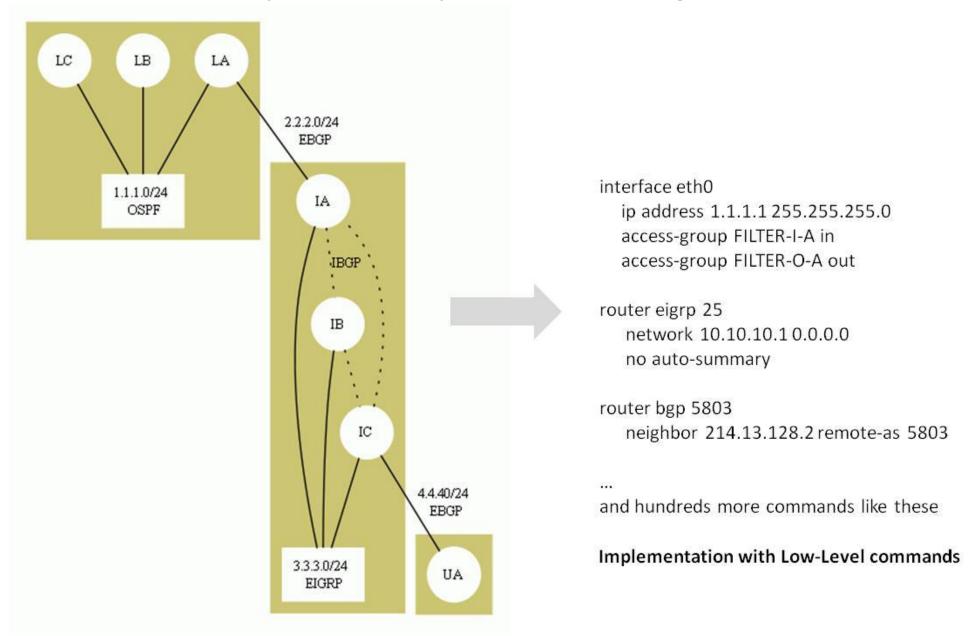


Moving-Target Defense With Configuration-Space Randomization

Dr. Sanjai Narain, Telcordia Technologies, Inc.

In Collaboration With

Professor Sharad Malik, Princeton Professor Daniel Jackson, MIT Professor Trent Jaeger, Penn State Professor Ehab Al-Shaer, UNCC


Email: narain@research.telcordia.com

Tel: 908 337 3636

Overview

- Configuration is the glue for logically integrating cyber infrastructure components.
- Configuration errors cause 50%-80% of cyber attacks and downtime in cyber infrastructure.
- ConfigAssure defines a science of configuration
- It contains fundamental tools for eliminating configuration errors
- It is being deployed in a collaboration network at DISA
- It was trialed with High Assurance Platform that integrates VMWare with SELinux for MLS
- It is used to build the ADC system for randomly changing configurations to other correct ones

The Gap Between Requirement and Configuration

Conceptualization At High-Level

For Software Development, Many Tools Bridge Gap Between Requirements and Machine Code

End-To-End Requirements

Algorithms

Programming Languages

Compilers

Tracers and Debuggers

Static Analyzers

Machine Code

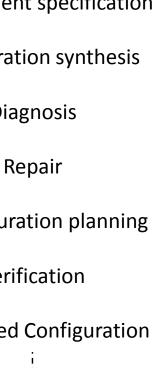
But For Infrastructure We Have Almost Nothing

Why Are These Problems Hard?

