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Modern Cyber-Physical Systems

e Cyber Physical Systems (CPS)
— Cyber (Computer) + Physical (Plant)

Real-time
— Control physical process in real-time

S&fEtV-CfitiC&' " ][] ?‘
— Can harm people/things S

Intelligent

— Can function autonomously
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Modern System-on-a-Chip (SoC)

¥ ¥

Shared Cache

Memory Controller (MC)

DRAM

* Integrate multiple cores, GPU, accelerators
* Good performance, size, weight, power

* Challenges: safety, security
—— KU
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Micro-Architectural Attacks

https://meltdownattack.com/

=

Meltdown Spectre

Meltdown breaks the most fundamental isolation Spectre breaks the isclation between different
between user applications and the operating system. applications. It allows an attacker to trick error-free
This attack allows a program to access the memory, programs, which follow best practices, into leaking
and thus also the secrets, of other programs and the their secrets. In fact, the safety checks of said best
operating system. practices actually increase the attack surface and
rmay make applications more susceptible to Spectre

« Software attacks on hardware are difficult to defend
 Complex hardware > many attack vectors
KU
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Micro-Architectural Attacks

* Micro-architectural hardware components
— E.g., cache, tlb, DRAM, 000 engine, ...
* Can leak secret
— E.g., Meltdown, Spectre
e Can alter the content of the stored data
— E.g., RowHammer
* Can affect execution timing
— E.g., DoS attack on real-time tasks
* Logically correct software is also vulnerable

— K
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Project Goal

* Develop micro-architectural attack resistant
computing infrastructure for secure cyber-
physical systems (CPS)
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SpectreGuard: An Efficient Data-
centric Defense Mechanism against
Spectre Attacks

Jacob Fustos, Farzad Farshchi, and Heechul Yun
ACM/IEEE Design Automation Conference (DAC)

Las Vegas, Nevada, June, 20109.
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Speculative Execution Attacks

e Attacks exploiting microarchitectural side-effects of
executing speculative (transient) instructions

* Many variants
No hardware support

_Attack | Description planned in near future
Variant 1 (Spectre) [16] Bounds Check Bypass
Variant 1.1 [10] Bounds Check Bypass Store
Variant 1.2 [15] Read-only Protection Bypass

Variant 2 (Spectre) [16] Branch Target Injection
Variant 3 (Meltdown) [18] | Supervisor Protection Bypass

Variant 3a [12] System Register Bypass

Lazy FP [24] FPU Register Bypass

Variant 4 [9] Speculative Store Bypass 0
ret2spec [20] Return Stack Buffer

L1 Terminal Fault [11, 26] | Virtual Translation Bypass

THE UNIVERSITY OF
KANSAS



Spectre Attack (Variant 1)

1f(x < arrayl length) {
val = arrayl[x];
tmp array2[val*512];

e Assume x is under the attacker’s control

e Attacker trains the branch predictor to
predict the branch is in-bound

THE UNIVERSITY OF



Spectre Attack (Variant 1)

if(x < arravl lenoth

L fAccEss

tmp = array?| val*512

* Speculative execution of the first line
accesses the secret (val)

KANSAS



Spectre Attack (Variant 1)

1f (x < arrayl length) {
val = arravl[x];

2. [TRANSMIT]

* Speculative execution of the second, secret
dependent load transmits the secret to a
microarchitectural state (e.g., cache)

THE UNIVERSITY OF



Spectre Attack (Variant 1)

1f (x < arrayl length) {
val arrayl[x];
tmp array2[val*512];

}

3. [RECEIVE]

e Attacker receives the secret by timing access
latency differences (cache hit vs. miss) among
the elements in the probe array

— Flush+reload, prime+probe, ...

