
Connie Heitmeyer
Center for High Assurance Computer Systems

Naval Research Laboratory

Washington, DC

Software Cerification Consortium Workshop

NRC, Rockville, MD

Oct. 28 – Oct. 29, 2013

MODELING AND SPECIFYING 

REQUIREMENTS

FOR SAFETY-CRITICAL SYSTEMS



THE CURRENT STATE OF 

SOFTWARE



3
10/30/2013

SOFTWARE IS EVERYWHERE



4
10/30/2013

There has been a huge increase in the amount 

of software in many industrial systems, e.g., 

automobiles

 In 1981, General Motors passenger cars executed 

~50 KLOC

 Today’s average car contains more than 1 MLOC

 Today’s premium class car is estimated to contain in 

excess of 100 MLOC!

Dramatic Increase in the
Software Size 

Increase in Code Size:  Factor of 20-2000!



5
10/30/2013

Dramatic Increase in 
Software Complexity

Year Aircraft % of Pilot Functions 

1960 F-4 8%

1982 F-16 45%

2000 F-22 80%

In Testing F-35 90%

Software

in Military

Aircraft

Engine Control

Sole Automotive Function 

Supported by Software in 1981:

Automotive Functions Supported by Today’s Software 
Air Bag System Antilock Brakes Automatic Transmission

Alarm System Climate Control Collision Avoidance

Cruise Control Communication System Dashboard Instrum.

Electronic Stability Control Engine Ignition Engine Control

Electronic Seat Control Entertainment System Navigation

Power Steering Tire Pressure Monitoring Windshield Wiper Control



THE SOFTWARE PROBLEM



7
10/30/2013

SOFTWARE FAILURES
IN DEFENSE SYSTEMS

a
b
c

New York Times, Aug 25, 2010

Due to a Software Problem, Navy Drone Wanders 
Into Restricted Airspace Near Washington
Result:  Grounding of all six of Navy’s Fire Scouts
….“When contact with the Fire Scout is lost, a program is 

supposed to have it immediately return to the airfield to 
land safely. That did not happen as planned.”

“ ‘Friendly Fire’ Deaths Traced to Dead Battery: Taliban 

Targeted, but US Forces Killed,” Wash. Post, 22 Mar. 2002

The soldier and three comrades were killed in the 

incident.

A U.S. soldier in Afghanistan used a Precision 
Lightweight GPS Receiver to set coordinates for an 
air strike. Seeing that the “battery low” warning light 
was on, he changed the battery, then pressed “Fire.”
The device was designed, on starting or resuming 
operation after a battery change, to initialize the 
coordinate variables to its own location…



In DoD, many unmanned vehicles already deployed and 

others under development (robots, UAVs, UGVs, …)

Larger and faster

Greater complexity in functions, environments

DoD estimated to deploy over 7,000 UAVs currently compared to less 

than 50 a decade ago

More opportunities for serious safety violations

– Recent incident:  UGV drags IED toward Ordinance Disposal Team

Plans exist to deploy unmanned systems in non-military 

applications, such as law enforcement and public safety

Law enforcement:  Equip  UAVs with cameras and scientific instruments 

for surveillance and information gathering and with weapons, such as 

rubber bullets, Tasers, and tear gas

GROWING CONCERNS ABOUT THE
SAFETY OF AUTONOMOUS SYSTEMS



BENEFITS OF FORMAL 

REQUIREMENTS MODELS



 Purpose of a system requirements model
– Specifies the set of all acceptable implementations

– Avoids overspecification (e.g., implementation bias)
 Excludes acceptable implementations

– Avoids underspecification (incompleteness)
 Allows unacceptable implementations

 Components of a req. model (Parnas 4-Var Model)
– The required relation among entities in the system environment, 

monitored and controlled entities  (REQ)

 In response to changes in the values of monitored quantities, 
system changes values of controlled quantities

– Environmental assumptions that constrain the values of the 
monitored and controlled quantities (NAT)

 physical laws and constraints imposed by the system environment

 Dual-Language Approach
– Operational spec

– Property-based spec

REQUIREMENTS MODELS



11
10/30/2013

FORMAL MODELING CAN EXPOSE ERRORS
IN MORE INFORMAL MODELS

 System: FDIR module in software for Intern. Space Stn.

