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Classic View of System Security 
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Modern View of System Security 
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Modern View of System Security 
Many Stakeholders:  
With different goals and objectives 
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HW/SW Coupling:  
Hardware Accelerators, SW/FW 
Managed Resources 

Distributed Authority:  
Multiple OS, VM, 
VMM, Access Control 

Shared Resources:  
IP Cores, Memories, 
Communication, I/O 



Hardware Security Vulnerabilities 
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Design Complexity 
Hardware Design # Transistors Lines of Verilog Similar SW: LOC 

Intel 4004 2.3K 1.25K Simple App: 10K 
Centaur Media Unit 430K 570K Space Shuttle: 400K 

Intel Pentium 4 41M 1M F22 Raptor: 1.7M 
MIT Raw 100M 34K Pacemaker: 80K 

Oracle SPARC M7 10B ??? 
nVidia Pascal 15B ??? 

Xilinx Virtex Ultrascale 20B ??? 



Security is Expensive 
v  ~1 defect/error per 10 lines of code. 

v The Art of Good Design,  
    Mike Keating, Synopsys 

v  RedHat Linux: Best Effort Safety 
(EAL 4+)  
v  $30-$40 per LOC 

v  Integrity RTOS: Design for Formal 
Evaluation (EAL 6+) 
v  $10,000 per LOC 
v More evaluation of process, not end 

artifact 



Hardware Security Proof Techniques 

Proof by Handwaving Proof by Exhaustion 

Proof by Obfuscation Proof by Intimidation 



Our Research 
v  Develop a secure hardware design flow that 

v Formally specifies security properties, 
v  Identifies security vulnerabilities, and 
v Quantifies security threats. 

v  Focus on security properties related to confidentiality, 
integrity, isolation, separation, and side channels. 

Source: Intel & Tortuga Logic 
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Availability (Timing Channels) 

Hardware Block 

Input Output 

Untrusted 3rd 
Party IP Core 

System 
Resources: 

Radio (DoS) 

Secure 
Resources 

Untrusted App 

Debug 



Secure 
Resources 

Mixed-Trust Domains 

Hardware Block 

Input Output 

Mixed Trust 
Resources 

Trusted IP 
Core 

Untrusted 3rd 
Party IP Core 

System 
Resources: 

Radio (DoS) 

Untrusted App 

Debug 

Untrusted App 

Secure 
Resources 



CIA + Mixed-Trust 
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Information flow analysis solves all of  these problems  

Confidentiality Integrity 

Availability Mixed-Trust 



“One group of users, using a certain set of 
commands, is noninterfering with another group 
of users if what the first group does with those 
commands has no effect on what the second group 
of users can see” [Goguen & Meseguer’82]. 
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Information Flow: Inverter 
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GLIFT AND 
 
 
 
 
 
 
 

Gate Level Information Flow Tracking 
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0U/T: Untrusted/Trusted ‘0’ 
1U/T: Untrusted/Trusted ‘1’ 

The output is marked as “untrusted” when at least 
one “untrusted” input can influence the output 
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Does this low level tracking help? 

CLK

RESET D Q 010101…

Simple assumption that “bad inputs” always 
leads to “bad outputs” is overly conservative

1-bit Counter 



Safely Resetting the Counter  

CLK

RESET D Q 010101…

1-bit Counter 

Simple assumption that “bad inputs” always 
leads to “bad outputs” is overly conservative



Formalizing GLIFT 
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Tracking logic is 
compositional 
 
Captures timing channels, 
and real time constraints 
 
Security constraints can be 
expressed as hardware 
assertions 

“Original” Logic GLIFT Analysis Logic 

[ASPLOS09, DAC10, TCAD11, TIFS12, …] 



GLIFT Logic Composition 
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GLIFT Logic Generation Flow 
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Hardware Security Design Flow 

*	Speaker	has	significant	financial	interest	
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Crypto Core in Verilog 

assert iflow ( key_i =/=> data_o );  
assert iflow ( key_i =/=> ready_o );  

module crypto ( clk, reset, load_i, decrypt_i,  
data_i, key_i, ready_o, data_o );

input  [127:0] data_i;
input  [127:0] key_i;
output [127:0] data_o;
input clk, reset, load_i, decrypt_i;
output ready_o;

 

How do we express this and test it? 

Does my key leak? 



Crypto Core 
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Quantitative Information Flow Tracking 
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[ICCAD15] Baolei Mao, Wei Hu, Alric Althoff, Janarbek Matai, Jason Oberg, Dejun Mu, Timothy Sherwood, 
and Ryan Kastner “Quantifying Timing-Based Information Flow in Cryptographic Hardware“ 



v  Hardware Information Flow Tracking (HW IFT) 
v Proving non-interference 
v  Identifying possible flows 

v Quantitative measure 
v Numerous statistical & information theoretic metrics 
v Precise measurement of information flow 
v Detecting harmful flows and security vulnerabilities 

Challenges + Opportunities: Joint Analysis 
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HW IFT:  
 assert iflow(key =/=> control); Fail

Mutual Information: 
  mi(key, control) = 31.6;      

  
HW IFT:  
 assert iflow(secure_resources 

      =/=> io); Fail 

Mutual Information: 
  mi(secure_resources, io) = 0.1

  
HW IFT:  
 assert iflow(apps =/=> 

secure_resources); Pass 

Mutual Information: 
  mi(apps, secure_resources) = 0;

  

Challenges + Opportunities: Joint Analysis 



v  Methods for efficiently calculating security metrics 
v  Achieve a more accurate estimation of security metrics 

while collecting as few samples as possible. 
v Density estimation 
v Multivariate estimation 
v Hardware accelerated techniques 

Challenges + Opportunities: Measurement 



v  Languages for specifying security properties 
v  A security specification language for describing the 

security properties about the hardware design 
v What variables are important to secure?  
v What locations are easily visible? 
v What is your risk tolerance? 

Challenges + Opportunities: Language 
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Challenges + Opportunities: Language 
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Assertion: Key only flows through AES 
  assert iflow (key =/=> $all_outputs 

      ignoring aes.
$all_outputs) 

v  If assertion holds, key only flows to outputs through 
AES first 

v  Real design: 10M gates 
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Challenges + Opportunities: Language 
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v Simplify analysis logic 
v Add one sided errors 
v Incremental proofs 

v Higher abstractions 
v Bits to bytes to words to … 
v Gates to RTL to HLS to ... 

Challenges + Opportunities: Faster Verification 
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v Tortuga Logic 
v Working with top 

semiconductor companies 
v Tools available to license 
v Academic research to 

commercial tool 

v VeriDrone 
v Formally verified hardware/

software shims 
v NSF CPS  

Challenges + Opportunities: Real Applications 
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Conclusion 

Secure hardware design flow 
v  Formally specify security properties, 
v  Identify security vulnerabilities, and 
v  Quantify security threats. 
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Focus on security properties related to confidentiality, 
integrity, isolation, separation, and side channels. 
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