Micro-Architectural Attacks on
Cyber-Physical Systems

07/09/2019
Heechul Yun
Associate Professor”, EECS

University of Kansas

— KU

KANSAS * Effective in Fall, 2019

Modern Cyber-Physical Systems

e Cyber Physical Systems (CPS)
— Cyber (Computer) + Physical (Plant)

Real-time
— Control physical process in real-time

S&fEtV-CfitiC&' "][] ?‘
— Can harm people/things S

Intelligent

— Can function autonomously

KANSAS

Modern System-on-a-Chip (SoC)

¥ ¥

Shared Cache

Memory Controller (MC)

DRAM

* Integrate multiple cores, GPU, accelerators
* Good performance, size, weight, power

* Challenges: safety, security
—— KU

KANSAS

Micro-Architectural Attacks

https://meltdownattack.com/

=

Meltdown Spectre

Meltdown breaks the most fundamental isolation Spectre breaks the isclation between different
between user applications and the operating system. applications. It allows an attacker to trick error-free
This attack allows a program to access the memory, programs, which follow best practices, into leaking
and thus also the secrets, of other programs and the their secrets. In fact, the safety checks of said best
operating system. practices actually increase the attack surface and
rmay make applications more susceptible to Spectre

« Software attacks on hardware are difficult to defend
 Complex hardware > many attack vectors
KU

THE UNIVERSITY OF

Micro-Architectural Attacks

* Micro-architectural hardware components
— E.g., cache, tlb, DRAM, 000 engine, ...
* Can leak secret
— E.g., Meltdown, Spectre
e Can alter the content of the stored data
— E.g., RowHammer
* Can affect execution timing
— E.g., DoS attack on real-time tasks
* Logically correct software is also vulnerable

— K

THE UNIVERSITY OF

Project Goal

* Develop micro-architectural attack resistant
computing infrastructure for secure cyber-
physical systems (CPS)

THE UNIVERSITY OF

— K

Results So Far...

. Jacob Michael Fustos, Farzad Farshchi, and Heechul Yun.

SpectreGuard: An Efficient Data-centric Defense Mechanism against
Spectre Attacks. Design Automation Conference (DAC), 2019.

. Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks

on Shared Cache in Multicore: Analysis and Prevention. IEEE Intl.
Conference on Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2019 Outstanding Paper Award

. Waqar Ali and Heechul Yun. RT-Gang: Real-Time Gang Scheduling

Framework for Safety-Critical Systems. IEEE Intl. Conference on

Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2019.

. Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA

Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim.
Workshop on Energy Efficient Machine Learning and Cognitive
Computing for Embedded Applications (EMC"?), 20109.

THE UNIVERSITY OF

SpectreGuard: An Efficient Data-
centric Defense Mechanism against
Spectre Attacks

Jacob Fustos, Farzad Farshchi, and Heechul Yun
ACM/IEEE Design Automation Conference (DAC)

Las Vegas, Nevada, June, 20109.

THE UNIVERSITY OF
KANSAS

Speculative Execution Attacks

e Attacks exploiting microarchitectural side-effects of
executing speculative (transient) instructions

* Many variants
No hardware support

_Attack | Description planned in near future
Variant 1 (Spectre) [16] Bounds Check Bypass
Variant 1.1 [10] Bounds Check Bypass Store
Variant 1.2 [15] Read-only Protection Bypass

Variant 2 (Spectre) [16] Branch Target Injection
Variant 3 (Meltdown) [18] | Supervisor Protection Bypass

Variant 3a [12] System Register Bypass

Lazy FP [24] FPU Register Bypass

Variant 4 [9] Speculative Store Bypass 0
ret2spec [20] Return Stack Buffer

L1 Terminal Fault [11, 26] | Virtual Translation Bypass

THE UNIVERSITY OF
KANSAS

Spectre Attack (Variant 1)