 System purpose: If failure occurs, output failure notification 

and/or sound one of two different alarms 

 Available resources:  Domain expert + two req. documents

 Results
– Formulating a formal model of the required software behavior 

exposed two serious errors in less than one week’s time

 The action required in two modes had been erroneously switched

 The spec contained undesirable implementation bias

FDIR: Failure Detection, Isolation & Recovery

in Internat. Space Station’s Thermal Radiator Rotary software 



12
10/30/2013

Check that functions are total (no missing cases) and well-
defined (deterministic behavior)

 Checked software req. document for Navy aircraft’s Flight Program

– Had been checked manually for errors by two independent review teams

 Results 
– Check of 36 function definitions

 Detected 17 missing cases 

– Checked a total of 4319 logical expressions defining mode transitions

 Detected 57 instances of non-determinism 

“Consistency checking” finds MANY errors that human inspections 
miss and does so very quickly (seconds to minutes)

Doppler_up’ WHEN [NOT CA_stage_complete AND 

latitude > 70 deg. AND NOT present_position_entered

AND NOT latitude > 80 deg. AND IMSMODE=Gndal]

Example:  Input that could trigger transition from Inertial mode
to either Doppler_Inertial or Air_Alignment mode

ANALYZING FORMAL MODELS CAN EXPOSE

WELL-FORMEDNESS ERRORS



13
10/30/2013

ANALYZING FORMAL REQ. MODELS 
CAN DETECT SAFETY VIOLATIONS

Weapons Control Panel 

• Used to monitor the status, 

prepare launch of weapons 

• Sizable, complex program 

(~30KLOC)

• Contractor software 

requirements spec contains 

250+ variables

Weapons Control Panel

• Analyzed for six 

safety properties

• Original spec too 

large to analyze 

– too many 

variables

– several real-

valued vars

• Applied 
abstractions 

– Slicing 

– Data abstraction

contains 55 variables 
(~80% reduction)

Variable Dependency Graph
contains 250+ variables 



14
10/30/2013

AN EXECUTABLE FORMAL MODEL  
CAN BE USED FOR VALIDATION

Validating the model
•Because our model is executable, we can 
“simulate” the system behavior

•Used a GUI builder to build a realistic front-in 
•Domain experts can run the simulator to 
validate that the model captures the intended 
behavior

Opening the Torpedo Tube Vent Valve shall be prevented unless
the Missile-to-Torpedo-Tube differential pressure is within safe limits

One of
safety
properties

safe region

Checking for spurious property violations
• Because our data abstractions were not complete, we needed to check 

for spurious safety violations:  Insure that each violation is reachable
• To do so, we ran the counterexamples returned by model checking 

through the simulator



15
10/30/2013

WE CAN PROVE THAT FORMAL REQ. MODELS 
SATISFY SECURITY PROPERTIES

• CD:  Embedded software that processes data in diff. memory areas 

• Data in diff. areas may be classified at diff. security levels

• Required security property:  DATA SEPARATION

− Data or activity in one area cannot influence or be influenced by data or activity 
in another area

• To support a EAL6+ Common Criteria certification, delivered formal model, 

sets of security properties & assumptions, proof that model satisfies 

properties, annotated C code, and demo that C code refined model

Channel

PARTITION i PARTITION j

processes
that 

manipulate
data
in 

partition i

processes
that 

manipulate
data
on 

partition j

ded’d
memory

for 
partition j

data

processes
that

manipulate
shared
data

shared
memory

SHAREDCD

ded’d
memory

for 
partition i

data

2

1

3



THE REQUIREMENTS 

PROBLEM



17
10/30/2013

PROBLEM:
WRITING GOOD REQUIREMENTS IS HARD!

The hardest single part of building a 

software system is deciding precisely what 

to build.  No other part of the conceptual 

work is as difficult as establishing the 

detailed technical requirements…No other 

part of the work so cripples the resulting 

system if done wrong.  No other part is 

more difficult to rectify later.

Fred Brooks

“No Silver Bullet:  Essence and Accidents 

of Software Eng.,” IEEE Computer, 1987



18
10/30/2013

THE REQUIREMENTS PROBLEM*

In spite of…advancements…, biggest problem in software engineering [is] 

bridging of ‘gap’ between the intent captured in requirements and 

expressed at a high level, and the detailed encoding of this intent in code.

Sriram Rajamani, “Software is more than code”

Jean-Raymond Abrial, “Theory becoming practice”

A final difficulty encountered in modeling is the frequent lack of good 
requirement documents associated with the project. Most of the time, 
industrial requirement documents are either almost nonexistent or far too 
verbose. Usually they have to be rewritten before serious modeling starts.

There is general consensus that the most significant problems in software 
development are due to inadequate requirements, especially where these 
concern what one component or subsystem may expect of another.