THE UNIVERSITY OF



Existing Software Mitigation

1f (x < arrayl length) {
_mm lfence();
val = arrayl [x];

tmp = array2([val*b12];
}

 Manually stop speculation

— By inserting ‘1 fence’ instructions [Intel, 2018]

— Or by introducing additional data dependencies
[Carruth, 2018]

— Error prone, high programming complexity, performance

overhead

THE UNIVERSITY OF



Existing Hardware Mitigation

Valid
Load Queue Per a
(LQ) ertorme Status
State: Bits
E/VICIN
Prefetch
Speculative Buffer Data Line
(SB)
|| | Address Mask

InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC’19]

dTLB
he I
‘Shadow dTLB

* Hide speculative execution

— By buffering speculative results into additional “shadow”
hardware structures

— High complexity, high overhead (performance, space)
— KU
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SpectreGuard

e Data-centric software/hardware collaborative
approach

— Software tells hardware what data (not code) needs
protection

— Hardware selectively protects the identified data from
Spectre attacks

* Key observations
— Not all data is secret
— Not all speculative loads leak secret

— K
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Obs. 1: Not All Data Is Secret

* Non-sensitive data
—_ Most program Code’ data Attacker’s controlled data

imi AES tion tabl
— Optimize for performance encryption table

Other public information

* Sensitive (secret) data

— Cryptographic keys, RSA private key
paSSWOrdS’ Bank account information

Other secret data

— Optimize for security

THE UNIVERSITY OF
KANSAS
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Obs. 2: Not All Speculative Loads
Leak Secret

1f(x < arravyl length) {
val = arrayl[x]; 1. [ACCESS]
tmp array?2[val*>512]; 2. [TRANSMIT]

The first load does NOT leak secret

The second, secret dependent load leaks the
secret

Delay the secret dependent load until after the
branch is resolved




SpectreGuard Approach
* Step 1: Software tells

OS what data is secret -
System Call

e Step 2: OS updates the po—
page table entries -

° Step 3: Load Of the Instructions Hardware

. . . o Load
secret data is identified .
oy .
* Step 4: secret data Iﬂ T
forwarding is delayed Pependent [
g is delaye
until safe

Operating System

Memory
System

|||||||||||||



Evaluation Setup

e Full system simulation using Gem5 (O3CPU model) and
Linux kernel (4.18)

Core Single-core (x86 ISA), 8 issue, out-of-order, 2 GHz
IQ: 64, ROB: 192, LSQ: 32/32
Cache Private L1-I/D: 16/64 KiB (4/8-way), 1 cycle latency
Shared L2: 256 KiB (16-way), 8 cycle latency
DRAM Read/write buffers: 32/64, open-adaptive policy
DDR3@800MHz, 1 rank, 8 banks

* Comparison
— Native: unmodified baseline system
— InvisiSpec: a fully hardware solution [Yan et al., Micro’18]

— Fence: a fully software solution (insert 1 fence after all
branches)

— SG: SpectreGuard

THE UNIVERSITY OF



Synthetic Workloads

cha // secret data Secret data

void benchmark(int S, int C)

{
// (S)pectre gadget, unrelated to the secret

for (i =0; 1 <S; i++)
do work():

// En(C)ryption task accessing the secret

for (i =0; i <C; i++)

3

e (S)pectre: contains Spectre gadget
— does not access the secret key

* En(C)ryption: background communication
— access the secret key

— KU

THE UNIVERSITY OF
KANSAS



Results of Synthetic Workloads

char *secret_key; // secret data

void benchmark(int S, int C)
{
// (S)pectre gadget, unrelated to the secret
for (i = @; i <S; i++)
do_work

// En(C)ryption task accessing the secret
for (i =0; i <C; i++)
encrypt();

Normalized Execution Time

CHd

5 A I I 6 G IS

* Varies percent time spentin Sand C
* SG(Key) achieves native performance
— Only secret key is marked as secret

* SG(All) achieves comparable performance with /nvisiSpec
— All memory (code, data, heap, stack) is marked as secret