1f(x < arrayl length) {
val = arrayl[x];
tmp array2[val*512];

e Assume x is under the attacker’s control

e Attacker trains the branch predictor to
predict the branch is in-bound

THE UNIVERSITY OF

Spectre Attack (Variant 1)

if(x < arravl lenoth

L fAccEss

tmp = array?| val*512

* Speculative execution of the first line
accesses the secret (val)

KANSAS

Spectre Attack (Variant 1)

1f (x < arrayl length) {
val = arravl[x];

2. [TRANSMIT]

* Speculative execution of the second, secret
dependent load transmits the secret to a
microarchitectural state (e.g., cache)

THE UNIVERSITY OF

Spectre Attack (Variant 1)

1f (x < arrayl length) {
val arrayl[x];
tmp array2[val*512];

}

3. [RECEIVE]

e Attacker receives the secret by timing access
latency differences (cache hit vs. miss) among
the elements in the probe array

— Flush+reload, prime+probe, ...

THE UNIVERSITY OF

Existing Software Mitigation

1f (x < arrayl length) {
_mm lfence();
val = arrayl [x];

tmp = array2([val*b12];
}

 Manually stop speculation

— By inserting ‘1 fence’ instructions [Intel, 2018]

— Or by introducing additional data dependencies
[Carruth, 2018]

— Error prone, high programming complexity, performance

overhead

THE UNIVERSITY OF

Existing Hardware Mitigation

Valid
Load Queue Per a
(LQ) ertorme Status
State: Bits
E/VICIN
Prefetch
Speculative Buffer Data Line
(SB)
|| | Address Mask

InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC’19]

dTLB
he I
‘Shadow dTLB

* Hide speculative execution

— By buffering speculative results into additional “shadow”
hardware structures

— High complexity, high overhead (performance, space)
— KU

THE UNIVERSITY OF
KANSAS

SpectreGuard

e Data-centric software/hardware collaborative
approach

— Software tells hardware what data (not code) needs
protection

— Hardware selectively protects the identified data from
Spectre attacks

* Key observations
— Not all data is secret
— Not all speculative loads leak secret

— K

THE UNIVERSITY OF

Obs. 1: Not All Data Is Secret

* Non-sensitive data
—_ Most program Code’ data Attacker’s controlled data

imi AES tion tabl
— Optimize for performance encryption table

Other public information

* Sensitive (secret) data

— Cryptographic keys, RSA private key
paSSWOrdS’ Bank account information

Other secret data

— Optimize for security

THE UNIVERSITY OF
KANSAS

THE UNIVERSITY OF
KANSAS

Obs. 2: Not All Speculative Loads
Leak Secret

1f(x < arravyl length) {
val = arrayl[x]; 1. [ACCESS]
tmp array?2[val*>512]; 2. [TRANSMIT]

The first load does NOT leak secret

The second, secret dependent load leaks the
secret

Delay the secret dependent load until after the
branch is resolved

SpectreGuard Approach
* Step 1: Software tells

OS what data is secret -
System Call

e Step 2: OS updates the po—
page table entries -

° Step 3: Load Of the Instructions Hardware

. . . o Load
secret data is identified .
oy .
* Step 4: secret data Iﬂ T
forwarding is delayed Pependent [
g is delaye
until safe

Operating System

Memory
System

|||||||||||||

Evaluation Setup

e Full system simulation using Gem5 (O3CPU model) and
Linux kernel (4.18)

Core Single-core (x86 ISA), 8 issue, out-of-order, 2 GHz
IQ: 64, ROB: 192, LSQ: 32/32
Cache Private L1-I/D: 16/64 KiB (4/8-way), 1 cycle latency
Shared L2: 256 KiB (16-way), 8 cycle latency
DRAM Read/write buffers: 32/64, open-adaptive policy
DDR3@800MHz, 1 rank, 8 banks

* Comparison
— Native: unmodified baseline system
— InvisiSpec: a fully hardware solution [Yan et al., Micro’18]

— Fence: a fully software solution (insert 1 fence after all
branches)

— SG: SpectreGuard

THE UNIVERSITY OF

Synthetic Workloads

cha // secret data Secret data

void benchmark(int S, int C)

