dWS

\./7

Automated Analysis of AWS Access Control

Andrew Gacek
Automated Reasoning in Identity, Amazon Web Services
September 17, 2020

Introducing AWS ldentity and Access Management (IAM)
Access Analyzer

IAM Access Analyzer uses a form of mathematical analysis |,

called automated reasoning, which applies logic and et Wih

mathematical inference to determine all possible access ki AWS Lambda
paths allowed by a resource policy.

ent manual
OO0 OF Upaated. USITTg TANT ATCesS ANalyZer, CUsStoIme aTproacuvery address any
resource p urity and governance best practices around resource sharing and protect their resources from
unintended 2 yzer delivers comprehensive, detailed findings through the AWS IAM, Amazon S3, and AWS Security
Hub consoles amy s APls. Findings can also be exported as a report for auditing purposes. IAM Access Analyzer findings

provide definitive a ho has public and cross-account access to AWS resources from outside an account.

IAM Access Analyzer uses a form of mathematical analysis called automated reasoning, which applies logic and mathematical inference
to determine all possible access paths allowed by a resource policy. This means that IAM Access Analyzer can evaluate hundreds or even
thousands of policies across a customer's environment in seconds, and deliver comprehensive findings about resources that are
accessible from outside the account. We call this provable security.

With this launch, IAM Access Analyzer is available at no additional cost in the IAM console and through APIs in all commercial AWS
Regions. IAM Access Analyzer is also available through APIs in AWS GovCloud (US).

To learn more about IAM Access Analyzer, see the feature page.

Access Analyzer
Monitor access to resources

How it works

o Create an analyzer

You can set the scope for the analyzer to an
organization or an AWS account. This is
your zone of trust. The analyzer scans all of
the supported resources within your zone of
trust.

e Review active findings

When Access Analyzer finds a policy that
allows access to a resource from outside of
your zone of trust, it generates an active
finding. Findings include details about the
access so that you can take action.

o Take action

If the access is intended, you can archive
the finding so that you can focus on
reviewing active findings. If the access is
not intended, you can resolve the finding by
modifying the policy to remove access to
the resource.

Getting started [2

« What is Access Analyzer?

« Access Analyzer User Guide

What is cloud computing?

“on-demand delivery of IT resources via the Internet with pay-as-you-go pricing.”

f: .. - computer g: ... —» database

f~1:computer — ..

dWS
~—

f—%

{0} Compute

A 2 Developer Tools L. .
EC2 o . P Application Integration

Lightsail [4 Step Functions
Lambda B Amazon AppFlow
Batch 7 Amazon EventBridge

Elastic Beanstalk Amazon MQ

Serverless Application Repository T Simple Notification Service
AWS Outposts Simple Queue Service

EC2 Image Builder SWF

s3 : ... > durable data storage

53 Kinesis Video Streams & Database
EFS MediaConnect RDS
FSx DynamoDB

> e ddb : ... - fast key-value database Flasticache

Storage Gateway Neptune
AWS Backup Amazon Redshift
MediaTailor Amazon QLDB
Elemental Appliances & Software Amazon DocumentDB
Amazon Keyspaces

dWS
~—

Policy example

No Access

dWS
~—

Policy example

- Effect: Allow
Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

dWS
N

© 2020, Amazon Web Services, Inc. or its Affiliates.

Policy example

- Effect: Allow
Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

- Effect: Allow
Condition:
StringEquals:
PrincipalOrgID: “o-2”

© 2020, Amazon Web Services, Inc. or its Affiliates. aWS
v,

Policy example

- Effect: Allow
Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

- Effect: Allow
Condition:
StringEquals:
PrincipalOrgID: “o-2”

- Effect: Deny
Condition:
StringEquals:

SourceVpc: “vpc-b”
StringNotEquals:
PrincipalOrgID : “o0-1”

dWS
N

© 2020, Amazon Web Services, Inc. or its Affiliates.

Policy example

- Effect: Allow
Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

- Effect: Allow
Condition:
StringEquals:
PrincipalOrgID: “o-2”

- Effect: Deny
Condition:
StringEquals:

SourceVpc: “vpc-b”
StringNotEquals:
PrincipalOrgID : “o0-1”

dWS
N

© 2020, Amazon Web Services, Inc. or its Affiliates.

10

Semantic-based Automated Reasoning for
AWS Access Policies using SMT

John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek,
Kasper Luckow, Neha Rungta, Oksana Tkachuk, Carsten Varming
Amazon Web Services

Abstract—Cloud computing provides on-demand access to IT
resources via the Internet. Permissions for these resources are
defined by expressive access control policies. This paper presents
a formalization of the Amazon Web Services (AWS) policy
language and a corresponding analysis tool, called ZELKOVA,
for verifying policy properties. ZELKOVA encodes the semantics
of policies into SMT, compares behaviors, and verifies properties.
It provides users a sound mechanism to detect misconfigurations
of their policies. ZELKOVA solves a PSPACE-complete problem
and is invoked many millions of times daily.

