MODELING AND SPECIFYING
REQUIREMENTS
FOR SAFETY-CRITICAL SYSTEMS

Connie Heitmeyer

Center for High Assurance Computer Systems
Naval Research Laboratory
Washington, DC

Software Cerification Consortium Workshop
NRC, Rockville, MD
Oct. 28 — Oct. 29, 2013

THE CURRENT STATE OF
SOFTWARE

by 1

v

10/30/2013

PRESIDENTIAL ELECTORS
tor the canddates of one Party for the P esident
Presidont of insert the names of ¢ anddates

=f MITT ROMNEY, President
' PAUL RYAN, Vice-President

UG

BARACK OBAMA, President
JOE BIDEN, Vice-President
DEMOCRATIC

JILL STEIN, President
CHERI HONKALA, Vice-President

- GARY JOHNSON, President
JAMES P GRAY. Vice-President

Dramatic Increase in the
Software Size

10/30/2013

There has been a huge increase in the amount
of software in many industrial systems, e.g.,
automobiles

e In 1981, General Motors passenger cars executed
~50 KLOC

e Today’ s average car contains more than 1 MLOC

e Today’ s premium class car is estimated to contain in
excess of 100 MLOC!

Increase In Code Size: Factor of 20-2000!

Dramatic Increase In
Software Complexity

Software Year Aircraft | % of Pilot Functions
In Military 1960 F-4 8%
Aircraft 1982 F-16 45%
2000 F-22 80%
In Testing F-35 90%

Automotive Functions Supported by Today’ s Software

Air Bag System

Antilock Brakes

Automatic Transmission

Alarm System

Climate Control

Collision Avoidance

Cruise Control

Communication System

Dashboard Instrum.

Electronic Stability Control

Engine Ignition

Engine Control

Electronic Seat Control

Entertainment System

Navigation

Power Steering

Tire Pressure Monitoring

Windshield Wiper Control

10/30/2013

‘ THE SOFTWARE PROBLEM |

SOFTWARE FAILURES
IN DEFENSE SYSTEMS

Due to a Software Problem, Navy Drone Wanders

Into Restricted Airspace Near Washington

Result: Grounding of all six of Navy’s Fire Scouts

.... When contact with the Fire Scout is lost, a program is
supposed to have it immediately return to the airfield to
land safely. That did not happen as planned.”

New York Times, Aug 25, 2010

A U.S. soldier in Afghanistan used a Precision
Lightweight GPS Receiver to set coordinates for an
air strike. Seeing that the “battery low” warning light
was on, he changed the battery, then pressed “Fire.”
The device was designed, on starting or resuming
operation after a battery change, to initialize the
coordinate variables to its own location...

The soldier and three comrades were killed in the
incident.

[T

Friendly Fire’ Deaths Traced to Dead Battery: Taliban
Targeted, but US Forces Killed,” Wash. Post, 22 Mar. 2002

7
10/30/2013

GROWING CONCERNS ABOUT THE
SAFETY OF AUTONOMOUS SYSTEMS

In DoD, many unmanned vehicles already deployed and
others under development (robots, UAVs, UGVs, ...)
elLarger and faster

eGreater complexity in functions, environments

eDo0D estimated to deploy over 7,000 UAVs currently compared to less
than 50 a decade ago

eMore opportunities for serious safety violations
- Recentincident: UGV drags IED toward Ordinance Disposal Team

Plans exist to deploy unmanned systems in non-military
applications, such as law enforcement and public safety

eLaw enforcement: Equip UAVs with cameras and scientific instruments
for surveillance and information gathering and with weapons, such as
rubber bullets, Tasers, and tear gas

BENEFITS OF FORMAL
REQUIREMENTS MODELS

REQUIREMENTS MODELS

e Purpose of a system requirements model
- Specifies the set of all acceptable implementations
- Avoids overspecification (e.g., implementation bias)
> EXxcludes acceptable implementations