{
// (S)pectre gadget, unrelated to the secret

for (i =0; 1 <S; i++)
do work():

// En(C)ryption task accessing the secret

for (i =0; i <C; i++)

3

e (S)pectre: contains Spectre gadget
— does not access the secret key

* En(C)ryption: background communication
— access the secret key

— KU

THE UNIVERSITY OF
KANSAS

Results of Synthetic Workloads

char *secret_key; // secret data

void benchmark(int S, int C)
{
// (S)pectre gadget, unrelated to the secret
for (i = @; i <S; i++)
do_work

// En(C)ryption task accessing the secret
for (i =0; i <C; i++)
encrypt();

Normalized Execution Time

CHd

5 A I I 6 G IS

* Varies percent time spentin Sand C
* SG(Key) achieves native performance
— Only secret key is marked as secret

* SG(All) achieves comparable performance with /nvisiSpec
— All memory (code, data, heap, stack) is marked as secret

— KU

THE UNIVERSITY OF
KANSAS

Results of SPEC2006 Benchmarks

w
w
|

Native 3 { i i i i
SGIHRAPR) EZ | e e

SG(All) &= ; : : : : : : : : :
InvisiSpec I

Fence &I

w
I

2_5 -
2 -

1

Normalized Execution Time

0.5 -

0

SG(All) achieves comparable performance with InvisiSpec
SG(Heap) achieves better performance than InvisiSpec
— Only heap is marked as non-speculative (NS) pages

SpectreGuard enables targeted security and performance
trade-offs

— K

KANSAS
23

EEEEEEEEEE

Summary

Speculative execution attacks

— Affect all high-performance out-of-order processors

— Existing software mitigation suffers high programming
complexity/overhead

— Hardware only mitigation is costly

SpectreGuard

— A data-centric software/hardware collaborative defense mechanism
— Low programming effort (identifying secret data, not vulnerable code)
— Low hardware cost (no additional "shadow" structure)

— Effective, targeted defense against Spectre attacks

https://github.com/CSL-KU/SpectreGuard

F

24

Denial-of-Service Attacks on Shared
Cache in Multicore: Analysis and
Prevention

Michael Garrett Bechtel and Heechul Yun

IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS)

Montreal, Canada, April, 2019

Outstanding Paper Award

25

Threat Model

Trusted Untrusted , _
Partition i Partition Attacker’s goal: increase the
§ y . victim’s task execution time
) i
Victim Attacker
OS/hypervisor * The attacker is on different
Core ' Core core/memory/cache partition
| | D § | | D * The attacker can only execute
Shared. Cache non-privileged code.

26

Non-Blocking Cache

Core Core Core Core
EI| [o]|[[1][p] III|IEI E|IEI
Miss Status Holding L2 cache | Writeback Buffer.
Registers! Tag array Data array v e Holds evicted dirty
e Track outstanding RN 1T lines (writebacks).
. MSHR .
cache misses. v WB Buffer , e Prevents cache refills
from waiting.

address/respond bus data bus

e We identified cache internal structures that
can be potential DoS attack vectors

— K

KANSAS ! prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore
Real-Time Systems.” In RTAS, 2016 (Best Paper Award) 27

Cache DoS Attacks

for (1 = 0; 1 < mem_size; 1 += LINE_SIZE)

{
}

sum += ptr[i];

Read Attacker
(target MSHRs)

for (i = 0; 1 < mem_size; 1 += LINE_SIZE)

{
}

ptr[1] = Oxff;

Write Attacker
(target WBBuffer)

* Denial-of-Service (DoS) attacks targeting internal

hardware structures of a shared cache.

