Safety against low-level attacks.

@ Security against unauthorized access and
insecure information flows.

Manifestly Secure
Extensibility

@ Extend logics beyond safety and access
control.

@ privacy and integrity
@ epistemic logic for info flow?

@ Integrate security obligations into the
programming language.

@ track proofs in the type system

Manifestly Secure
Extension Architecture

Manifest Security
Infrastructure

@ Logical frameworks.

@ Specifying and analyzing security logics
and programming languages.

@ Representing and checking proofs.
@ Certifying theorem provers.

@ Finding proofs of logical assertions.

Manifest Security
Infrastructure

@ Theorefical investigations.
@ Logics to express security policies.
@ Analysis of logics and languages.

@ Algorithms for proof checking and proof
search.

@ Informed by and informing practice!

Manifest Safety and
Security

@ Make safety and security policies explicit.
@ Rigorously specified in a suitable logic.
@ Analyzable and mechanizable.

@ Enforce compliance of extensions with policy.
@ Require explicit proofs of compliance.

@ Verify using proof- and type checking.

Manifest Safety and
Security

@ Validate policies by meta-theoretic analysis.
@ Ensure that policies capture intentions.
@ eg, not too restrictive, not too permissive
@ Validate languages by semantic analysis.

@ Ensure that accepted programs are indeed
well-behaved.