- Avoids underspecification (incompleteness)
> Allows unacceptable implementations

e Components of a req. model (Parnas 4-Var Model)

- The required relation among entities in the system environment,
monitored and controlled entities (REQ)

> In response to changes in the values of monitored quantities,
system changes values of controlled quantities

- Environmental assumptions that constrain the values of the
monitored and controlled quantities (NAT)

> physical laws and constraints imposed by the system environment

e Dual-Language Approach
— Operational spec
— Property-based spec

FORMAL MODELING CAN EXPOSE ERRORS
IN MORE INFORMAL MODELS

e System: FDIR module in software for Intern. Space Stn.

e System purpose: If failure occurs, output failure notification
and/or sound one of two different alarms

e Avalilable resources: Domain expert + two req. documents

e Results

- Formulating a formal model of the required software behavior
exposed two serious errors in less than one week s time
> The action required in two modes had been erroneously switched
> The spec contained undesirable implementation bias

FDIR: Failure Detection, Isolation & Recovery
In Internat. Space Station’s Thermal Radiator Rotary software

11
10/30/2013

ANALYZING FORMAL MODELS CAN EXPOSE g,
WELL-FORMEDNESS ERRORS L

Check that functions are total (no missing cases) and well-
defined (deterministic behavior)

e Checked software req. document for Navy aircraft’ s Flight Program
- Had been checked manually for errors by two independent review teams

e Results
— Check of 36 function definitions
> Detected 17 missing cases
-~ Checked a total of 4319 logical expressions defining mode transitions
> Detected 57 instances of non-determinism

Example: Input that could trigger transition from Inertial mode

to either Doppler_Inertial or Air_Alignment mode
' Doppler up’ WHEN [NOT CA stage complete AND |

E latitude > 70 deg. AND NOT present position entered
! AND NOT latitude > 80 deg. AND IMSMODE=Gndal]

__

“Consistency checking” finds MANY errors that human inspections
miss and does so very quickly (seconds to minutes)

10/30/2013

ANALYZING FORMAL REQ. MODELS
CAN DETECT SAFETY VIOLATIONS

* Analyzed for six
safety properties

« Original spec too
large to analyze

— too many
variables

— several real-

| =— valued vars
Weapons Control Panel | Applied

« Used to monitor the status, abstractions

— Slicing
prepare launch of weapons _ Data abstraction

* Sizable, complex program ~E- Variable Dependency Graph
(~30KLOC) . contains 250+ variables

« Contractor software ” '
requirements spec contains
250+ variables

=
DG Locat
Browser
=0 !
=1
=

G

contains 55 variables
(~80% reduction)
|

10/30/2013

AN EXECUTABLE FORMAL MODEL
CAN BE USED FOR VALIDATION

Validating the model

*Because our model is executable, we can
“simulate” the system behavior

*Used a GUI builder to build a realistic front-in
Domain experts can run the simulator to
validate that the model captures the intended
behavior

Checking for spurious property violations

« Because our data abstractions were not complete, we needed to check
for spurious safety violations: Insure that each violation is reachable

« To do so, we ran the counterexamples returned by model checking
through the simulator

One of Opening the Torpedo Tube Vent Valve shall be prevented unless

safety ’| the Missile-to-Torpedo-Tube differential pressure is within safe limits
properties

aamm Safe region

14

10/30/2013

WE CAN PROVE THAT FORMAL REQ. MODELS 4
SATISFY SECURITY PROPERTIES

®* (CD: Embedded software that processes data in diff. memory areas
® Data in diff. areas may be classified at diff. security levels

® Required security property: DATA SEPARATION

— Data or activity in one area cannot influence or be influenced by data or activity
In another area

CD pARTITION | SHARED PARTITION |
3 - ;;- el ..t1' o __é :-' - e a o) :
processes ded’d |ii i processes ded’ d o @
that memory |ii | processes ii| that memory |[iN
manipulate for *,ha]f + shared |: i| manipulate for)
di%‘ra partition i masr}\‘g):ecé €1l memory dg‘:“ partition jm?
partition i dafa |:: data i | partition j data
\ N "a i s ";‘
... - '?-.,,_~~___G‘2__.__,-1”

®* To support a EAL6+ Common Criteria certification, delivered formal model,
sets of security properties & assumptions, proof that model satisfies
properties, annotated C code, and demo that C code refined model

10/30/2013

THE REQUIREMENTS
PROBLEM

PROBLEM:
WRITING GOOD REQUIREMENTS IS HARD!