— KU
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Results of SPEC2006 Benchmarks

w
w
|

Native 3 { i i i i
SGIHRAPR) EZ | e e

SG(All) &= ; : : : : : : : : :
InvisiSpec I

Fence &I

w
I

2_5 -
2 -

1

Normalized Execution Time

0.5 -

0

SG(All) achieves comparable performance with InvisiSpec
SG(Heap) achieves better performance than InvisiSpec
— Only heap is marked as non-speculative (NS) pages

SpectreGuard enables targeted security and performance
trade-offs

— K

KANSAS
23



EEEEEEEEEE

Summary

Speculative execution attacks

— Affect all high-performance out-of-order processors

— Existing software mitigation suffers high programming
complexity/overhead

— Hardware only mitigation is costly

SpectreGuard

— A data-centric software/hardware collaborative defense mechanism
— Low programming effort (identifying secret data, not vulnerable code)
— Low hardware cost (no additional "shadow" structure)

— Effective, targeted defense against Spectre attacks

https://github.com/CSL-KU/SpectreGuard

F
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Denial-of-Service Attacks on Shared
Cache in Multicore: Analysis and
Prevention

Michael Garrett Bechtel and Heechul Yun

IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS)

Montreal, Canada, April, 2019

Outstanding Paper Award

25



Threat Model

Trusted Untrusted , _
Partition i Partition Attacker’s goal: increase the
§ y . victim’s task execution time
) i
Victim Attacker
OS/hypervisor * The attacker is on different
Core ' Core core/memory/cache partition
| | D § | | D * The attacker can only execute
Shared. Cache non-privileged code.

26



Non-Blocking Cache

Core Core Core Core
EI| [o]|[ [1][p] III|IEI E|IEI
Miss Status Holding L2 cache | Writeback Buffer.
Registers! Tag array Data array v e Holds evicted dirty
e Track outstanding RN 1T lines (writebacks).
. MSHR .
cache misses. v WB Buffer , e Prevents cache refills
from waiting.

address/respond bus data bus

e We identified cache internal structures that
can be potential DoS attack vectors

— K

KANSAS ! prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore
Real-Time Systems.” In RTAS, 2016 (Best Paper Award) 27



Cache DoS Attacks

for (1 = 0; 1 < mem_size; 1 += LINE_SIZE)

{
}

sum += ptr[i];

Read Attacker
(target MSHRs)

for (i = 0; 1 < mem_size; 1 += LINE_SIZE)

{
}

ptr[1] = Oxff;

Write Attacker
(target WBBuffer)

* Denial-of-Service (DoS) attacks targeting internal

hardware structures of a shared cache.

— Block the cache = delay the victim’s execution time

— K
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Effects of Cache DoS Attacks

>300X
25 . 1 | | | :
1
64.48 solo
+1 attacker K==
20 - +2 attackers B2 |
& +3 attackers I
230.6
= 15 _
g
» 4 _g ::::
) E 2
w0 —
victim attackers §§§5
0%
5 X .
/l ’0’1
Core2j|Core3j|Core <
| Lilc | 5
N Gav ERv: B R

Pi3(A53) C2(A53) XU4(A15) Pi2(A7) XU4(A7)
* Observed worst-case: >300X (times) slowdown
— On popular in-order multicore processors
— Due to contention in cache write-back buffer

— K
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Effect of Cache Partitioning

25 T T
20 - lo C—1
solo C—J solo
+1 at 345.64 370.76 +1 attacker K=
+2 at B3 +2 attackers =223
e N — T +3 attackers HE—
230.6 174.20 . 15 20.25 -
o~
S 15| g
S (]
-g < 10
ke ®
n 10 (&)
N
5 |-
5 —
___________ r---;gg S e 0.32
0 0 1
no part. PALLOC no part. PALLOC

PALLOC! partitions the cache among the cores

e Partitioning doesn't protect against DoS attacks.

— because cache internal structures are not partitioned.

