
Manifest Safety and
Security
Robert Harper

Carnegie Mellon University

Collaborators

This work is, in part, joint with Lujo Bauer,
Karl Crary, Peter Lee, Mike Reiter, and Frank
Pfenning at Carnegie Mellon.

Work on manifest security is partly in
collaboration with Benjamin Pierce, Stephanie
Weirich, and Steve Zdancewic at UPenn.

Thanks especially to our students!

Safe and Secure
Extensible Systems

Extensible systems are prevalent:

Volunteer networks.

Browsers, operating systems.

Virtual communities (eg, Second Life)

Provides adaptability through customization,
but threatens safety and security.

Safe and Secure
Extensible Platforms
How can we build extensible systems without
compromising integrity?

Using manifest security, which means:

Rigorously specified policies.

Guaranteed compliance with policy.

Direct relationship to running code.

Current Approaches

Extensible systems rely on two main methods
for ensuring safety and security:

Restriction: limit potential damage by
limiting capabilities of extensions.

Detection: monitor execution to detect
violations.

These are means ... but to what ends?

Current Approaches

Restriction limits both good and bad
behavior.

In the limit, extensibility is disallowed.

In practice, extensions have very limited
capabilities.

Tension between expressiveness and safety &
security of extensions.

Current Approaches

Detection requires run-time monitoring, and
provides only a post-mortem analysis.

Overhead can be significant.

Little help with ensuring good behavior.

Applies only to conditions that can be
checked at run-time!

eg, information flow vs access control

What’s Really At Stake?

Current methods attempt to address a high-
level problem using low-level methods.

Violates the “end-to-end” principle.

Cannot define “security” at the level of
bits, bytes, packets, address spaces,

Safety and security are governed by
principals and policies, not bits and bytes.

A Logical View

Fundamentally, we wish to prove a theorem
about a program.

Does not violate API restrictions.

Does not leak sensitive information.

Complies with access control policies.

How can we state and prove such theorems
about practical systems?

Implementing Manifest
Safety and Security
ConCert Project: Trustless Grid Computing

Manifest safety for mobile code.

Grey Project: Proof-Carrying Authorization.

Manifest security for access control.

A New Project (TM): Secure Extensibility.

Manifestly secure extensible systems.

Trustless Grid Computing
in ConCert

A general framework for grid computing.

Loosely coupled volunteer network.

Work-stealing scheduler.

Manifest safety: verification, not trust.

Hosts specify safety policy.

Clients must prove compliance.

The ConCert Grid

Manifest Safety

Logical specification of safety properties.

Execution safety: no illegal instructions, no
branches to unsafe code.

Memory safety: no out-of-bounds array
accesses, no stack violations.

Logics include assembly-level type systems
and Hoare-like annotations.

Manifest Safety

Enforcement by proof- and type checking.

Reject programs that do not pass checks.

Compliance ensured by certifying compilers.

Transfer source-level safety properties to
object-level code.

Produce formal certificates of compliance
with host policy.

Certification and
Verification Methods
Proof-Carrying Code.

VCGen + Theorem Proving for certification.

LF representation of proofs.

Typed Assembly Language.

Typed compilation and type checking.

Type annotations on object code.

TAL Certification

A TAL-R Snippet
;; stack is described by S
;; sp : S
;;
;; virtual clock reads N+k+1
;; vck : N+k+1
;;
;; ebx contains an int->int that runs in at most k steps
;; ebx : ALL i:Nat. ALL r:ST.
;; { eax:int,
;; sp:{ eax:int, sp:r, vck:i }->0 * r
;; vck:i+k }->0

add eax, eax, edx ;; consume one clock tick

;; vck : N+k

call ebx [N'] [S] ;; instantiate i=N and r=S,
 ;; place retaddr on stack, jump

;; vck : N

How TAL Defends
Against Safety Attacks

Malicious source code.

loadFile “accounts.qdf” is rejected.

Malicious hand-written assembly code.

call loadFile is ill-typed.

mov sp[0],0xfe00b0c4; ret
is also ill-typed

How TAL Defends
Against Attacks

One can think up more and more “tricks” ...

Indirect jumps, stack over-runs, etc.