[. INTRODUCTION

Cloud computing provides on-demand access to IT re-
sources via the Internet. The convenience of accessing re-
sources in the cloud is made secure by user-specified access
control policies. An access control policy is an expressive
specification of what resources can be accessed, by whom,
and under what conditions. Properly configured policies are

impor; W= an_orgamization’ ri ture. The

In this paper, we present the development and application of
ZELKOVA, a policy analysis tool designed to reason about the

semantics of AWS access control policies. ZELKOVA translates
policies and properties into Satisfiability Modulo Theories
(SMT) formulas and uses SMT solvers to check the validity
of the properties. We use off-the-shelf solvers and an in-house
extension of Z3 called Z3AUTOMATA.

ZELKOVA reasons about all possible permissions allowed by
a policy in order to verify properties. For example, ZELKOVA
can answer the questions “Is this resource accessible by a
particular user?” and “Can an arbitrary user write to this re-
source?”. The property to be verified is specified in the policy
language itself, eliminating the need for a different speci-
fication or formalism for properties. In addition, ZELKOVA
provides many built-in checks for common properties.

The SMT encoding uses the theory of strings, regular
expressions, bit vectors, and integer comparisons. The use of

h) " o 1 1 D il i Tr LG et 1 TR T

Traditional verification approach - Experts

Human effort / - Consultants

- General specifications
- Templated specifications

Specification

pe

Human effort

Policy Verification — Yes/No

Machine effort

dWS
~—-

12

Access Analyzer verification approach

Specification

-

Policy

Human effort

Machine effort

Verification

13

dWS
~—

Desired properties of findings

Sound - Every access is represented by some finding
Precise — findings adhere closely to the allowed access

Compact - the set of findings is small

dWS
~—

14

Stratified predicate abstraction

- Effect: Allow

Condition: =T
StringEquals: Pr
sourceVpc: Py = SourceVpc = “vpc-a”
_ “vpc—a”
- “vpc-b” py, = SourceVpc = “vpc-b”
- Effect: Allow
Condition:
StringEquals: _
PrincipalOrgID: “o0-2” dT = T
— SO €~ 1
T - q; = PrincipalOrgID = “o0-1
Condition: = Princi _ ¢)
= PrincipalOrglID = “o0-2
StringEquals: 12 p g

SourceVpc: “vpc-b”
StringNotEquals:
PrincipalOrgID : “o0-1”

dWS
~—

Stratified predicate abstraction

- Effect: Allow
Condition:

everybody has access Organization o-1 has access

StringEquals:
SourceVpc:

- fvpe-ar AN A 125 AN L Pt NQqy

_ “VpC-b”

- Effect: Allow

N Pa N\ qT [RAYE Pa \ 4>
Condition:
StringEquals:
PrincipalOrgID: “o0-2”
Pattre Pp N QT Pp N G4 Pp N G

- Effect: Deny
Condition:
StringEquals:

SourceVpc: “vpc-b” Organization o-1 coming
StringNotE 1s:
. from vpc-b has access

PrincipalOrgID : “o0-1”

dWS
~—

16

Stratified predicate abstraction

- Effect: Allow
Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

- Effect: Allow
Condition:
StringEquals:

PrincipalOrgID: “o0-2”

- Effect: Deny
Condition:
StringEquals:

SourceVpc: “vpc-b”

StringNotEquals:

PrincipalOrgID :

“5-1"

Pt A QT | AYET Pt A Q>
Pa N Q7 Pa N q1 Pa N Q>
Pp N\ QT Pp N Q1 Pp N\ Q7

dWS
~—

17

Stratified predicate abstraction

- Effect: Allow
Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

- Effect: Allow
Condition:
StringEquals:

PrincipalOrgID: “o0-2”

- Effect: Deny
Condition:
StringEquals:

SourceVpc: “vpc-b”

StringNotEquals:
PrincipalOrgID

. €5-1”

Pt N\ q4 Pt N Qg3
? DPaNQT Pa N q1 Pa N Q>
Pp N\ QT Pp N Q1 Pp N\ Q7

dWsS

\-/‘7

18

Stratified predicate abstraction

- Effect: Allow
Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

Pt N\ q4

Pt N Qg3

- Effect: Allow
e L paACIT
Condition:
StringEquals:
PrincipalOrgID: “o0-2”
Pp N qt
- Effect: Deny
Condition:
StringEquals:
SourceVpc: “vpc-b”
StringNotEquals:

PrincipalOrgID : “o0-1”

Pp N\ q4

Ppr N\ 42

dWS
~—

19

Stratified predicate abstraction

- Effect: Allow
Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

- Effect: Allow
Condition:
StringEquals:
PrincipalOrgID: “o0-2”

- Effect: Deny
Condition:
StringEquals:
SourceVpc: “vpc-b”
StringNotEquals:
PrincipalOrgID : “o0-1”