John Rushby, “Automated formal methods enter the mainstream”

*Journal of Universal Computer Science, May 2007



FORMAL MODELING/ANALYSIS OF CD
FOR SECURITY PROPERTIES

Requirements 
Acquisition

Formulate the 
Requirements Model & the 

Security Properties

Translate the Req. Model 
to Lang. of Thm Prover &

Construct the Proofs

Demonstrate Code 

Conformance 

Annotate the Code

2.5+ weeks

3+ weeks

5+ weeks

years…

many months…



HOW TO DEVELOP A SYSTEM 

REQUIREMENTS MODEL FOR LARGE, 

COMPLEX SOFTWARE SYSTEMS



21
10/30/2013

WE NEED GOOD 
SYSTEM ABSTRACTIONS

 Facilitate “divide and conquer”

 Allow “separation of concerns”

 Make large models

– easier to understand

– easier to reason about 

– easier to change

 Facilitate incremental development

 Provide a solid foundation for program 

families (i.e., product lines)

ADVANTAGES



EXAMPLE OF A GOOD 

SYSTEM-LEVEL ABSTRACTION:

System controlling 
safety injection in a nuclear plant

WaterPres

Block

Reset

Safety 
Injection 
SystemEnvironment

Safety
Injection

Monitored
Variables

Controlled
Variable

Environment

Pressure

TooLow
High

Permitted

A mode class is a set of system modes

 Partitions the system state into equivalence classes 

 When the system is one mode, its behavior is significantly 
different than when it is in a different mode

 Many systems have more than one mode class

MODES



MODES ARE ALREADY PRESENT
IN THE SPECS OF MANY SYSTEMS

Operational Flight 
Program for 
Navy Aircraft

Failure, Detection, Isolation & Recovery in the 

Thermal Radiator Rotary Joint Manager 

NASA Software for the International Space Station
Ardupilot UAV



FACILITATING THE DEVELOPMENT OF 

FORMAL REQUIREMENTS MODELS

USING MODES



25
10/30/2013

USING FORMAL MODELS AND MODES
IN INCREMENTAL DEVELOPMENT

Real-World Avionics System:  Altitude Switch (ASW) 

 Normal System Behavior ID
– Controller powers on a generic Device of Interest (DOI) 

when the aircraft descends below a threshold altitude

– Pilot sets an inhibitor button to prevent powering on of DOI

– Pilot presses a reset button to reinitialize the ASW

init

standby
Await

DOIon
@T(mDOIStatus=on)

@T(mAltBelow) WHEN 

(NOT mInhibit AND 

mDOIStatus = off)

Mode Transitions of ID Fault-Tolerant Syst. Behavior FT
– When a fault occurs (e.g., no input

– within given time interval) system 

enters fault mode & turns on a fault 

indicator light

– System recovers when the pilot hits 

reset



26
10/30/2013

26

CONSTRUCTING  THE FAULT-TOLERANT 
MODEL FROM THE NORMAL MODEL

 Add new values to value set of variables of ID

– E.g. new fault mode

 Add new fault-tolerance variables 
– mAltimeterfail: Failure of all three altimeters

– mTime: Discrete  time given by system clock 

– cFaultIndicator: On iff system is in fault mode

 Add new transitions for fault handling and fault recovery

fault

Recovery

Fault occurs

Adding these three 

components to the 

normal model ID 

defines the fault-

tolerant model FT

init

standby
Await

DOIon



27
10/30/2013

ADVANTAGES OF DEVELOPING FAULT-
TOLERANT MODEL INCREMENTALLY

 A divide and conquer approach breaks the problem into 

smaller subproblems

 Separation of concerns – define normal behavior first and 

fault-tolerant behavior later

 Proving properties of FT is facilitated by 
– Property inheritance rules

– Compositional proof rules

 Many properties of FT can be proven automatically from 
properties proven about ID!



Different cruise control modes
 Manual driving

 Simple cruise control

 Adaptive:  Maintain min dist from car in 
front

 Cooperative:  Communicate with car in 
front

Approach
 Develop each new version incrementally 

from the previous version

USING FORMAL MODELS AND MODES
IN DEVELOPING PRODUCT LINES

Off NoCC
Simple

CC
Adaptive

CC
Coop

CC

CRUISE CONTROL



29
10/30/2013

Model of a software controller of a UAV called ArduPilot (AP)

 While in flight, AP is in one of six navigation modes

 The navigation mode determines how thrust, pitch and throttle are 

computed.