The hardest single part of building a
software system Is deciding precisely what
to build. No other part of the conceptual
work Is as difficult as establishing the
detailed technical requirements...No other
part of the work so cripples the resulting
system if done wrong. No other part is
more difficult to rectify later.

Fred Brooks
“No Silver Bullet: Essence and Accidents
of Software Eng., "IEEE Computer, 1987

10/30/2013

THE REQUIREMENTS PROBLEM*

In spite of...advancements..., biggest problem in software engineering [is]
bridging of ‘gap’ between the intent captured in requirements and

expressed at a high level, and the detailed encoding of this intent in code.

Sriram Rajamani, “Software is more than code ”

A final difficulty encountered in modeling is the frequent lack of good
requirement documents associated with the project. Most of the time,
iIndustrial requirement documents are either almost nonexistent or far too
verbose. Usually they have to be rewritten before serious modeling starts.

Jean-Raymond Abrial, “Theory becoming practice ”

There is general consensus that the most significant problems in software
development are due to inadequate requirements, especially where these
concern what one component or subsystem may expect of another.

John Rushby, “Automated formal methods enter the mainstream ”

10/30/2013 *Journal of Universal Computer Science, May 2007

FORMAL MODELING/ANALYSIS OF €D
FOR SECURITY PROPERTIES

Requirements years...
Acquisition

“Formulate the
Requirements Model & the | 2 5+ weeks
Security Properties

Translate the Req. Model
to Lang. of Thm Prover &

Construct the Proofs 3+ weeks
Demonstrate Code £+ weeks
Conformance

Annotate the Code many months...

HOW TO DEVELOP A SYS

EM

REQUIREMENTS MODEL FOR LARGE,
COMPLEX SOFTWARE SYSTEMS

WE NEED GOOD
SYSTEM ABSTRACTIONS

ADVANTAGES

e Facilitate “divide and conquer”
e Allow “separation of concerns”

e Make large models
— easier to understand
— easier to reason about
— easier to change

e Facilitate incremental development

e Provide a solid foundation for program
families (i.e., product lines)

10/30/2013

21

SYSTEM-LEVEL ABSTRACTION: MODES &

A mode class is a set of system modes
e Partitions the system state into equivalence classes

e \When the system is one mode, its behavior is significantly
different than when it is in a different mode

e Many systems have more than one mode class

(Pressure
TooLow .
Mode< High
Class
Monitored \ Permitted| Controlled
Variables Variable
WaterPre S | Se.‘fety Safety
, ~Block Injection Injection ,
Envu'onmenURe set X Sy stem Environment

System controlling
safety injection in a nuclear plant

MODES ARE ALREADY PRESENT
IN THE SPECS OF MANY SYSTEMS

Operational Flight
Program for
Navy Aircraft

Ardupilot UAV

[1 2 | 3 4 5 6 ! 3
Failure

Failure Detection Persistence Failure

ID § Condition Phase Failure Criteria Time Notifications | Recovery Response | Inhibit

la § Failure to Autotrack Position Err Pers_Autotrack | Autotrack- Transition to Inhibit-
Autotrack: Mode = Failure Failure, Switchover Mode String
response not Autotrack _Error Joint_
inhibited Failure

Ib § Failure to Autotrack Position-Err Pers-Autotrack || Autotrack- Device- Inhibit-
Autotrack: Mode = Failure Failure, Power Off, String
response Autotrack _Error Joint_ Transition to
inhibited Failure Checkout Mode