12 AN D)

paACIT

Pp N q1

dWsS

\-/‘7

20

Stratified predicate abstraction

- Effect: Allow
Condition:
StringEquals: — — Y {)
o1 =p, N gt = SourceVpc = “vpc-a
SourceVpc: 1 pa CIT p p
_ “vpc—a”
_ “VpC-b”
— — . 3 — €~ _9P
 effect: Allow 0, = pt N q, = PrincipalOrglD 0-2
Condition:
StringEquals:
PrincipalOrgID: “o0-2” _ . cc 9
03 = pp N\ q1 = SourceVpc = “vpc-b” A
_ Effect: Deny PrincipalOrglD = “0-1"
Condition:
StringEquals:
SourceVpc: “vpc-b”
StringNotEquals: 2= {0'1, Oy, 0'3}
PrincipalOrgID : “o0-1”

dWS
~—

21

Formal properties of findings

Sound - Every access is represented by some finding
Coverage - y(p) € y(2)

Precise — findings adhere closely to the allowed access
Irreducible-3r e y(p) ny(o).Vo' = o.r &€ y(o')

Compact - the set of findings is small
Minimality - VX' c Z.y(Z') c y(2)

dWS
~—

22

Sound, precise, compact

- Effect: Allow
Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

- Effect: Allow
Condition:
StringEquals:
PrincipalOrgID: “o-2”

- Effect: Deny
Condition:

StringEquals:
SourceVpc: “vpc-b”
StringNotEquals:
PrincipalOrgID : “o0-1”

© 2020, Amazon Web Services, Inc. or its Affiliates. aWS
v,

Sound, precise, compact

- Effect: Allow 01 = Da A qdT

Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

- Effect: Allow
Condition:
StringEquals:
PrincipalOrgID: “o-2”

- Effect: Deny

Condition:
StringEquals:
SourceVpc: “vpc-b” —
0O, = N
StringNotEquals: 2 = P11\ (q2
PrincipalOrgID : “o0-1”
© 2020, Amazon Web Services, Inc. or its Affiliates. aWS

\/‘7

Simple, modular, sensible

- Effect: Allow
Condition:
StringEquals:
SourceVpc:
- “vpc-a”
- “vpc-b”

- Effect: Allow
Condition:
StringEquals:

PrincipalOrgID: “o0-2”

- Effect: Deny
Condition:
StringEquals:

SourceVpc: “vpc-b”

StringNotEquals:

PrincipalOrgID :

“5-1"

SourceVpc = “vpc-a”

PrincipalOrglD = “0-2"”

SourceVpc = “vpc-b” A
PrincipalOrglD = “o0-1"

dWS
~—

25

Simple, modular, sensible

- Effect: Allow
Condition:

StringlLike:

PrincipalOrgID: ? qT =T

- “0-123”

- “0-456”

- =i Q123 = PrincipalOrgID = “0-123”

\ Q456 = PrincipalOrglD = “0-456"

dWS
~—

Simple, modular, sensible

- Effect: Allow
Condition:
StringlLike:
PrincipalOrgID:
- “0-123”
- “0-456”
- “0-78*”

dWS
~—

27

Demo

dWsS

28

Benefits of Automated Reasoning

IAM > Access Analyzer » Findings »

89c3c940-deba-44c7-b301-ef6fbded9214 i

Details

Finding ID Updated

89c3c940-deba-44c7-b301- 11 minutes ago
ef6fbded9214

Status

Active

Shared through

Bucket policy

dWS
~—

29

Automated Analysis of AWS Access Control

aws.amazon.com/securit

@mweagle ‘ @rsyvarth @rudermires

0 Matt Weagle ' . Robert Syvarth L 4 ﬁ‘ Danielle Ruderman L 4
»s \

“All possible access paths are verified by mathematical The new IAM Access Analyzer is awsome! Glad to see New launch today—AWS IAM Access Analyzer—exciting
proofs” 45 AWS focusing on making it easier to verify workload security provable security work out of the AWS Automated Reasoning
Group #relnvent2019

Jean Yang L 4 9 Brandon West L 4 _ ‘
@jeanqasaur " @bwest @ stephenschmidt & ’

So cool that AWS now uses formal methods to analyze IAM Today we launched a first-of-its-kind service that uses @stephensehmet
Access!! automated reasoning to identify unintended resources You don't need to be a logician to use IAM Access Analyzer.

access paths. It's pretty badass. Turn this on now, it's available at no charge! #relnvent

2 bjorg 4 o , #provablesecurity
@bjorg o, Lars ’

[houbec Brigid Johnson L 4
Oh, this is a big deal! Understanding IAM policy .) @ ,,.\‘tg hnso5y
consequences is essential. This tool should make it a lot "IAM Access Analyzer provides answers of who has public G Ehionnsesy

easier! and cross-account access to AWS resources." Just launched! IAM Access Analyzer: continuously monitor,
_ comprehensively analyze, and gain certainty for cross
Identify Unintended Resource Access with AWS Identity and Formal methodes for the win: account access controls. All backed by fancy math using

Access Management (IAM) Access Analyzer "IAM Access Analyzer uses a form of mathematical analysis automated reasoning. Come see it live in SEC316. But really
called automated reasoning, which applies logic and go turn it on, it's quick.

mathematical inference to ..."

IDI0CHHL -4 4730 6 minutes aQo Actre

0 What's New on AWS @awswhatsnew
Introducing AWS Identity and Access Management (IAM) Access
Analyzer

https://aws.amazon.com/security/provable-security/