USING FORMAL MODELS AND MODES:
INCREMENTAL DEV. USING COMPOSITION 

ArduPilot Mode Transitions for Navigation
Functions computing 

cDesiredPitch and 

cDesiredThrottle may be 

similarly defined

Function for computing 

cDesired Roll



30
10/30/2013

USING FORMAL MODELS AND MODES:
INCREMENTAL DEV. USING COMPOSITION 

• Suppose ArduPilot is equipped with a video camera. 

• When ArduPilot is in flight, a ground operator could command the 

controller to switch the camera on, take video of a designated area, 

and transmit the video to some location. 

Mode Transitions for Camera

Function defining cXmtVideo



31
10/30/2013

 Assume that, in Stabilize mode, the camera cannot take video but that in 

all other navigation modes, it can.

 Composing the two models produces a new composite model made up of

– The original ArduPilot model which only performed navigation

– The original Camera model with a modified mode transition table

– The functions defining throttle, pitch, roll and XmtVideo are unchanged

 This is parallel composition but the “feature interaction” problem 
needs to be addressed. 

– If a is a mode in mode class A and b is a mode in mode class B, we may need 
to specify that when the system is in a, it cannot be in b 

New Mode Transitions for Camera

USING FORMAL MODELS AND MODES:
INCREMENTAL DEV. USING COMPOSITION 



REQUIREMENTS SPECS 

IN INDUSTRY



33
10/30/2013

SOFTWARE REQUIREMENTS SPEC
PRODUCED BY A NAVY CONTRACTOR

Weapons Control Panel 

• Used to monitor the status, 

prepare launch of weapons 

• Sizable, complex program 

(~30KLOC)

• Contractor software 

requirements spec contains 

250+ variables

Weapons Control Panel • Requirements 
expressed as ‘logic 
equations’

• Semi-automatic 
translation to our 
tabular notation 

– Took < one week

• Included six safety 
properties

• Included pictures of 
operator interface
– Used to develop 

a graphical front-
end for simulator

– Navy personnel 
could use our 
simulator to 
validate the speccontains 55 variables 

(~80% reduction)

Variable Dep. Graph
contains 250+ variables 



EXCERPT FROM NASA’S ORIGINAL 

REQUIREMENTS DOCUMENT FOR FDIR

FDIR: Failure Detection, Isolation & Recovery

in Internat. Space Station’s Thermal Radiator Rotary software 



TRANSLATION FROM FDIR TABLE TO 

MODE TRANS. TABLE IS EASY

Excerpt from 

mode transition table 

for FDIR



SYNTHESIS OF FORMAL 

SYSTEM REQUIREMENTS 

MODELS



REQUIREMENTS
MODELS IN INDUSTRY

 In software practice, high-quality requirements models 
are extremely rare

 When they exist, they are often 
– Ambiguous (rep’d in languages which lack a formal semantics) 

– Expressed at a low level of abstraction

 One promising approach:  Synthesis of a formal 
requirements model from scenarios

– Message Sequence Charts (MSCs) –representation of scenarios 
used by many practitioners to specify software req.

– Problems with MSCs—no state variables, how to combine them 
unclear, not formal, no way to express guards, …

– Some research on synthesizing formal models from MSCs and 
other representations for scenarios--but unreadable, don’t scale…

 Our approach
– Event Sequence Charts (ESCs), inspired by MSCs

– A Mode Diagram



38
10/30/2013

Formal System Model Synthesis:
Example of a Scenario Rep’d as an ESC



39
10/30/2013

Mode Diagram

Formal System Model Synthesis:
Role of a Mode Diagram

Scenarios specified as ESCs



40
10/30/2013

 Develop a set of scenarios and specify them as ESCs

 Formulate mode diagrams & relate them to the ESCs

 From the ESCS + mode diagrams, synthesize a function for each 
controlled var

 Synthesize a formal model from the above

Formal System Model Synthesis from

Scenarios and a Mode Diagram

Scenarios 

specified 

as ESCs

manual
automatic

Functions defining controlled vars + 
other components of a formal model

Mode Diagram



41
10/30/2013

F(c1): M x E -> TY(c1) 

Scenarios

Requirements

Engineer

(μ1, μ2)

(μ1, μ3)

…

(μn-1, μn) 

Modes Mode
Transitions

m1

m2

…

mk

t(m1)

t(m2)

…

t(mk) 

c1

c2

…

cl

t(c1)

t(c2)

…

t(cl) 