— Block the cache = delay the victim’s execution time

— K

THE UNIVERSITY OF

Effects of Cache DoS Attacks

>300X
25 . 1 | | | :
1
64.48 solo
+1 attacker K==
20 - +2 attackers B2 |
& +3 attackers I
230.6
= 15 _
g
» 4 _g ::::
) E 2
w0 —
victim attackers §§§5
0%
5 X .
/l ’0’1
Core2j|Core3j|Core <
| Lilc | 5
N Gav ERv: B R

Pi3(A53) C2(A53) XU4(A15) Pi2(A7) XU4(A7)
* Observed worst-case: >300X (times) slowdown
— On popular in-order multicore processors
— Due to contention in cache write-back buffer

— K

THE UNIVERSITY OF

Effect of Cache Partitioning

25 T T
20 - lo C—1
solo C—J solo
+1 at 345.64 370.76 +1 attacker K=
+2 at B3 +2 attackers =223
e N — T +3 attackers HE—
230.6 174.20 . 15 20.25 -
o~
S 15| g
S (]
-g < 10
ke ®
n 10 (&)
N
5 |-
5 —
___________ r---;gg S e 0.32
0 0 1
no part. PALLOC no part. PALLOC

PALLOC! partitions the cache among the cores

e Partitioning doesn't protect against DoS attacks.

— because cache internal structures are not partitioned.

KANSAS 1 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. PALLOC: DRAM Bank-Aware Memory Allocator for Performan
ce Isolation on Multicore Platforms. In RTAS, 2014

Summary

e Cache internal hardware structures (MSHRs,
WriteBack buffer) are viable DoS attack
vectors in multicore platforms.

e Traditional cache partitioning is not effective
for cache DoS attacks

 We proposed an OS solution to defense
against cache DoS attacks.

THE UNIVERSITY OF

RT-Gang: Real-Time Gang
Scheduling Framework for Safety-

Critical Systems

Wagar Ali and Heechul Yun.
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS)
Montreal, Canada, April, 2019

Parallel Real-Time Tasks

* Many emerging workloads in Al, vision,
robotics are parallel real-time tasks

o
o

00
o
I
|

(0)]
o
I
|

Avg. processing time (ms) _,

! fca: fully-connected layer
| 10neurons I 40 —
‘ o fe3: fully-connected layer 30 95
neuren ! fe2: full ted |)
uuuuuuuuuu] ceituly-connectec ayer 25_66 e em e eeena
| PP —) fcl: fully-connected layer . 22 86
conv5: 64@1x18
3 convolutional layer 2 0 - _|
— conva: 64@3x20
convolutional layer
e conv3: 48@5x22
convolutional layer
2 conv2: 36@14x47 0

-~/ convo lutiona | layer
~_ 5x5 kernel 1 2 3 a4
e convl: 24@31x98

convolutional layer

5x5 kernel
— input: 200x66 RGB pixels # Of cores

— KU

Effect of parallelization on DNN control task

20
Hz

30
Hz

KANSAS +m. Bojarski, "End to End Learning for Self-Driving Cars." arXiv:1604.07316, 2016

33

Observations

* Constructive sharing (Good)

— Between threads of a single parallel task

e Destructive sharing (Bad)
— Between threads of different tasks

* Goal: analyzable and efficient parallel real-
time task scheduling framework for multicore

* By avoiding destructive sharing

— K

THE UNIVERSITY OF

RT-Gang

Core 1

1 release

Core 2 T completion

222 Idle or best-effort
Core 3

real-time

1
priority: t,<t, <t
Core 4 1S LS

4 t t, 4 4 4

* One (parallel) real-time task---a gang---at a time
— Eliminate inter-task interference by construction

* Schedule best-effort tasks during slacks w/ throttling
— Improve utilization with bounded impacts on the RT tasks

EEEEEEEEEEE

35

Safe Best-Effort Task Throttling

* Throttle the best-effort core(s) if it exceeds a
given bandwidth budget set by the RT task

2
Budget

Core
activity

0 ims 2ms

_ computation _memory fetch

U Basic throttling mechanism ”

KANGAS * Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Pl
atforms.” In RTAS, 2013

Implementation

 Modified Linux’s RT scheduler

— Implemented as a “feature” of SCHED_ FIFO
(sched/rt.c)

e Best-effort task throttling
— Based on BWLOCK++"

