
Moving Hardware from “Security through 
Obscurity” to “Secure by Design” 

Professor Ryan Kastner 
Dept. of Computer Science and Engineering 

University of California, San Diego 
kastner.ucsd.edu 







Classic System Design 

Processor 

Software 

Hardware is simple, 
unchanging, correct, 

and secure 

Software is OS and 
applications 



Classic View of System Security 

Programming 
Language 

Logic Gates 

Functional Units 

Microarchitecture 

Instruction Set 

Compiler/OS/Firmware 

Applications 

Processor 

Software 

Transistors 



Modern View of System Security 

CPU 

L1 

L2 

CPU 

L1 Mem 

I/O 

Crypto 

Radio 

Debug 

Boot VMM 

OS RTOS 

Apps 

Lib 

Programming Language 

Logic Gates 

Functional Units 

Microarchitecture 

Instruction Set 

Compiler/OS/Firmware 

Applications 

Secure 
Resources 

NoC 

Transistors 



Modern View of System Security 
Many Stakeholders:  
With different goals and objectives 

CPU 

L1 

L2 

Secure 
Resources 

CPU 

L1 Mem 

NoC 

I/O 

Crypto 

Radio 

Debug 

Boot VMM 

OS RTOS 

Apps 

Lib 

HW/SW Coupling:  
Hardware Accelerators, SW/FW 
Managed Resources 

Distributed Authority:  
Multiple OS, VM, 
VMM, Access Control 

Shared Resources:  
IP Cores, Memories, 
Communication, I/O 



Hardware Security Vulnerabilities 

Design flaws 
case 1: … 
case 2: … 
 
case n: … 

Malicious code 

Timing channel 
Power 
channel 

…
 

EM radiation  

Untrusted IP 

CPU

L1

L2

Secure
Resources

CPU

L1 Mem

NoC

I/O

Crypto

Radio

Debug

Boot VMM

OS RTOS

Apps

Lib

Crypto 



Design Complexity 
Hardware Design # Transistors Lines of Verilog Similar SW: LOC 

Intel 4004 2.3K 1.25K Simple App: 10K 
Centaur Media Unit 430K 570K Space Shuttle: 400K 

Intel Pentium 4 41M 1M F22 Raptor: 1.7M 
MIT Raw 100M 34K Pacemaker: 80K 

Oracle SPARC M7 10B ??? 
nVidia Pascal 15B ??? 

Xilinx Virtex Ultrascale 20B ??? 



Security is Expensive 
v  ~1 defect/error per 10 lines of code. 

v The Art of Good Design,  
    Mike Keating, Synopsys 

v  RedHat Linux: Best Effort Safety 
(EAL 4+)  
v  $30-$40 per LOC 

v  Integrity RTOS: Design for Formal 
Evaluation (EAL 6+) 
v  $10,000 per LOC 
v More evaluation of process, not end 

artifact 



Hardware Security Proof Techniques 

Proof by Handwaving Proof by Exhaustion 

Proof by Obfuscation Proof by Intimidation 



Our Research 
v  Develop a secure hardware design flow that 

v Formally specifies security properties, 
v  Identifies security vulnerabilities, and 
v Quantifies security threats. 

v  Focus on security properties related to confidentiality, 
integrity, isolation, separation, and side channels. 

Source: Intel & Tortuga Logic 



Confidentiality 

Hardware Block 

Input Output 

Secret Data 
(Crypto Key) 

System 
Resources: 

Radio 

Secure 
Resources 

Untrusted App 

Debug 



Integrity 

Hardware Block 

Input Output 

Untrusted 3rd 
Party IP Core 

System 
Resources: 

Radio 

Secure 
Resources 

Untrusted App 

Debug 



Availability (Timing Channels) 

Hardware Block 

Input Output 

Untrusted 3rd 
Party IP Core 

System 
Resources: 

Radio (DoS) 

Secure 
Resources 

Untrusted App 

Debug 



Secure 
Resources 

Mixed-Trust Domains 

Hardware Block 

Input Output 

Mixed Trust 
Resources 

Trusted IP 
Core 

Untrusted 3rd 
Party IP Core 

System 
Resources: 

Radio (DoS) 

Untrusted App 

Debug 

Untrusted App 

Secure 
Resources 



CIA + Mixed-Trust 

Hardware Block 

Input Output 

Untrusted 3rd 
Party IP 
Core 

System 
Resources: 

Radio (DoS) 

Secure 
Resources 

Untrusted App 

Debug 

Hardware Block 

Input Output 

Secret Data 
(Crypto Key) 