5 Blind Ops Blind Mode | Blind duration None Time Limit- Transition to Inhibit-
timeout and Torque > Limit + 1 Blind Shutdown Mode Blind
exceeded Motor On

7 String failure: | Autotrack Receive CWA _Str | Pers_String Joint_ Transition to Inhibit_
response Mode ing_Failure Failure Failure Switchover Mode String
inhibited not

8 String failure: | Autotrack Receive CWA _Str | Pers_String Joint_ Device_ Inhibit-
response Mode ing_Failure Failure _Failure Power_Off, String
inhibited Transition to

Checkout Mode

Failure, Detection, Isolation & Recovery in the

Thermal Radiator Rotary Joint Manager
NASA Software for the International Space Station

FACILITATING THE DEVELOPMENT OF
FORMAL REQUIREMENTS MODELS
USING MODES

USING FORMAL MODELS AND MODES
IN INCREMENTAL DEVELOPMENT

Real-World Avionics System: Altitude Switch (ASW)

e Normal System Behavior ID
- Controller powers on a generic Device of Interest (DOI)
when the aircraft descends below a threshold altitude
— Pilot sets an inhibitor button to prevent powering on of DOI
— Pilot presses a reset button to reinitialize the ASW

e Fault-Tolerant Syst. Behavior FT Mode Transitions of ID
- When a fault occurs (e.g., no input

— within given time interval) system
enters fault mode & turns on a fault
iIndicator light

- System recovers when the pilot hits
reset

standby), @T(mDOIStatus=on) Sg&;;

@T(mAltBelow) WHEN
(NOT mlnhibit AND

mDOIStatus = off)
10/30/2013 2

CONSTRUCTING THE FAULT-TOLERANT (&5
MODEL FROM THE NORMAL MODEL &

e Add new values to value set of variables of ID
- E.g. new fault mode / .

ST o Adding these three
""""" components to the

e Add new fault-tolerance variables nor_mal model ID
- mAltimeterfail: Failure of all three altimeters defines the fault-
- mTime: Discrete time given by system clock tolerant model FT
— cFaultIndicator: On iff system is in fault mode

e Add new transitions for fault handling and fault recovery

10/30/2013

ADVANTAGES OF DEVELOPING FAULT-
TOLERANT MODEL INCREMENTALLY

e A divide and conguer approach breaks the problem into
smaller subproblems

e Separation of concerns — define normal behavior first and
fault-tolerant behavior later

e Proving properties of FT is facilitated by
— Property inheritance rules
— Compositional proof rules

e Many properties of FT can be proven automatically from
properties proven about ID!

27
10/30/2013

USING FORMAL MODELS AND MODES
IN DEVELOPING PRODUCT LINES

CRUISE CONTROL

Different cruise control modes
e Manual driving
e Simple cruise control

e Adaptive: Maintain min dist from car in
front

e Cooperative: Communicate with car in
front

Approach

e Develop each new version incrementally
from the previous version

USING FORMAL MODELS AND MODES: &t
INCREMENTAL DEV. USING COMPOSITION ‘@8

Model of a software controller of a UAV called ArduPilot (AP)
e While in flight, AP is in one of six navigation modes
e The navigation mode determines how thrust, pitch and throttle are