Monitored 
Vars &
Their 
Types

Controlled 
Vars &
Their 
Types

e1

e2

…

eu

Events 
triggering

mode
transitions

Fx: M x E -> M 

Function
defining
mode

transitions

F(c1): M x E -> TY(c1) 

Functions defining
controlled 
variable
valuesF(c1): M x E -> TY(c1) 

1

3 4
5

6

Manual

f1
f2
…

fv
Events 

triggering
changes in 
controlled 
variables

μ1

μ2

…

μn

Formal System Model Synthesis:
Method



42
10/30/2013

F(c1): M x E -> TY(c1) 

Scenarios

Requirements

Engineer

Synthesized
Formal 
Model

(μ1, μ2)

(μ1, μ3)

…

(μn-1, μn) 

Modes Mode
Transitions

m1

m2

…

mk

t(m1)

t(m2)

…

t(mk) 

c1

c2

…

cl

t(c1)

t(c2)

…

t(cl) 

Monitored 
Vars &
Their 
Types

Controlled 
Vars &
Their 
Types

e1

e2

…

eu

Events 
triggering

mode
transitions

Fμ: M x E -> M 

Function
defining
mode

transitions

F(c1): M x E -> TY(c1) 

Functions defining
controlled 
variable
valuesF(c1): M x E -> TY(c1) 

1

3 4
5

6

Consistency

Checker

Check
Well-formedness

of Model

Fix errors

8

Manual

Totally
Automated

μ1

μ2

…

μn

μ1

μ2

…

μn

f1
f2
…

fv
Events 

triggering
changes in 
controlled 
variables

Formal System Model Synthesis:
Method



43
10/30/2013

• If two UAVs are on 
a collision course, 
the system notifies 
the operator within 
.5 s.

• If a UAV has no 
assigned target, the 
system notifies the 
operator within 1 s.

• …

F(c1): M x E -> TY(c1) 

Scenarios

Requirements

Engineer

Synthesized
Formal 
Model

(μ1, μ2)

(μ1, μ3)

…

(μn-1, μn) 

Modes Mode
Transitions

m1

m2

…

mk

t(m1)

t(m2)

…

t(mk) 

c1

c2

…

cl

t(c1)

t(c2)

…

t(cl) 

Monitored 
Vars &
Their 
Types

Controlled 
Vars &
Their 
Types

e1

e2

…

eu

Events 
triggering

mode
transitions

Fμ: M x E -> M 

Function
defining
mode

transitions

F(c1): M x E -> TY(c1) 

Functions defining
controlled 
variable
valuesF(c1): M x E -> TY(c1) 

1

3 4
5

6

Check
safety 

properties

Property

is/is not

valid

9

Manual

Totally
Automated

μ1

μ2

…

μn

μ1

μ2

…

μn

f1
f2
…

fv
Events 

triggering
changes in 
controlled 
variables

Formal System Model Synthesis:
Method



44
10/30/2013

SUMMARY

 The size & complexity of software systems continue to 
grow

 Formal requirements models have many benefits
– Should be readable

– Should be analyzable

– Should scale to handle large, complex systems

– If possible, executable

 System-level abstractions, e.g., modes, can help in building 
formal requirements models for large, complex systems

 Formal requirements models are still rare in industry

 Promising approach:  scenario-based synthesis of  formal 
requirements models

A formal system requirements model 
provides a solid foundation for building a 

safe software system





CYBER PHYSICAL SYSTEMS



 Key Challenge:  How to integrate physical dynamics, which 
operate in a temporal and spatial continuum, with 
software’s digital behavior

 Digital software systems can be modeled as a relation on 
monitored and controlled variables

 Physical quantities in the system environment are often 
better modeled using a declarative technique based on 
conservation laws.  

– These techniques are often called “equational,” because a 

connection between components specifies equalities of dynamically 

varying quantities (Edward Lee) 

 Issues
– How to import digital models of the system req. into physical models

– How to import physical models into digital models of the system req. 

WE NEED FORMAL MODELS 
OF CYBER PHYSICAL SYSTEMS



 The size and complexity of software system have grown 

enormously

 Software failures are continuing to occur in many critical 

applications 

ADDRESSING 
THE SOFTWARE PROBLEM

48

PROBLEM

• NEED METHODS FOR MODELING AND SPECIFYING 

THE REQUIREMENTS OF LARGE, COMPLEX 

SOFTWARE SYSTEMSAmong the most important models 

are requirements models--formal system requirements 

models



A solid foundation for building a 

safe software system is 

a precise, unambiguous 

system requirements model 

DEVELOPING SAFE SYSTEMS

49

Premise