KANSAS 1 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. PALLOC: DRAM Bank-Aware Memory Allocator for Performan
ce Isolation on Multicore Platforms. In RTAS, 2014



Summary

e Cache internal hardware structures (MSHRs,
WriteBack buffer) are viable DoS attack
vectors in multicore platforms.

e Traditional cache partitioning is not effective
for cache DoS attacks

 We proposed an OS solution to defense
against cache DoS attacks.

THE UNIVERSITY OF



RT-Gang: Real-Time Gang
Scheduling Framework for Safety-

Critical Systems

Wagar Ali and Heechul Yun.
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS)
Montreal, Canada, April, 2019




Parallel Real-Time Tasks

* Many emerging workloads in Al, vision,
robotics are parallel real-time tasks

o
o

00
o
I
|

(0)]
o
I
|

Avg. processing time (ms) _,

! fca: fully-connected layer
| 10neurons I 40 —
‘ o fe3: fully-connected layer 30 95
neuren ! fe2: full ted | )
uuuuuuuuuu ] ceituly-connectec ayer 25_66 e em e eeena
| PP — ) fcl: fully-connected layer . 22 86
conv5: 64@1x18
3 convolutional layer 2 0 - _|
— conva: 64@3x20
convolutional layer
e conv3: 48@5x22
convolutional layer
2 conv2: 36@14x47 0

-~/ convo lutiona | layer
~_ 5x5 kernel 1 2 3 a4
e convl: 24@31x98

convolutional layer

5x5 kernel
— input: 200x66 RGB pixels # Of cores

— KU

Effect of parallelization on DNN control task

20
Hz

30
Hz

KANSAS  +m. Bojarski, "End to End Learning for Self-Driving Cars." arXiv:1604.07316, 2016
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Observations

* Constructive sharing (Good)

— Between threads of a single parallel task

e Destructive sharing (Bad)
— Between threads of different tasks

* Goal: analyzable and efficient parallel real-
time task scheduling framework for multicore

* By avoiding destructive sharing

— K
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RT-Gang

Core 1

1 release

Core 2 T completion

222 Idle or best-effort
Core 3

real-time

1
priority: t,<t, <t
Core 4 1S LS

4 t t, 4 4 4

* One (parallel) real-time task---a gang---at a time
— Eliminate inter-task interference by construction

* Schedule best-effort tasks during slacks w/ throttling
— Improve utilization with bounded impacts on the RT tasks

EEEEEEEEEEE

35



Safe Best-Effort Task Throttling

* Throttle the best-effort core(s) if it exceeds a
given bandwidth budget set by the RT task

2
Budget

Core
activity

0 ims 2ms

_ computation _memory fetch

U Basic throttling mechanism ”

KANGAS  * Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Pl
atforms.” In RTAS, 2013




Implementation

 Modified Linux’s RT scheduler

— Implemented as a “feature” of SCHED_ FIFO
(sched/rt.c)

e Best-effort task throttling
— Based on BWLOCK++"

— K

KANSAS  *\i. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.” In ECRTS, 2018



DeepPicar’

« A low cost, small scale replication of NVIDIA’s DAVE-2

« Uses the exact same DNN
« Runs on a Raspberry Pi 3 in real-time

lt C t ($) . output: steering angle
J +
El[l U:'.'I' RS :c;: :u::y-connecte: :ayer
50 S ; c3: fully-connected layer

fc2: fully-connected layer

r{r 100 neurons
£ } fc1: fully-connected layer

Raspberry Pi 3 Model B ‘
New Bright 1:24 scale RC car 10| o

W= 3x3 kernel
- conva: 64@3x20

Playstation Eye camera | | T e

S 3x3 kernel
- conv3: 48@5x22

S

Pololu DRV883 motor hat § | A= T
s ,—&\' ~~ conv2: 36@14x47
Fxternal battery pack & misc. 10| T2 conotonstoer
— = = convl: 24@31x98
Tﬂtal ?U \\7  5x5 kemel convolutional layer
= input: 200x66 RGB pixels
KANSAS * Bechtel et al. DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car. In RTCSA, 2018

https://github.com/mbechtel2/DeepPicar-v2
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DNN based Real-Time Control

while True:

frame = camera.read|()
frame = preprocess (frame)
angle = DNN_inferencing (frame)

steering motor_control (angle)

wait_till next_period()

« DNN Inferencing is the most compute intensive part.
« Parallelized by TensorFlow to utilize multiple cores.