End-To-End Requirements

Requirement specification

Configuration synthesis


Diagnosis

Reconfiguration planning

Verification

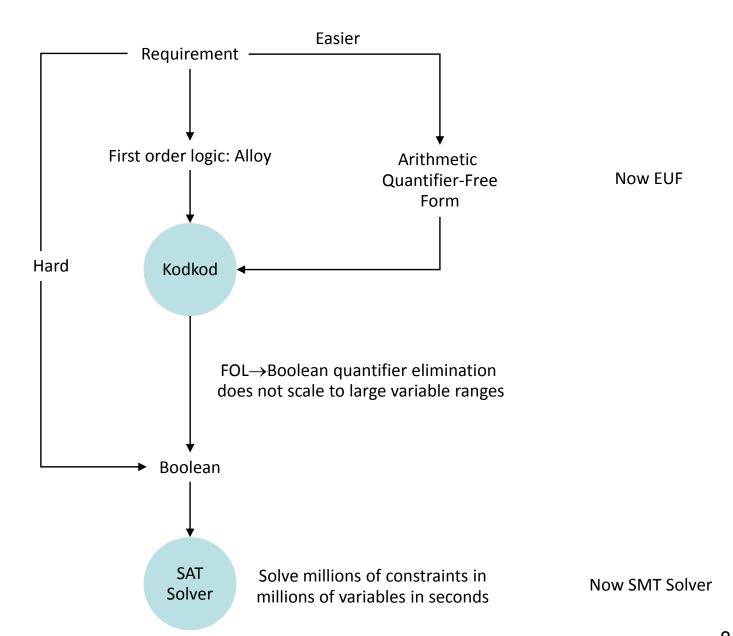
Distributed Configuration

Configurations

- Tension between security and functionality
- Synthesis, reconfiguration planning and verification: Require searching very large spaces
- Diagnosis: Components work in isolation but not together
- Repair: Removing one error can cause another
- Information fragmentation: Across host, network, administrative and geographical boundaries
- Need to enforce end-to-end connectivity, security, application, performance and reliability requirements
- Hard to formalize configuration language grammar documented in 100s of English pages

Consequences of Configuration Errors

- .. the military is betting our lives on architectures with no overall plan nor overriding purpose. In fact, the biggest threat to the network may be a nonintrusive assault that simply causes the network to collapse of its own weight...
 - Col. Kevin B. Jordan who directed planning for C4 networks supporting 95,000 Marine and Allied troops for Operation Iraqi Freedom. Quote in "Coalition Operations Demand Technology Solutions, January 2005".


http://www.afcea.org/signal/articles/templates/SIGNAL Article Template.asp?articleid=618&zonei

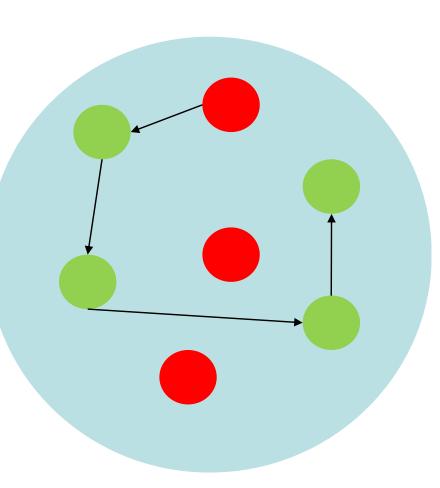
- We don't need hackers to break the systems because they're falling apart by themselves.
 - Peter G. Neumann, SRI. "Who Needs Hackers", NY Times, September 7, 2007.
 http://www.nytimes.com/2007/09/12/technology/techspecial/12threat.html
- Things break. Complex systems break in complex ways.
 - Steve Bellovin, Columbia University. "Who Needs Hackers", NY Times, September 7, 2007.
 http://www.nytimes.com/2007/09/12/technology/techspecial/12threat.html
- ..human factors, is the biggest contributor—responsible for 50 to 80 percent of network device outages.
 - What's Behind Network Downtime? Proactive Steps to Reduce Human Error and Improve Availability
 of Networks. http://www.juniper.net/solutions/literature/white_papers/200249.pdf

Classes of Configuration Errors In Enterprise Networks

- Connectivity
 - Incorrect addressing or IP, GRE, MPLS, IPSec links
- Security
 - Incorrect firewall policies
- Performance
 - Inconsistent QoS policies
- Reliability
 - Single points of failure due to misconfigured routing protocols, in spite of diversity
 - Single points of failure across_layers
- Interaction between security and performance
 - Packet dropping due to mismatched MTU and ICMP blocking
- Interaction between security and reliability
 - IPSec tunnels not replicated in HSRP cluster
- Interaction between security and connectivity
 - Static routes not directing packets into IPSec tunnels
- Lack of centralized configuration authority
 - Static routes accumulated due to inefficient collaboration between network administrators