— K

KANSAS *\i. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.” In ECRTS, 2018

DeepPicar’

« A low cost, small scale replication of NVIDIA’s DAVE-2

« Uses the exact same DNN
« Runs on a Raspberry Pi 3 in real-time

lt C t ($) . output: steering angle
J +
El[l U:'.'I' RS :c;: :u::y-connecte: :ayer
50 S ; c3: fully-connected layer

fc2: fully-connected layer

r{r 100 neurons
£ } fc1: fully-connected layer

Raspberry Pi 3 Model B ‘
New Bright 1:24 scale RC car 10| o

W= 3x3 kernel
- conva: 64@3x20

Playstation Eye camera | | T e

S 3x3 kernel
- conv3: 48@5x22

S

Pololu DRV883 motor hat § | A= T
s ,—&\' ~~ conv2: 36@14x47
Fxternal battery pack & misc. 10| T2 conotonstoer
— = = convl: 24@31x98
Tﬂtal ?U \\7 5x5 kemel convolutional layer
= input: 200x66 RGB pixels
KANSAS * Bechtel et al. DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car. In RTCSA, 2018

https://github.com/mbechtel2/DeepPicar-v2

38

https://github.com/mbechtel2/DeepPicar-v2

DNN based Real-Time Control

while True:

frame = camera.read|()
frame = preprocess (frame)
angle = DNN_inferencing (frame)

steering motor_control (angle)

wait_till next_period()

« DNN Inferencing is the most compute intensive part.
« Parallelized by TensorFlow to utilize multiple cores.

— K

THE UNIVERSITY OF

Experiment Setup

- DNN control task of DeepPicar (real-world RT)
solBench BwWrite benchmark (synthetic RT)
. Parboil benchmarks (real-world BE)

Task WCET Period # Threads (\
(C ms) (P ms) Parboil cutcp & Ibm
f crlt 34 100 2
RT n
t ;;v » 220 340 2
Lo o0 N/A 4
tcp
BE Ccui
be oo 4
t, N/A

EEEEEEEEEEE

40

Execution Time Distribution

= Solo == CoSched =—— RT-Gang

1.0 +———-- d

What does this look like in the real world?

0-0 1

0 50 100 150 200 250
Job Execution Time (msec)

 RT-Gang achieves deterministic timing

TTTTTTTTTTT

CoSched (w/o RT-Gang)

pi@raspberrypi:~/Documents/DeepPicar-v2 $./drive.sh
DNN is on

Initilize camera.

start camera thread

camera init completed.

Load TF

pi@raspberrypi:~/Documents/DeepPicar-v2 $./attack.shfj

https://youtu.be/Jm6KSDalqiU

https://youtu.be/Jm6KSDqlqiU

fipi@raspberrypi:~/Documents/DeepPicar-v2 $./drive.sh
DNN is on
M Initilize camera.
’start camera thread
S lcamera init completed.
8 oad TF

pi@raspberrypi:~/Documents/DeepPicar-v2 $./attack.sh

A

KIE;JAS https://youtu.be/pk0j063cUAs

https://youtu.be/pk0j063cUAs

Summary

* Parallel real-time task scheduling
— Hard to analyze on COTS multicore
— Due to interference in shared memory hierarchy
* RT-Gang
— Analyzable and efficient parallel real-time gang
scheduling framework, implemented in Linux

— Avoid interference by construction
* Can protect critical real-time tasks

https://github.com/CSL-KU/rt-gang

44

Integrating NVIDIA Deep Learning
Accelerator (NVDLA) with RISC-V

SoC on FireSim.

Farzad Farshchi, Qijing Huang, and Heechul Yun.

Workshop on Energy Efficient Machine Learning and
Cognitive Computing for Embedded Applications
(EMC”2) Washington DC, February, 2019.