— K
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Experiment Setup

- DNN control task of DeepPicar (real-world RT)
solBench BwWrite benchmark (synthetic RT)
. Parboil benchmarks (real-world BE)

Task WCET Period # Threads ( \
(C ms) (P ms) Parboil cutcp & Ibm
f crlt 34 100 2
RT n
t ;;v » 220 340 2
Lo o0 N/A 4
tcp
BE Ccui
be oo 4
t, N/A

EEEEEEEEEEE
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Execution Time Distribution

= Solo == CoSched =—— RT-Gang

1.0 +———-- d

What does this look like in the real world?

0-0 1

0 50 100 150 200 250
Job Execution Time (msec)

 RT-Gang achieves deterministic timing

TTTTTTTTTTT



CoSched (w/o RT-Gang)

pi@raspberrypi:~/Documents/DeepPicar-v2 $ ./drive.sh
DNN is on

Initilize camera.

start camera thread

camera init completed.

Load TF

pi@raspberrypi:~/Documents/DeepPicar-v2 $ ./attack.shfj

https://youtu.be/Jm6KSDalqiU



https://youtu.be/Jm6KSDqlqiU

fipi@raspberrypi:~/Documents/DeepPicar-v2 $ ./drive.sh
DNN is on
M Initilize camera.
’start camera thread
S lcamera init completed.
8 oad TF

pi@raspberrypi:~/Documents/DeepPicar-v2 $ ./attack.sh

A

KIE;JAS https://youtu.be/pk0j063cUAs



https://youtu.be/pk0j063cUAs

Summary

* Parallel real-time task scheduling
— Hard to analyze on COTS multicore
— Due to interference in shared memory hierarchy
* RT-Gang
— Analyzable and efficient parallel real-time gang
scheduling framework, implemented in Linux

— Avoid interference by construction
* Can protect critical real-time tasks

https://github.com/CSL-KU/rt-gang
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Integrating NVIDIA Deep Learning
Accelerator (NVDLA) with RISC-V

SoC on FireSim.

Farzad Farshchi, Qijing Huang, and Heechul Yun.

Workshop on Energy Efficient Machine Learning and
Cognitive Computing for Embedded Applications
(EMC”2) Washington DC, February, 2019.




RISC-V + NVDLA SoC Platform

FPGA

Target Design

Tiles
N csg| NVDLA
Rocket Core - = Wrapper
ol
t @ _DBB| | NVDLA
EIR
L1 ol |3
Q. —
= [
8| |9

D$
: -
latform-le
= || | [Mnerru pt Controller
Y "V:: : t
| System Bus |
| Coherence Manager |
v
a m a zo n | LLC + Memory Model |
L ] 3
web services :
DRAM

* Full-featured quad-core SoC with hardware
DNN accelerator on Amazon FPGA cloud

— Run Linux, YOLO v3 object detection

— K
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RISC V + NVDLA SoC Platform

FPGA

Target Design

NVDLA
Wrapper

Peripheral Bus

Platform-level
Interrupt Controller

Coherence Manager

LLC + Memory Model

L]

NVDLA Configuration S:uce Bus (CSB) Inle;vup(

X
| Configuration and Control Block

| 40/
0019 I

"? ' 7
004. 044 S %

O,
C‘é-e .




Conclusion

* Micro-architectural attacks on high-performance
embedded SoCs are a serious threat for CPS
— Can leak secret (confidentiality)
— Can alter data (integrity)
— Can affect real-time performance (correctness)

* Our research develops fundamental computing
infrastructure technologies to enable safe,
secure, and intelligent CPS

— K
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