ConfigAssure Evolution

Overview of ConfigAssure


- Visualization of logical structures latent in configuration
- Specification language allows specifying sets of acceptable values of configuration variables,
 i.e., constraints
 - High-level language compiled into EUF = Boolean logic with data structures
- Traditional languages force one to specify concrete values
- Configuration synthesis: Set intersection, i.e., constraint solving. Use SMT solvers
- Diagnosis: Find x=c in proof of unsolvability, x a configuration variable
- Repair: Remove x=c and solve again
- Verification: Showing absence of counterexample. To show for all x. p(x) show there is no solution to some x. not(p(x))
- Reconfiguration planning: Convert a safety invariant into constraint on times of variable change, then solve it to obtain schedule of change

Demo: https://configassure.research.telcordia.com/csr

For username and password, please contact narain@research.telcordia.com

Configuration Space-Randomization

- Attack = Adversary gaining knowledge of critical parameters for a duration of time.
- Moving-target defense = changing critical parameters within that duration while maintaining system requirements on security and functionality
- Idea: If system requirement has more than one solution, then:
 - Each provides service to legitimate users
 - But transition from one to other confuses adversary

Configuration Space

References

- 1. Al-Shaer E, Marrero W, El-Atawy A, ElBadawy K (2009) Towards Global Verification and Analysis of Network Access Control Configuration. International Conference on Network Protocols
- 2. Anderson P (2006) System Configuration. In Short Topics in System Administration ed. Rick Farrow. USENIX Association
- 3. Enck W, Moyer T, McDaniel P, Sen S, Sebos P, Spoerel S, Greenberg A, Sung Y-W, Rao S, Aiello W, (2009) Configuration Management at Massive Scale: System Design and Experience. IEEE Journal on Selected Areas in Communications
- 4. Hamed H, Al-Shaer E and Will Marrero (2005) Modeling and Verification of IPSec and VPN Security Policies, Proceedings of IEEE International Conference on Network Protocols.
- 5. Homer J, Ou X (2009) SAT-solving approaches to context-aware enterprise network security management. IEEE JSAC Special Issue on Network Infrastructure Configuration
- 6. Mandelbaum Y, Fisher K, Walker D, Fernandez M, and Gleyzer A (2007) PADS/ML: A functional data description language. ACM Symposium on Principles of Programming Language
- 7. Narain et al. Formal Methods in Networking. Princeton University, Spring 2010 http://www.cs.princeton.edu/courses/archive/spring10/cos598D/FormalMethodsNetworkingOutline.html
- 8. Narain S (2005) Network Configuration Management via Model-Finding. Proceedings of USENIX Large Installation System Administration (LISA) Conference
- 9. Narain S, Levin G, Kaul V, Malik, S (2008) Declarative Infrastructure Configuration Synthesis and Debugging. Journal of Network Systems and Management, Special Issue on Security Configuration, eds. Ehab Al-Shaer, Charles Kalmanek, Felix Wu
- 10. Narain S, Talpade R, Levin G (2010) Network configuration validation. Chapter in "Guide to reliable Internet Services and Applications" eds Chuck Kalmanek, Richard Yang, Sudip Misra, Springer
- 11. Voellmy A, Hudak P Nettle (2009) A domain-specific language for routing configuration. Proceedings of ACM SafeConfig Workshop. http://bebop.cs.yale.edu/voellmy/nettle.html
- 12. Xie G, Zhan J, Maltz D, Zhang H, Greenberg A, Hjalmtysson G, and Rexford J (2005) On Static Reachability Analysis of IP Networks. IEEE INFOCOM

Summary

- ConfigAssure is a suite of fundamental tools for bridging gap between requirements and configuration:
 - Requirement specification
 - Synthesis
 - Diagnosis
 - Repair
 - Verification
 - Reconfiguration planning
 - Visualization
- Being deployed at DISA and trialed with High Assurance Platform
- Being used to build moving-target defense by configuration space randomization