System 
Resources: 

Radio 

Secure 
Resources 

Untrusted 
App 
Debug 

Hardware Block 

Input Output 

Untrusted 
3rd Party IP 
Core 

System 
Resources: 
Radio 

Secure 
Resources 

Untrusted 
App 
Debug 

Secure 
Resources 

Hardware Block 

Input Output 

Mixed Trust 
Resources 

Trusted IP 
Core 

Untrusted 
3rd Party IP 

Core 

System 
Resources: 
Radio (DoS) 

Untrusted 
App 
Debug 

Untrusted 
App 

Secure 
Resources 

Information flow analysis solves all of  these problems  

Confidentiality Integrity 

Availability Mixed-Trust 



“One group of users, using a certain set of 
commands, is noninterfering with another group 
of users if what the first group does with those 
commands has no effect on what the second group 
of users can see” [Goguen & Meseguer’82]. 

Noninterference 

HIGH 

LOW 



Information Flow: Inverter 

a
 o
0/T	

1/T	 1/U	

0/U	

0	
0	

0	
0	

1	

1	
1	

0	



GLIFT AND 
 
 
 
 
 
 
 

Gate Level Information Flow Tracking 

Affects? 

b 
o

at ot 

a 

bt Trusted/ 
Untrusted? 

a b o 
Partial Truth Table 

0U/T: Untrusted/Trusted ‘0’ 
1U/T: Untrusted/Trusted ‘1’ 

The output is marked as “untrusted” when at least 
one “untrusted” input can influence the output 

   0T      1T       0T 
   0U      1U       0U 

   0U      1T       0U 
   0T      1U       0T 



Does this low level tracking help? 

CLK


RESET
 D Q 010101…


Simple assumption that “bad inputs” always 
leads to “bad outputs” is overly conservative


1-bit Counter 



Safely Resetting the Counter  

CLK


RESET
 D Q 010101…


1-bit Counter 

Simple assumption that “bad inputs” always 
leads to “bad outputs” is overly conservative




Formalizing GLIFT 

a
 b


o


b
 a


o


b
t
t
a


t


Automatically generate 
logic that tracks labels  
 
Tracking logic is 
compositional 
 
Captures timing channels, 
and real time constraints 
 
Security constraints can be 
expressed as hardware 
assertions 

“Original” Logic GLIFT Analysis Logic 

[ASPLOS09, DAC10, TCAD11, TIFS12, …] 



GLIFT Logic Composition 

a b

s


o

b
a


o


s


t
o


a
 s
a
t
t
s
 b
 s
b
t
t
s


[DAC10] 



GLIFT Logic Generation Flow 

Automatic 
synthesis from 

HDL 



Hardware Security Design Flow 

*	Speaker	has	significant	financial	interest	



Crypto Core 

Key 

Cipher 
text 

Message 

Control  
outputs 

Key	
Expand	

Sub	
Bytes	

Mix	Columns	

Control	Logic	

ShiD	Rows	

Add	Round	
Key	

Control 
Inputs 

Does my key leak? 



Crypto Core in Verilog 

assert iflow ( key_i =/=> data_o );  
assert iflow ( key_i =/=> ready_o );  

module crypto ( clk, reset, load_i, decrypt_i,  
data_i, key_i, ready_o, data_o );

input  [127:0] data_i;
input  [127:0] key_i;
output [127:0] data_o;
input clk, reset, load_i, decrypt_i;
output ready_o;

 

How do we express this and test it? 

Does my key leak? 



Crypto Core 

Key 

Cipher 
text 

Message 

Control  
outputs 

Key	
Expand	

Sub	
Bytes	

Mix	Columns	

Control	Logic	

ShiD	Rows	

Add	Round	
Key	

Control 
Inputs 

Does my key leak? YES 

How severe is the problem? 



Quantitative Information Flow Tracking 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

R-to-L L-to-R L-to-R always Power ladder Montgomery Constant 

Entropy 

Mutual information 

Success of attack 

N
or
m
al
ize

d	
en

tr
op

y,
	a
ve
ra
ge
	m

ut
ua
l	

in
fo
rm

aM
on

	a
nd

	a
ve
ra
ge
	su

cc
es
s	o

f	a
N
ac
k	

RSA	architectures	(1	~	6)	