Current Mode mcNav Event New Mode . cDesiredRoll
1 Mam_]al, Sts_:bilize, Auto, Fly- @T[mLo\{w-battery] OR RTL 1 Stabilize mActualRoll
by-wire, Loiter @T(mSwitch-pos=rtl)
2 Auto @T(mReached-waypt) WHEN tlLast-waypt RTL 2 Fly-by-wire mDesiredRoll
Manual, Fly-by-wire, @T(mFailsafe) RTL 3 Auto, RTL, Loiter F1{mActualLoc, tNextWP, mActualRoll,
Stabilize mHead1, mHead2)
4 RIL @T(mSwitch-pos = loiter) OR Loiter 4 Manual mActualRoll
@T(mReached-launch-site)
5 Manual, Fly-by-wire, @T({mSwitch-pos = loiter) Loiter
Stabilize, Auto M :
g Stabilize, Auto, Fly-by-wire, @T(mSwitch-pos = manual) Manual Fu nCtlon for Computlng
RTL, Loiter .
7 Manual, Fly-by-wire, Auto, @T(mSwitch-pos = stabilize) Stabilize C D eSI red R OI |
RTL, Loiter
g Manual, Stabilize, Auto, @T(mSwitch-pos = fly-by-wire) Fly-by-wire
RTL, Loiter
g Manual, Stabilize, Loiter, @T({mSwitch-pos = auto) Auto
Fly-by-wire, RTL

Functions computing

ArduPilot Mode Transitions for Navigation cDesiredPitch and

cDesiredThrottle may be
similarly defined

29
10/30/2013

USING FORMAL MODELS AND MODES: §
INCREMENTAL DEV. USING COMPOSITION

« Suppose ArduPilot is equipped with a video camera.

 When ArduPilot is in flight, a ground operator could command the
controller to switch the camera on, take video of a designated area,
and transmit the video to some location.

Current Mode mcCam Event New Mode
1 | V-Off @T(mSwitch-video=on) V-On
3| V-On @T(mSwitch-video=off) V-Off
3| V-On @T(mStart-video) Video-in-Progress
4 | Video-in-Progress @T(mStop-video) V-On

Mode Transitions for Camera

Current Mode mcCam cXmtVideo

1| v-Off, V-On Off

2 | Video-in-Progress On

Function defining cXmtVideo

30
10/30/2013

USING FORMAL MODELS AND MODES: gatiss
INCREMENTAL DEV. USING COMPOSITION \w«d

e Assume that, in Stabilize mode, the camera cannot take video but that in
all other navigation modes, it can.

e Composing the two models produces a new composite model made up of
— The original ArduPilot model which only performed navigation
— The original Camera model with a modified mode transition table
— The functions defining throttle, pitch, roll and XmtVideo are unchanged

e This is parallel composition but the “feature interaction” problem
needs to be addressed.

- Ifais a mode in mode class A and b is a mode in mode class B, we may need
to specify that when the system is in a, it cannot be in b

Current Mode mcCam Event New Mode
1| V-Off @T(mSwitch-video=on) V-On
2| V-On @T(mSwitch-video=off) V-On
3| V-On @T(mStart-video) WHEN Video-in-Progress
mcNav # Stabilize
4 | Video-in-Progress @T(mStop-video) OR V-0n
@T(mcNav = Stabilize)

New Mode Transitions for Camera .

10/30/2013

REQUIREMENTS SPECS
IN INDUSTRY

SOFTWARE REQUIREMENTS SPEC
PRODUCED BY A NAVY CONTRACTOR

)) ®

Weapons Control Panel

« Used to monitor the status,
prepare launch of weapons

« Sizable, complex program
(~30KLOC)

« Contractor software
requirements spec contains
250+ variables

10/30/2013

=
DG Locat
Browser
=0 [
=1
=3

|

Variable Depz G?aph
| contains 250+ variables

contain
(~80% reduction)

A |
L\

Requirements
expressed as ‘logic
equations’

Semi-automatic
translation to our
tabular notation

— Took < one week

Included six safety
properties
Included pictures of
operator interface
— Used to develop
a graphical front-
end for simulator
— Navy personnel
could use our
simulator to
validate the spec

33

EXCERPT FROM NASA’ S ORIGINAL
REQUIREMENTS DOCUMENT FOR FDIR

| 1 2 | 3 - 5 6 7 8
Failure

Failure Detection Persistence Failure

ID | Condition Phase Failure Criteria Time Notifications | Recovery Response | Inhibit

la | Failure to Autotrack Position_Err Pers_Autotrack | Autotrack- Transition to Inhibit-
Autotrack: Mode = Failure Failure, Switchover Mode String
response not Autotrack _Error Joint_
inhibited Failure