But it is a theorem that no well-typed
assembly program can violate the safety
policy.

No attack will pass type checker!

How TAL Defends
Against Attacks

Aha! What if we change the type system?

Nope, must supply a proof of soundness
with respect to the safety policy!

Rats! Is there no way to defeat it?

No! Not within the confines of the policy.

But the policy may be “wrong” (more on
this later).

What Can Be Certified?

How far can we take this? What sort of
properties can we certify?

Short answer: anything for which one can
devise a type system!

eg, TAL-R precludes certain DoS attacks

Long answer: limited by how hard it is to
generate and check proofs.

From Safety to Security

Code safety is necessary for security.

Precludes violation of language semantics.

Source-level reasoning, not object-level
enforcement.

Can we extend manifest safety to manifest
security?

Manifest Security

Security policies are stated in a formal
logical system.

Augmented by certificates to identify
principals and sign assertions.

Assertions involve accessibility, ownership,
delegation, etc.

No fundamental limits on expressive power!

Manifest Security

Compliance is demonstrated by a proof.

eg, principal must prove that his/her
access to a resource is entailed by the
policy.

Compose rules of deduction, starting with
policy axioms and external certificates.

Unforgeable, mechanically checkable.

Manifest Security

Enforcement is by proof checking and
cryptography.

Present proof to reference monitor.

Proof checker verifies evidence.

Proof provides an “audit trail”.

Direct expression and enforcement of
intended security constraint!

Manifest Security

Policies are formally analyzable.

eg, using cut elimination to investigate
existence of proofs of certain assertions

provides a mathematical foundation for
understanding consequences of a policy.

Security policies can be very hard to
understand!

Proof-Carrying
Authorization Logic

policy

Proof-Carrying
Authorization Logic

A simple policy (all axioms are signed):
reg says class (s, c) ...
prof says
 if reg says class(s, c), then
 mayacc (s, r)

A proof of mayacc (s, r) involves:

Certificate acquisition to est. identity.

Logical inference from axioms.

How PCA Defends
Against Attacks

Replay attacks: client attempts to re-use
previous authorization.

Access control theorem and capability are
time-stamped.

Fraudulent assertions by principals.

Requires breaking digital signatures.

How PCA Defends
Against Attacks

Misapplication of policy rules.

Prevented by proof checker, which ensures
validity of all proofs.

Fraudulent policies.

All axioms are signed, so must break
cryptographic framework.

How PCA Defends
Against Mistakes

A principal may sign an assertion with
unexpected consequences.

eg, a quantifier rotation ∀∃ vs ∃∀

Requires policy analysis to validate.

Instance of mechanized meta-reasoning.

How PCA Defends
Against Mistakes

Proofs provide an audit trail for analyzing
attacks.

Reveals who said what and why this was
sufficient for access.

Facilitates tracking errors in policy.

Meaningful at the level of the policy, not at
the level of some enforcement mechanism!

Secure Extensibility

How can we use manifest safety and security
to implement safe extensibility?

Testbed: extensible browser architecture.

Safety against low-level attacks.

Security against unauthorized access and
insecure information flows.

Manifestly Secure
Extensibility

Extend logics beyond safety and access
control.

privacy and integrity

epistemic logic for info flow?

Integrate security obligations into the
programming language.

track proofs in the type system

Manifestly Secure
Extension Architecture

Manifest Security
Infrastructure

Logical frameworks.

Specifying and analyzing security logics
and programming languages.

Representing and checking proofs.

Certifying theorem provers.

Finding proofs of logical assertions.

Manifest Security
Infrastructure

Theoretical investigations.

Logics to express security policies.

Analysis of logics and languages.

Algorithms for proof checking and proof
search.

Informed by and informing practice!

Manifest Safety and
Security

Make safety and security policies explicit.

Rigorously specified in a suitable logic.

Analyzable and mechanizable.

Enforce compliance of extensions with policy.

Require explicit proofs of compliance.

Verify using proof- and type checking.

Manifest Safety and
Security

Validate policies by meta-theoretic analysis.

Ensure that policies capture intentions.

eg, not too restrictive, not too permissive

Validate languages by semantic analysis.

Ensure that accepted programs are indeed
well-behaved.