[ICCAD15] Baolei Mao, Wei Hu, Alric Althoff, Janarbek Matai, Jason Oberg, Dejun Mu, Timothy Sherwood, 
and Ryan Kastner “Quantifying Timing-Based Information Flow in Cryptographic Hardware“ 



v  Hardware Information Flow Tracking (HW IFT) 
v Proving non-interference 
v  Identifying possible flows 

v Quantitative measure 
v Numerous statistical & information theoretic metrics 
v Precise measurement of information flow 
v Detecting harmful flows and security vulnerabilities 

Challenges + Opportunities: Joint Analysis 

Key 
Cipher 
text 

Message 

Control  
outputs 

Key	
Expan
d	

Sub	
Bytes	

Mix	Columns	

Control	Logic	

ShiD	
Rows	

Add	
Round	
Key	

Control 
Inputs 31.6 bits 

Yes 



Core0 

L1 

L2 

Secure 
Resources 

Core1 

L1 Mem 

NoC 

I/O 

Crypto 

Radio 

Debug 

Boot VMM 

OS RTOS 

Apps 

Lib 

HW IFT:  
 assert iflow(key =/=> control); Fail

Mutual Information: 
  mi(key, control) = 31.6;      

  
HW IFT:  
 assert iflow(secure_resources 

      =/=> io); Fail 

Mutual Information: 
  mi(secure_resources, io) = 0.1

  
HW IFT:  
 assert iflow(apps =/=> 

secure_resources); Pass 

Mutual Information: 
  mi(apps, secure_resources) = 0;

  

Challenges + Opportunities: Joint Analysis 



v  Methods for efficiently calculating security metrics 
v  Achieve a more accurate estimation of security metrics 

while collecting as few samples as possible. 
v Density estimation 
v Multivariate estimation 
v Hardware accelerated techniques 

Challenges + Opportunities: Measurement 



v  Languages for specifying security properties 
v  A security specification language for describing the 

security properties about the hardware design 
v What variables are important to secure?  
v What locations are easily visible? 
v What is your risk tolerance? 

Challenges + Opportunities: Language 

Key	Mem	

interconnect	

AES	



Challenges + Opportunities: Language 

Key	Mem	

interconnect	

AES	

Assertion: Key only flows through AES 
  assert iflow (key =/=> $all_outputs 

      ignoring aes.
$all_outputs) 

v  If assertion holds, key only flows to outputs through 
AES first 

v  Real design: 10M gates 



Challenges + Opportunities: Language 

Key	Mem	

interconnect	

AES	

Assertion: Key only flows through AES 
  assert iflow (key =/=> $all_outputs 

      ignoring aes.
$all_outputs) 

v  If assertion holds, key only flows to outputs through 
AES first 

v  Real design: 10M gates 



Challenges + Opportunities: Language 

Key	Mem	

interconnect	

AES	

Assertion: Key only flows through AES 
  assert iflow (key =/=> $all_outputs 

      ignoring aes.
$all_outputs) 

v  If assertion holds, key only flows to outputs through 
AES first 

v  Real design: 10M gates 



v Simplify analysis logic 
v Add one sided errors 
v Incremental proofs 

v Higher abstractions 
v Bits to bytes to words to … 
v Gates to RTL to HLS to ... 

Challenges + Opportunities: Faster Verification 
a
 b


o


b
 a


o


b
t
t
a


t


o
t


b
t
t
a




v Tortuga Logic 
v Working with top 

semiconductor companies 
v Tools available to license 
v Academic research to 

commercial tool 

v VeriDrone 
v Formally verified hardware/

software shims 
v NSF CPS  

Challenges + Opportunities: Real Applications 

Key	Mem	

interconnect	

AES	



Conclusion 

Secure hardware design flow 
v  Formally specify security properties, 
v  Identify security vulnerabilities, and 
v  Quantify security threats. 

Hardware Block 

Input Output 

Secret Data 
(Crypto Key) 

System 
Resources: 

Radio 

Privileged 
Registers 

Untrusted App 

JTAG 

Hardware Block 

Input Output 

Untrusted 3rd 
Party IP Core 

System 
Resources: 

Radio 

Privileged 
Registers 

Untrusted App 

JTAG 

Hardware Block 

Input Output 

Mixed Trust Resources 

Trusted IP 
Core 

Untrusted 3rd 
Party IP Core 

System 
Resources: 

Radio (DoS) 

Privileged 
Registers 

Untrusted App 

JTAG 

Untrusted App 

Privileged 
Registers 

Focus on security properties related to confidentiality, 
integrity, isolation, separation, and side channels. 

CPU

L1

L2

CPU

L1 Mem

I/O

Crypto

Radio

Debug

Boot VMM

OS RTOS

Apps

Lib

Secure
Resources NoC

kastner.ucsd.edu 