Ib | Failure to Autotrack Position_Err Pers_Autotrack | Autotrack- Device- Inhibit.-
Autotrack: Mode = Failure Failure, Power Off, String
response Autotrack _Error Joint_ Transition to
inhibited Failure Checkout Mode

5 Blind Ops Blind Mode | Blind duration None Time_Limit- Transition to Inhibit-
timeout and Torque = Limit + 1 Blind Shutdown Mode Blind
exceeded Motor On

7 String failure: | Autotrack Receive CWA_Str | Pers_String Joint_ Transition to Inhibit_
response Mode ing Failure Failure Failure Switchover Mode String
inhibited not

8 String failure: | Autotrack Receive CWA_Str | Pers_String Joint_ Device_ Inhibit_
response Mode ing_Failure _Failure _Failure Power_Off, String
inhibited Transition to

Checkout Mode

FDIR: Failure Detection, Isolation & Recovery
In Internat. Space Station’s Thermal Radiator Rotary software

TRANSLATION FROM FDIR TABLE TO
MODE TRANS. TABLE IS EASY

2 | 3 | 4 5 | 6 [7 | 8 |
Failure '

Failure Detection Persistence Failure
Condition Phase Failure Criteria = Time Notifications | Recovery Response | Inhibit

atlure 1o Autotrack Position Err || Pers_Autotrack| | Autotrack. Transition to Inhibit.
Autotrack: Mode > Failure Failure, Switchover Mode String
response not Autotrack _Error Joint_
inhibited _ Failure
Failure to r Autotrack Position Emr Pers Autotrack] | Autotrack. Device. Inhibit.
Autotrack: Mode > Failure Failure, Power Off. String
response Autotrack _Error Joint. Transition to
inhibited Failure Checkout Mode
Blind Ops Blind Mode¢| | |Blind duration None Time. Limit. Transition to Inhibit.
timeout and Torque > Limit + 1 Blind Shutdown Mode Blind
exceeded Motor On R

Current Mode| | |Events New Mode
Blind aT(mBlind Timeout) WHEN Shutdown
(mTorque Motor On AND
Excerpt from NOT mInhibit Blind)
det iti tabl Autotrack aT(tPers.Autotrack.Fail) Switchover
moade transition table WHEN (NOT Inhibit String
for FDIR Autotrack aT(tPers_Autotrack. Fail) Checkout
WHEN Inhibit._String

SYNTHESIS O
SYSTEM REQU
MODE

- FORMAL
IREMENTS

LS

REQUIREMENTS
MODELS IN INDUSTRY

e In software practice, high-quality requirements models
are extremely rare
e When they exist, they are often

— Ambiguous (rep’d in languages which lack a formal semantics)
- Expressed at a low level of abstraction

e One promising approach: Synthesis of a formal
requirements model from scenarios

- Message Sequence Charts (MSCs) —representation of scenarios
used by many practitioners to specify software req.

— Problems with MSCs—no state variables, how to combine them
unclear, not formal, no way to express guards, ...

- Some research on synthesizing formal models from MSCs and
other representations for scenarios--but unreadable, don’t scale...
e Our approach
- Event Sequence Charts (ESCs), inspired by MSCs
- A Mode Diagram

Formal System Model Synthesis:

Example of a Scenario Rep’d as an ESC'&/

10/30/2013

Op-Control
Cog || Dist2 || Op System/ . UAV
UAV i||Model || Haz_i || Cmd Agent Display | | traj i
1 mUAV i = unsafe
- >
dUAV_i=unsafe
2 mOpFix_i = True "
—
tFixated i=True
3 mdistZhaz_i=minD N
WHEN tFixated _i=True
4mNewWP_i=J;
dNewWP_i=x
cNewWP_i=x R