RISC-V + NVDLA SoC Platform

FPGA

Target Design

Tiles
N csg| NVDLA
Rocket Core - = Wrapper
ol
t @ _DBB| | NVDLA
EIR
L1 ol |3
Q. —
= [
8| |9

D$
: -
latform-le
= || | [Mnerru pt Controller
Y "V:: : t
| System Bus |
| Coherence Manager |
v
a m a zo n | LLC + Memory Model |
L] 3
web services :
DRAM

* Full-featured quad-core SoC with hardware
DNN accelerator on Amazon FPGA cloud

— Run Linux, YOLO v3 object detection

— K

THE UNIVERSITY OF

RISC V + NVDLA SoC Platform

FPGA

Target Design

NVDLA
Wrapper

Peripheral Bus

Platform-level
Interrupt Controller

Coherence Manager

LLC + Memory Model

L]

NVDLA Configuration S:uce Bus (CSB) Inle;vup(

X
| Configuration and Control Block

| 40/
0019 I

"? ' 7
004. 044 S %

O,
C‘é-e .

Conclusion

* Micro-architectural attacks on high-performance
embedded SoCs are a serious threat for CPS
— Can leak secret (confidentiality)
— Can alter data (integrity)
— Can affect real-time performance (correctness)

* Our research develops fundamental computing
infrastructure technologies to enable safe,
secure, and intelligent CPS

— K

THE UNIVERSITY OF

KANSAS

Thank You!

Acknowledgement:
This research is supported by NSA Science of Security initiative

contract #H98230-18-D-0009 and NSF CNS 1718880, 1815959.

49

10.

11.

12.

THE UNIVERSITY OF

Recent Publications

[C] Jacob Michael Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An Efficient Data-centric Defense Mechanism against Spectre
Attacks. Design Automation Conference (DAC), 2019

[C] Wagar Ali and Heechul Yun. RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems. IEEE Intl. Conference on Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2019.

[C] Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention. |EEE Intl.
Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2019 Outstanding Paper Award

[W] Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim.
Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMCA2), 2019.

[C] Michael Garrett Bechtel, Elise McEllhiney, Minje Kim, Heechul Yun. DeepPicar: A Low-cost Deep Neural Network-based Autonomous
Car. IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2018

[C] Wagar Ali, Heechul Yun. Protecting Real-Time GPU Applications on Integrated CPU-GPU SoC Platforms. Euromicro Conference on Real-
Time Systems (ECRTS), 2018

[C] Farzad Farshchi, Prathap Kumar Valsan, Renato Mancuso, Heechul Yun. Deterministic Memory Abstraction and Supporting Multicore
System Architecture. Euromicro Conference on Real-Time Systems (ECRTS), 2018

[J] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Addressing Isolation Challenges of Non-blocking Caches for Multicore Real-Time
Systems. Real-time Systems, Vol: 53, Issue: 5, pp: 673—-708, 2017

[J] Heechul Yun, Wagar Ali, Santosh Gondi, Siddhartha Biswas. BWLOCK: A Dynamic Memory Access Control Framework for Soft Real-Time
Applications on Multicore Platforms. IEEE Transactions on Computers, Vol: 66, Issue: 7, pp: 1247-1252, 2017

[C] Prasanth Vivekanandan, Gonzalo Garcia, Heechul Yun, Shawn Keshmiri. A Simplex Architecture for Intelligent and Safe Unmanned Aerial
Vehicles. IEEE Intl. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2016. Best Student Paper Nomination

[C] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time
Systems. In IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016. Best Paper Award

[C] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memory Bandwidth Management for Efficient Performance
Isolation in Multi-core Platforms, IEEE Transactions on Computers, Vol 65, Issue 2, 2016, pp. 562 — 576. Editor's Pick of the year 2016

Full List: http://www.ittc.ku.edu/~heechul/pub.html

50

http://www.ittc.ku.edu/~heechul/pub.html

r Competition

e

|
|

EECS 753 DeepPica
' B 'ﬁ

DeepPicar Competition
EECS 753 Embedded Real-Time Systems Final Project
May 6, 2019 51