5 mUAV i = safe

=
dUAV_i=safe

[O

38

Formal System Model Synthesis: ==

Role of a Mode Diagram

Scenarios specified as ESCs

! Op-Control |
Cog

|Dist2 Op System/ UAV
|UAV7i| Model || Haz_i || Cmd Agent |Disp\ay traj i

1 mUAV_i = unsafe

~ T dUAV_i=unsafe
2 mOpFix_i = True "

| tFixated i=True
3 mdistZzhaz_isminD
WHEN tFixated_i=True
4 mNewWP_i=x
dNewWP_i=x
cNewWP_i=x

5 mUAV_i = safe

" dUAV_i=safe
—_—
o u]

*‘ Agent-Control I
Cog || Dist2 || ©Op System/ UAV

|UAV_i| Model || Haz_i || Cmd Agent |Disp|ay traj_i

1. mUAV_j = unsafe
dUAV_i=unsafe
P

6 mOpFix_i = False
| tFixated_i=False

7 mdist2haz_isminD
WHEN tFixated_i=False
dNewWP_i=x
cNewWP_i=x

8 mUAV_i = safe

" dUAV_i=safe
_—

g a

Mode Diagram

10/30/2013

Op_incontrol
Haz-on-Path
7 k Agent_incontrol

39

Formal System Model Synthesis from
Scenarios and a Mode Diagram

Develop a set of scenarios and specify them as ESCs
e Formulate mode diagrams & relate them to the ESCs

From the ESCS + mode diagrams, synthesize a function for each
controlled var
<4—» manual

e Synthesize a formal model from the above —— automatic

Mode Diagram

*{ Op-Control | — MC: M_i

Op || Op Cog System/ 3 4
|UAV_i Look || Cmd | [Model Agent Display || UAVpath i 1
1 mUAV_j = unsafe 2, 6 Op_incontrol
dUAV i=unsafe *—}
jenv_Funsaie -0n-
2lmiool =T OK Haz-on-Path
_—

tFixated_i=T
=

3 mNewWP_i=x ANewWP_i=x ? .
CNeWWP li=x 8 Agent_incontrol
_—mmm—m————
4 mUAV_i = safe
—t—

Scenarios | ol ||
specified [Tagomrcontal]

Op | Op

Cog System/
as ESCS [uav_i]| Look [cmd |Model| Agent_| | Display || UAVpath_i

1 mUAV_i = unsafe

dUAV_i=unsafe 1 |ok @T[mUAV_i=unsafe) | FALSE FALSE FALSE
5 mLook i=F
—_—— .
tFixated =F | AV i=hovering 3 | op_control FALSE @T(mNewWP_i=x) | FALSE FALSE
. —————>CUAV_i=hover
6 MUAV_i=hover E— E— 4 | Op_Control FALSE FALSE @T(mUAV_i=safe) | FALSE
7 mLook i=T
T tFixated i=T 5 | Agent_Control | FALSE FALSE FALSE @T{mLook_i=F)
4 mUAV_i = safe = . .
— = dUAV._i=safe dUAV_i* = | {unsafe, -) (- x) (safe, -) (hovering, -)
| o |

1] (1]

Functions defining controlled vars +

10/30/2013 other components of a formal model

Formal System Model Synthesis:

Method

~

& My (M1, Mo) Manual
é}ﬁgg “““““““ Mo (M1, H3) /
Requirements —> |.. ()
Engineer — M Hn-1, Hn
Scenarios Modes Mode
%/ \ \Transitions /
my || t(my) | | cq || t(cy) f, e, S
m, | [t(m,) | |c, || t(Cy) f, € | »F:M XE->M
.. . U . .. Function
my (UM | [¢ | U fv Cu defining
Monitored |Controlled trIiEg\éeer;}ﬁg tI_Events mode
riggerin it
Vars & Vars & changes in 9n9 g 9 transitions
Their Their ode
Types Types (\:/%rr‘itgobllleeg transitions
6 Functions defining
X 1. controlled
variable

10/30/2013

F(cy):M XE->TY(c))

values

41

Formal System Model Synthesis:

Method

o W CIe)) Manual
LIS |) / Totally
Requirements — |.. T Automated
En ; — Iu-n (I"ln-l, I"ln)
gineer . irn
Scenarios Modes Mode Check
/g/ \ \\ Trans'tlony Well-formedness
5 — .3 7N vV~ \ \ of Model
my || t(my) Cy t(Cl) fy K1 o 8
m, | [t(m,) | |c, || t(cy) f, M2 | | € | > F:M XE->M
Function S
m, t(mk) C, t(CI) 1:v Mn €u defining C%hecker y
Monitored |Controlled trlizvg%r;}ﬁg tl_Even?s mode
riggerin it
Vars & Vars & changes in ?ngode 9 transitions
Their Their controlled t g
Tvoes Tvoes . ransitions
/! i . A 6var|ables Functions defining
Synthesized 1 controlled -
Formal _ variable IX errors
NCI’O ; ;‘I F(c): M XE->TY(c) | values

10/30/2013

42

Formal System Model Synthesis:

Method

]

(M1, W) Manual
(e, 1) / Totally
' Automated

Check
safety
properties

Requirements —> |.. (v)
Engineer ———— iHn Hn-1, Hn
Scenarios Mode Mode
; Transitions
/g/ \ %\\\ =/
2 — .3 v Vv 4N\ Vo \ \
my || t(my) | | cq || t(cy) f, My || e S
m, | [t(m,) | |c, || t(Cy) f, M2 1€ | A F:MXE->M
. . N ... N . AT
my | (tmy) [[le i) || [F]\ M| ey defining
Monitored |Controlled trIiEg\(/gjeerHﬁg tEVe”FS mode
riggerin v
Vars & Vars & changesin ggering transitions
Their Their mode
7 Types Types (\:,%rr]it;%lﬂeeg transitions
, 6 Functions defining
Synthesized 1, controlled
Formal) variable

9

* If two UAVs are on
a collision course,
the system notifies
the operator within
5 S.

* If a UAV has no
assigned target, the
system notifies the

operator within 1 s.

10/30/2013

Property
Is/is not
valid 43

SUMMARY

e The size & complexity of software systems continue to
grow

e Formal requirements models have many benefits
— Should be readable
— Should be analyzable
- Should scale to handle large, complex systems
- If possible, executable

e System-level abstractions, e.g., modes, can help in building
formal requirements models for large, complex systems

Formal requirements models are still rare in industry

Promising approach: scenario-based synthesis of formal

FEQUITEMET A OIMaT System requirements model

provides a solid foundation for building a
safe software system

44
10/30/2013

‘ CYBER PHYSICAL SYSTEMS I

WE NEED FORMAL MODELS
OF CYBER PHYSICAL SYSTEMS

e Key Challenge: How to integrate physical dynamics, which
operate in a temporal and spatial continuum, with
software’s digital behavior

e Digital software systems can be modeled as a relation on
monitored and controlled variables

e Physical guantities in the system environment are often
better modeled using a declarative technique based on
conservation laws.

- These techniques are often called “equational,” because a
connection between components specifies equalities of dynamically
varying quantities (Edward Lee)

e |[ssues

- How to import digital models of the system req. into physical models
— How to import physical models into digital models of the system req,.

ADDRESSING
THE SOFTWARE PROBLEM

e The size and complexity of software system have grown
enormously

e Software failures are continuing to occur in many critical
applications

PROBLEM

NEED METHODS FOR MODELING AND SPECIFYING
THE REQUIREMENTS OF LARGE, COMPLEX
SOFTWARE SYSTEMSAmMong the most important models
are requirements models--formal system requirements
models

N

DEVELOPING SAFE SYSTEMS

Premise

A solid foundation for building a
safe software system is
a precise, unambiguous
system requirements model

